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Abstract

When a DSGE model features stochastic volatility, is a third-order perturbation

approximation sufficient? The answer is often no. A key parameter—the standard

deviation of stochastic volatility innovations—does not appear in the coefficients of

the decision rules of endogenous variables until a fourth- or sixth-order perturbation

approximation (depending on the functional form of the stochastic volatility process).

This paper shows analytically this general result and demonstrates, using three mod-

els, that important model moments can be imprecisely measured when the order of

approximation is too low. i) In the Bansal–Yaron long-run risk model, the equity risk

premium rises from 4.5% to 10% by going to sixth-order. ii) In a workhorse real business

cycle model, the welfare cost of business cycles also rise when a fourth-order approx-

imation properly accounts for the presence of stochastic volatility. iii) In a canonical

New-Keynesian model, the risk-aversion parameter can be lowered while matching the

term premium when a fourth-order approximation is used.
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1 Introduction

Stochastic volatility has become a popular device in both finance and macroeconomics to

account for stylized asset pricing facts and heteroscedasticity in business cycles, respectively.

Among macroeconomists, third-order perturbation techniques have become the standard

method for solving DSGE models featuring stochastic volatility. This is because perturbation

methods can be very efficient compared to alternative, global, solution techniques and are

a natural extension of the (log)-linear approximation methods that have historically been

popular in macroeconomics since the introduction of real business cycle models in the 1980s.

It is also well known that third-order perturbation is the lowest order perturbation that

captures movements in endogenous variables resulting from changes in uncertainty.

Is third-order sufficient though? This paper documents important cases in which one

would—if choosing to use perturbation methods—want to solve for decisions rules up to

fourth- or even sixth-order. The main contributions of this paper are twofold. First, it

shows analytically that the coefficients of third-order decision rules are not functions of a key

parameter—the standard deviation of stochastic volatility innovations (henceforth denoted

ω). It shows that the necessary order of approximation is fourth- or sixth-order and depends

on the functional form of the stochastic volatility process. Second, it demonstrates, using

three models, that three important model moments—equity risk premium, bond term pre-

mium, and welfare cost of business cycles—can be mis-measured if the order of approximation

is too low.

Consider the following exogenous stochastic process

zt = ρzzt−1 +m (xt) εz,t εz,t ∼ Niid (0, 1) (1)

xt = (1− ρx)x+ ρxxt−1 + ωεx,t εx,t ∼ Niid (0, 1) . (2)

Think of equation (1) as a typical process for the level of technology, zt, in a DSGE model,

or as log dividend growth in an endowment asset pricing model. zt follows an AR(1) with

innovations εz,t. The innovations are scaled by m (xt), where m (·) is an (as yet unspecified)

function of xt. The term xt also follows an exogenous stochastic AR(1) process (henceforth,

the stochastic volatility process).

This paper is concerned with the parameter ω, the standard deviation of stochastic

volatility innovations. It first appears in the constant term of either a fourth- or sixth-

order approximation using standard perturbation methods. Whether fourth- or sixth-order

depends on the functional form of m (·) (which is discussed below).

Why do we need at least fourth-order? For intuition, suppose we are interested in

approximating the decision rule for some endogenous variable yt using perturbation methods.
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A zeroth-order decision rule for yt is simply its deterministic steady state, yt = y (the steady

state of yt if agents faced no uncertainty today or in the future), which will be a function

of steady state z. A first-order decision rule, in addition, captures how yt deviates linearly

from steady state in response to movements in the state variables (i.e. movements of zt from

z). A second-order decision rule adds terms quadratic in the state vector but also introduces

a risk-correction to the constant term for the uncertainty agents face, and is a function of

m (x). A third-order decision rule captures deviations of yt from y in response to movements

in xt, the level of uncertainty agents face. So far so good, all results that are well understood

in the literature. But, what if we also want the decision rule to depend on the volatility of

uncertainty? The coefficients of the decision rule up to third-order are independent of ω.

A reasonable conjecture would be that a fourth-order approximation is necessary, with the

volatility of uncertainty appearing in the constant term of decision rules.1 A schematic of the

information added to the approximate decision rule as the order of approximation increases

in given in Table 1.

