Prof Oscar Gaggiotti
Director of Research
Professor
Research areas
Oscar Gaggiotti is a MASTS professor. His research focuses on the study of spatial patterns of genetic diversity to better understand the evolutionary and ecological processes responsible for their origin
and maintenance. To this end he develops ecologically realistic population genetics theory and methods using a framework based on the metapopulation paradigm and Bayesian statistics.
With his research group he has developed several statistical approaches that can simultaneously utilize the information provided by different types of data (genetic, demographic, environmental) and has applied them to two research problems:
- Statistical inference of the demographic history and ecology of populations,
- Study of local adaptation to understand the molecular bases of phenotypic variation.
PhD supervision
- Sarah Derrien
- Éadin O'Mahony
- Sarah Rehman
- Shuyu Wei
Selected publications
-
Open access
A method for identifying local adaptation in structured populations
do O, I., Gaggiotti, O., de Villemereuil, P. & Goudet, J., 23 Sept 2025, In: PLoS Genetics. 21, 9, p. 1-21 21 p., e1011871.Research output: Contribution to journal › Article › peer-review
-
Open access
A method for identifying spatially divergent selection in structured populations
do O, I., Gaggiotti, O., de Villemereuil, P. & Goudet, J., 24 Feb 2025, bioRxiv, 27 p.Research output: Working paper › Preprint
-
Open access
Post-pleistocene colonisation rather than the contemporary environment has most influenced the current population structure of Scottish Atlantic salmon (Salmo salar)
Cowell, F., Gaggiotti, O. E. & Cauwelier, E., 1 Oct 2025, In: PLoS ONE. 20, 10, p. 1-16 16 p., e0333164.Research output: Contribution to journal › Article › peer-review
-
Open access
Collecting baleen whale blow samples by drone: a minimally intrusive tool for conservation genetics
O'Mahony, É., Sremba, A., Keen, E., Robinson, N., Dundas, A., Steele, D., Wray, J., Baker, C. S. & Gaggiotti, O. E., 4 Apr 2024, (E-pub ahead of print) In: Molecular Ecology Resources. Early ViewResearch output: Contribution to journal › Article › peer-review
-
Open access
Competing adaptations maintain nonadaptive variation in a wild cricket population
Rayner, J. G., Eichenberger, F., Bainbridge, J. V. A., Zhang, S., Zhang, X., Yusuf, L. H., Balenger, S., Gaggiotti, O. E. & Bailey, N. W., 6 Aug 2024, In: Proceedings of the National Academy of Sciences of the United States of America. 121, 32, 9 p., e2317879121.Research output: Contribution to journal › Article › peer-review
-
Open access
Ecological connectivity in Pacific deep-sea hydrothermal vent metacommunities
Fleming, B., Beaulieu, S., Mills, S., Gaggiotti, O. & Mullineaux, L., 13 Mar 2024, (E-pub ahead of print) In: Marine Ecology Progress Series. 731, p. 267-278 12 p.Research output: Contribution to journal › Article › peer-review
-
Open access
Ancient dolphin genomes reveal rapid repeated adaptation to coastal waters
Louis, M., Korlević, P., Nykänen, M., Archer, F., Berrow, S., Brownlow, A., Lorenzen, E. D., O’Brien, J., Post, K., Racimo, F., Rogan, E., Rosel, P. E., Sinding, M.-H. S., van der Es, H., Wales, N., Fontaine, M. C., Gaggiotti, O. E. & Foote, A. D., 18 Jul 2023, In: Nature Communications. 14, 13 p., 4020.Research output: Contribution to journal › Article › peer-review
-
Open access
Deep learning in population genetics
Korfmann, K., Gaggiotti, O. E. & Fumagalli, M., 2 Feb 2023, In: Genome Biology and Evolution. 15, 2, 20 p., evad008.Research output: Contribution to journal › Review article › peer-review
-
Open access
Biogeography in the deep: hierarchical population genomic structure of two beaked whale species
Onoufriou, A. B., Gaggiotti, O. E., de Soto, N. A., McCarthy, M. L., Morin, P. A., Rosso, M., Dalebout, M., Davison, N., Baird, R. W., Baker, C. S., Berrow, S., Brownlow, A., Burns, D., Caurant, F., Claridge, D., Constantine, R., Demaret, F., Dreyer, S., Ðuras, M. & Durban, J. & 21 others, , 1 Dec 2022, In: Global Ecology and Conservation. 40, 18 p., e02308.Research output: Contribution to journal › Article › peer-review
-
Open access
Deciphering signatures of natural selection via deep learning
Qin, X., Chiang, C. & Gaggiotti, O. E., Sept 2022, In: Briefings in Bioinformatics. 23, 5, 10 p., bbac354.Research output: Contribution to journal › Article › peer-review