Table 1: Information added in higher-order perturbations

Perturbation order: 0th → 1st → 2nd → 3rd → 4th (or 6th)
Decision rule depends on: z → z, zt → z, zt, x → z, zt, x, xt → z, zt, x, xt, ω

A twist to this intuition is that sometimes even a fourth-order approximation is in-

sufficient. Macroeconomists like to use the functional form m (·) ≡ exp (·) for stochastic

volatility. In contrast, finance papers like to use m (·) ≡
√
·. I show analytically that for

exp (·) a fourth-order approximation is sufficient, while for
√
· a sixth-order approximation is

necessary because fourth-order terms involving ω cancel out.

Does this risk-correction for the volatility of uncertainty matter quantitatively? This

paper demonstrates the quantitative importance of not ignoring ω using three “workhorse”

models from the literature: An endowment asset pricing model, a real business cycle model,

and a New-Keynesian model.

First, Bansal and Yaron (2004) incorporated long-run risk and recursive preferences in

an endowment asset pricing model and showed that stochastic volatility not only generated

time-variation in risk premiums but also significantly increased the mean equity risk premium

1The value of ω only affects the constant term but not linear terms. If n∗ is the order of approximation
necessary for ω to affect the constant term, then one needs an approximation of at least order n∗ + 1 for ω
to affect linear terms.
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from around 4.5% to 6%. The key parameter is ω. I show using standard perturbation

methods that a fourth-order approximation delivers an equity risk premium close to 4.5%

and is unaffected by the volatility of uncertainty while a sixth-order approximations delivers

a greatly increased equity risk premium highly sensitive to the calibration of ω.

Second, within the macroeconomics literature, a longstanding open question regards

the welfare cost of business cycles. With more and more models now adding stochastic

volatility to explain heteroscedasticity in business cycle fluctuations, it is important to accu-

rately account for the welfare costs of stochastic volatility. Using the Caldara et al. (2012)

real business cycle model, one gets much closer to welfare measures from global solutions

techniques by going from a third- to a fourth-order approximation.

Third, a growing literature is attempting to bring the insights from endowment based

asset pricing models into macro models to jointly account for asset pricing and business

cycle facts. Rudebusch and Swanson (2012) added recursive preferences to a New-Keynesian

model to try and match the bond term premium. They matched the term premium but at the

expense of an unrealistically high risk-aversion coefficient. Andreasen (2012) developed the

New-Keynsian model further by adding stochastic volatility but the term premium did not

change. Both papers used third-order perturbation methods and hence the risk-correction

due to stochastic volatility was not captured. Solving the model up to fourth-order, it is

possible to lower the risk-aversion parameter while still matching the term premium.

The rest of the paper is organized as follows. Section 2 presents a simple asset pricing

model with closed-form solution that reveals the relationship between ω and the auxiliary

perturbation parameter. Section 3 shows analytically under what conditions a fourth-order

approximation is sufficient. Section 4 demonstrates the quantitative importance of ω in

an endowment asset pricing model, New-Keynesian model, and real business cycle model,

respectively. Section 5 discusses the results, Section 6 reviews the related literature and

Section 7 concludes.

2 A closed-form solution

This section closely follows de Groot (2015) in that it specifies a simple endowment asset pric-

ing model featuring stochastic volatility for which the price-dividend ratio decision rule has

a closed-form representation. The closed-form reveals the way in which the auxiliary pertur-

bation parameter appears in the exact decision rule and hence what order of approximation

ω, the parameter measuring the standard deviation of stochastic volatility innovations, first

appears.
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2.1 The model

A representative agent has preferences over consumption, ct, given by

Vt = max
ct

(
c1−γt

1− γ
+ βEtVt+1

)
, (3)

where Vt is the value function, β is the discount factor, and γ is the coefficient of relative risk

aversion. The agent’s budget constraint is

ct + st+1pt = (dt + pt) st, (4)

where st denotes units of an asset with price pt and dividends dt. The dividend growth rate,

zt ≡ log (dt/dt−1), follows the process

zt = (1− ρz) z + ρzzt−1 +
√
xtσεz,t εz,t ∼ Niid (0, 1) , (5)

where z is the steady state of zt and ρz is the persistence parameter. The innovations to zt

are scaled by
√
xt, where xt is the time-varying conditional variance of dividend growth and

follows the process

xt = (1− ρx)x+ ρxxt−1 + ωσεx,t εx,t ∼ Niid (0, 1) , (6)

where x is the steady state of xt, ρx is the persistence parameter, and ω the standard de-

viation of stochastic volatility innovations. In both equation (5) and (6), σ is the auxiliary

perturbation parameter and takes the value 0 or 1. The perturbation parameter thus links

the deterministic version of the model (σ = 0) with its fully stochastic counterpart (σ = 1).

After imposing market clearing, st = 1, which implies ct = dt, and after further manip-

ulation, the first-order equilibrium condition becomes

yt =
∑∞

i=1
βiEt exp

(
(1− γ)

∑i

j=1
xt+j

)
, (7)

where yt ≡ pt/dt is the price-dividend ratio.

2.2 Perturbation methods: A primer

With any macroeconomic model, the aim is to find the decision rule yt = g (xt) (or a good

approximation of it) that satisfies the model’s equilibrium conditions (where yt and xt are

vectors of endogenous variables and state variables, respectively).
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Perturbation methods find an approximation to g (·) by starting from the exact solution

of a related simpler problem—the deterministic steady state (or zeroth-order solution)—and

taking a Taylor expansion with respect to the state variables and an auxiliary scale (or

perturbation) parameter, σ, that switches uncertainty on and off. The expansion is taken in

the neighbourhood of the deterministic steady state, where xt = x and σ = 0. Hence, when

using perturbation methods, the decision rule is rewritten yt = g (xt, σ). The N th-order

approximation for the kth variable in yt is given by

ykt =
N∑
n=0

(
1

n!

[
gk(xσ)n

]
α1...αn

i∏
j

[
xt − x

1

]αj)
, (8)

where the above expression is written in tensor notation and where each coefficient g(xσ)i is

evaluated at (xt, σ) = (x, 0). The question of this paper is what is the lowest n for which ω

appears in a g(xσ)n coefficient.

2.3 Solution

Since, in general, the decision rule of macroeconomic models are unknown, perturbation

methods construct an approximate decision rule by acting indirectly on the model’s equi-

librium conditions. In the special case where the exact decision rule exists we can use it to

derive the perturbation approximation directly. In the model described by equations (5)–(7),

there is one endogenous variable, yt = yt, the state vector is xt = [zt, xt]
′, and the exact

decision rule, denoted yt = g (zt, xt, σ), is

yt =
∑∞

i=1
βi exp

(
Aiz +Bi (zt − z) + Ciσ

2x+Diσ
2 (xt − x) + Fiσ

6ω2
)
, (9)

where Ai, Bi, Ci, Di, and Fi are coefficients that are complicated functions of the structural

parameters {γ, ρz, ρx}.2 Notice that the parameter of interest, ω, is multiplied by σ6. Since

the coefficients of the perturbation approximation are evaluated at the deterministic steady

state (i.e. when σ = 0), it is clear from equation (9) that ω will drop out of all coefficients of

the Taylor expansion that are of fifth-order or below. This result is summarized as follows:

Result 1 The decision rule for the price-dividend ratio in the model described by equations

(5)–(7) is only a function of the conditional standard deviation of the stochastic volatility

process, ω, if the perturbed approximation around the deterministic steady state is sixth-order

or above.

2See de Groot (2015)
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The full perturbation approximation, even in this simple model, is unwieldy. However, in a

sixth-order approximation, the parameter ω is absent in all terms except the constant term

gσ6 =
∑∞

i=1
βi exp (Aiz)

(
x3C3

i + 720Fiω
2
)
. (10)

The computational difficulties of sixth-order perturbation methods, for anything other

than the simplest models, are discussed in Section 5. At this stage though, it is worth

identifying the source of this result. A sixth-order approximation is required because standard

perturbation methods construct an approximation in the neighbourhood of the deterministic

steady state. Suppose we took a Taylor approximation of equation (9) around (xt, σ) = (x, 1)

instead. This is not possible in general, but it is when the exact decision rule exists. A first-

order approximation of equation (9) is then given by

yt = g̃ + g̃z (zt − z) + g̃x (xt − x) , (11)

where

g̃ ≡
∞∑
i=1

Gi, g̃z ≡
∞∑
i=1

BiGi, g̃x ≡
∞∑
i=1

DiGi, and Gi ≡ βi exp
(
Aiz + Cix+ Fiω

2
)
.

(12)

and where the tilde denotes that the coefficients of the Taylor expansion have been evaluated

at (xt, σ) = (x, 1) rather than at the deterministic steady state.

Notice that in this first-order approximation, both the constant term g̃ and the coef-

ficients of the terms linear in the state vector (g̃z and g̃x) depend on ω. In contrast, with

a standard perturbation approach in the neighbourhood of the deterministic steady state,

a sixth-order approximation is required to risk-correct the constant term for ω. An even

higher-order approximation is required for coefficients of linear terms to depend on ω.

This simple model valuably demonstrates the issue of incorporating ω. However, the

decision rule in this model with CRRA utility is not quantitatively sensitive to the value of

ω. Section 4.1 demonstrates its quantitative importance for risk premiums in an extension

of this model with long-run risk and recursive preferences.

But first, one may still be surprised by the result that a sixth-order approximation is

necessary. As described in the Introduction, it might be intuitive that ω not appear until

fourth-order. But why sixth-order? The next section shows analytically, again with a simple

model, that the necessary order of approximation depends on the functional form of the

stochastic volatility process.
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3 Fourth- or sixth-order?

To demonstrate why and when a fourth-order approximation is insufficient and a sixth-order

approximation is necessary, consider a model described by the following single equilibrium

condition

yt = Etf (zt+1) , (13)

where zt follows the process given by equations (1) and (2). The functions f (·) and m (·) are

continuous and 6-times differentiable. Think of yt as the price-dividend ratio and zt as log

dividend growth as in Section 2 but agents, for some “behavioural” reason, care only about

expected dividend growth at t+ 1 and not its entire future path. Unlike the model in Section

2 there is no convenient closed-form solution. The perturbation method therefore needs to

act indirectly on the equilibrium condition, equation (13).

Substituting the exogenous processes into the equilibrium condition, we get

yt = Etf (ρzzt +m ((1− ρx)x+ ρxxt + ωσεx,t+1)σεz,t+1) . (14)

While the expression is now in the form yt = g (xt, σ), the decision rule is still unknown

because of the expectations operator.3 Since g (·, ·) is unknown, we use perturbation meth-

ods to find an approximation, with the coefficients of the Taylor expansion evaluated at

(zt, xt, σ) = (0, x, 0). The full Taylor expansion is straightforward but tedious so it is not

show here. Instead, I only show three coefficients that are plausible candidates for ω to

appear in. These are the even-ordered terms gσ2 , gσ4 , and gσ6 .4

The second-derivative of yt with respect to σ is:5

∂2yt
∂σ2

= Etf ′′ (·) (m′ (·)ωεxσεz +m (·) εz)2 + f ′ (·)
(
m′′ (·)ω2ε2xσεz + 2m′ (·)ωεxεz

)
. (15)

Setting (zt, xt, σ) = (0, x, 0) and taking expectations gives

∂2yt
∂σ2

∣∣∣
(0,x,0)

= gσ2 = f ′′ (0)m (x)2 , (16)

which is a risk-correction of the constant term of the decision rule and is as a function of

the steady state conditional volatility of dividend growth, m (x). The term is the same as if

stochastic volatility was absent—the stochastic volatility parameter ω never enters second-

3εz,t+1 and εx,t+1 are not decision rule variables but rather arguments of integration in the expectations
operator.

4Since the innovations are drawn from symmetric distributions, gσn where n is odd are all generically
zero.

5The time subscripts on εz and εx terms have been dropped for brevity.
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order terms. The fourth-order term is

∂4yt
∂σ4

∣∣∣
(0,x,0)

= gσ4 = 3
(
4f ′′ (0)

(
m′ (x)2 +m (x)m′′ (x)

)
ω2 + f (4) (0)m (x)4

)
, (17)

where f (4), for example, denotes the fourth-derivative. This shows that, in general, ω appears

in a fourth-order approximation. However, when m (·) ≡
√
· the term m′ (x)2 +m (x)m′′ (x)

becomes zero and the fourth-order term reduces to

gσ4 = 3f (4) (0)m (x)4 , (18)

where ω has dropped out. In contrast, when m (·) ≡ exp (·), the fourth-order term becomes

gσ4 = 3
(
8f ′′ (0) e2xω2 + f (4) (0) e4x

)
. (19)

This result is summarized in the following:

Result 2 When an exogenous innovation term in a DSGE model has time-varying stan-

dard deviation m (xt), where m (·) is at least twice differentiable, a fourth-order perturbation

approximation risk-corrects the constant term of decision rules for stochastic volatility iff

S ≡ m′ (x)2 +m (x)m′′ (x) 6= 0. If S = 0, at least a sixth-order approximation is necessary.

This result is important because the finance and macro literature have largely specified

stochastic volatility processes differently. The finance literature prefers to use m (·) ≡
√
·.

The benefit of this specification is that the stochastic process is still conditionally normal and

can be exploited to generate a conditionally log-normal linear approximation that accounts

for risk as in Campbell and Shiller (1988). The drawback of this functional form is that it is

possible to get a negative standard deviation. Macroeconomists largely use m (·) ≡ exp (·).
This functional form ensures the standard deviation remains strictly positive but, as pointed

out by Andreasen (2010), has the drawback that the level of the process does not have any

moments.

Finally, the sixth-order term with m (·) ≡
√
· is given by

∂6yt
∂σ6

∣∣∣
(0,x,0)

= gσ6 = 15
(
6f (4) (0)ω2 + f (6) (0)x3

)
. (20)

Clearly, the parameter of interest, ω, appears. With m (·) ≡ exp (·) there would also be a ω4

term in gσ6 but this also drops out under the m (·) ≡
√
· specification.

This section and the last have shown that the parameter that controls the standard devi-

ation of stochastic volatility innovations is absent in a third-order perturbation approximation—
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the standard solution method within the macro literature. In the next section, I will demon-

strate the quantitative importance of approximations above third-order using three models

featuring stochastic volatility: An endowment asset pricing model, a real business cycle

model, and a New-Keynesian model, respectively.

4 Three quantitative examples

This section demonstrates the quantitative significance of ω for three important model

moments—the equity risk premium, the welfare cost of business cycles, and the bond term

premium—in three workhorse economic models—the long-run risk model of Bansal and Yaron

(2004), the real business cycle model studied by Caldara et al. (2012), and the New-Keynesian

model studied by Andreasen (2012)—and shows how these moments can be mis-measured

when a perturbation approximations is not of sufficiently high order.

4.1 Bansal and Yaron (2004) asset pricing model

The seminal Bansal and Yaron (2004) paper provides a compelling resolution of asset pricing

puzzles. In particular, the paper shows that time-varying uncertainty in consumption and

dividend growth is important for quantitatively matching equity risk premiums.

The model is an extension of the simple endowment asset pricing model from Section 2

with three additional features. First, consumption and dividend growth rates are modelled to

contain a small long-run predictable component. Second, consumption and dividend growth

rates are modelled to exhibit stochastic volatility. Third, these dynamics are combined with

an agent with recursive Epstein and Zin (1989) and Weil (1989) preferences.

This type of finance model is usually solved using global methods or the Campbell and

Shiller (1988) conditionally log-normal linear approximation. Here the model will will be

solved using perturbation methods. The model is calibrated using the estimated version of

the model from Bansal et al. (2012). The model’s equations and table of calibrated parameter

values are relegated to the Online Appendix. The functional form for the stochastic volatility

process is m (·) ≡
√
·, which from Section 2 and 3 suggests a sixth-order approximation is

necessary.

Table 2 shows the equity risk premium using perturbation methods of second-, third-

, fourth- and sixth-order. The premium is calculated as the conditional expected equity

risk premium, evaluated with the exogenous state variables at their respective steady states.
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Using the notation from equation (8), the calculation is

y =
N∑
n=0

gσn , (21)

where yt is the expected equity risk premium, Etrmt+1 − r
f
t , where rmt is the market return on

equity and rft is the risk-free rate. The values in brackets in Table 2 are the unconditional

mean equity risk premium, E (yt). The final column, BKY, gives the equity risk premium

using the solution method in Bansal et al. (2012).

Table 2: Equity risk premium (Annualized %)

2nd 3rd 4th 6th BKY
ω = 0 5.12 5.12 4.54 4.65 4.65

(5.12) (5.12) (4.54) (4.65) —
ω = 1.31e-6 5.12 5.12 4.54 6.04 5.05

(5.12) (4.98) (4.44) (5.94) —
ω = 2.62e-6 5.12 5.12 4.54 10.19 5.97

(5.12) (4.77) (4.35) (10.00) —

Note: The model is Bansal and Yaron (2004). The calibration
is Bansal et al. (2012) Table II except β = 0.9985 rather than
.9989. The values in column BKY are based on the solution
method in Bansal et al. (2012) Table III. The first row for each
ω reports the conditional equity risk premium. The values in
brackets reports the unconditional mean equity risk premium.

Consider the first row results without stochastic volatility when ω = 0. To a first-order

perturbation approximation, the model is certainty equivalent and the premium is always

zero. The second-order approximation delivers an approximate annual equity risk premium

of 5%, a little high compared to BKY. Since the innovations are drawn from a symmetric

(Normal) distribution, odd-order gσi terms are zero. Hence, the equity risk premium for the

third- and fifth-order approximation are the same as those for second- and fourth-order. At

fourth-order, the equity risk premium drops a little to 4.5%. Notice that, even in the absence

of stochastic volatility, a sixth-order approximation is required to get close to the BKY value

of 4.65%.

The results from Section 2 and 3 suggest that a fourth-order approximation is insuffi-

cient to capture the role of stochastic volatility for the equity risk premium. This is borne

out in Table 2. As ω increases the second-, third-, and fourth-order approximate values are

unchanged relative to their ω = 0 values. This is in contrast to the sixth-order approxima-
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tion. The equity risk premium is increasing in ω when a sixth-order approximation used,

qualitatively similar to BKY. Quantitatively, the value rises too much. When ω =2.62e-6,

the equity risk premium is 10% in the sixth-order approximation as opposed to 6% under

BKY. Possibly an even higher-order approximation is necessary to deliver an accurate equity

risk premium in the presence of stochastic volatility in this model.6

Table 2 also reports unconditional means. Notice that these unconditional means are

sensitive to changes in ω even at lower order-approximation. At third-order for example, the

unconditional mean equity risk premium (actually) falls from 5.12% to 4.98% to 4.77% as ω

increases from zero to 1.31e-6 to 2.62e-6, respectively. This is consistent with Proposition 4

(p300) in Andreasen (2012) which states that “In a third-order approximation around the

deterministic steady state, stochastic volatility may affect the level of risk premia”. This

comes about because a decision rule at third-order has nonlinear terms in the endogenous

state variables. However, as Table 2 demonstrates, this curvature does not capture the

quantitative importance of stochastic volatility for risk premiums. In fact, the sign of the

change is incorrect in this calibration with the equity risk premium falling as stochastic

volatility increases.

In summary, Table 2 results suggest that ω needs to enter the decision rule explicitly,

which requires for the Bansal and Yaron (2004) model at least a sixth-order approximation,

if not higher, when perturbation methods are used.

4.2 Caldara et al. (2012) real business cycle model

What is the welfare cost of business cycle fluctuations? is an age old question in macroeco-

nomics. This section looks at measuring the stochastic volatility component of the welfare

cost of business cycles.

To do this the Caldara et al. (2012) real business cycle model featuring recursive pref-

erences and stochastic volatility is studied. Since the real business cycle model is the core

of almost all modern macroeconomic models, the key insights from this exercise will likely

follow to richer models. The model equations and calibration of parameter values are again

related to the Online Appendix. The model is a standard real business cycle model except

households have recursive Epstein and Zin (1989) and Weil (1989) preferences and technology

shocks exhibit stochastic volatility.

Table 3 reports the conditional welfare cost of business cycles in terms of percentage

consumption equivalents.7 The columns titled Value function and Chebyshev give the welfare

6Computer memory issues prevented checking whether the equity risk premium would fall from 10% closer
to 6% with an eight-order approximation.

7The calculation is the same as equation (21) where yt is instead the value of the representative household’s
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cost of business cycles using global solution methods while the first and second columns give

welfare cost measures using perturbation methods of various orders. Since Caldara et al.

(2012) use the functional form m (·) ≡ exp (·) for the stochastic volatility process, a fourth-

order should be sufficient to capture the effect of stochastic volatility on welfare.

Table 3: Welfare cost of business cycles (% consumption equivalent)

2nd & 3nd-order pert. 4th-order pert. Value function Chebyshev
ω = 0 1.1278 1.1278 — —
ω = 0.1 1.1278 1.2389 1.2838 1.2855
ω = 0.2 1.1278 1.5800 — —

Note: The model and calibrated parameter values are from Caldara et al. (2012). The calibration is the
“extreme” calibration from Caldara et al. (2012) Table 1 and Section 4. The Value function iteration
and Chebyshev polynomial numbers are from Caldara et al. (2012) Table 5.

The Value function number in Table 3, for example, says that households would forgo

1.28% of steady state consumption to eliminate business cycle fluctuations in this model.

In contrast, the welfare cost value is 1.13% using both second- and third-order perturbation

methods. Since innovations are drawn from a symmetric (Normal) distribution, all gσn = 0

terms for n odd are zero, and hence second- and third-order give the same welfare result.

The second- (and third-)order perturbation measures of welfare suffer in two ways.

First, they under-measure the welfare cost of business cycles relative to the global solution

by over 0.15 percentage points. Second, the welfare cost measure is unchanged when the

level of stochastic volatility is raised or lowered. As the conditional standard deviation of

the stochastic volatility process, ω, is increased from 0 to 0.2, the second- (and third-)order

welfare cost measures remain at 1.13%.

In contrast, the fourth-order measure of welfare costs rise in ω, reflecting households’

dislike of uncertainty. This occurs because the fourth-order approximation is the lowest order

of approximation at which the parameter ω appears in the decision rule. Second- (and third-

)order welfare measures underreport the welfare cost of business cycles because the effect of

stochastic volatility on welfare is absent. For ω = 0.1, the welfare cost of business cycles for

the fourth-order perturbation approximation is 1.23% as opposed to 1.13%, much closer to

the values given by the global solutions.

welfare function.
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4.3 Andreasen (2012) New-Keynesian model

Rudebusch and Swanson (2012) developed a workhorse New-Keynesian model with recursive

Epstein and Zin (1989) and Weil (1989) preferences and showed that the model could match

both stylized business cycle and asset pricing facts. The drawback, however, was that the

calibrated risk-aversion parameter was an order of magnitude larger than values used in the

endowment economy finance literature. Andreasen (2012) further extended the model of

Rudebusch and Swanson (2012) by adding stochastic volatility and showed that the model,

solved used third-order perturbation methods, could generate an increase in the variability

of the bond term premia but not its level. Hence, the calibrated risk-aversion parameter

remained elevated.

By solving the Andreasen (2012) model to fourth-order, it is possible to reduce the

risk-aversion parameter while still matching the mean term premium measured in the data.

The model equations and calibrated parameter values are presented in the Online Appendix.

The model size has been reduced by switching off the government spending and monetary

policy shocks and removing the smoothing term in the monetary policy reaction function.

For the exercise in Figure 1, the aim was to match the spread between the nominal 10

year government bond yield and the 3 month Treasury bill yield. The value to match was

a spread of 1.4 annualized percent. Figure 1 plots ω on the horizontal axis and shows the

corresponding value for the risk aversion parameter necessary to generate a term premium

of 1.4%. Without stochastic volatility (ω = 0) the risk aversion parameter needs to be

approximately 120, an order of magnitude larger than the values used in the finance literature

(for example, risk aversion is 7.4 in estimated long-run risk model in Bansal et al. (2012)

model). The solid red line shows how much risk aversion can be reduced when stochastic

volatility is introduced using a third-order approximation—the solution method used by

Rudebusch and Swanson (2012) and Andreasen (2012). Since the third-order approximation

does not capture the effects of stochastic volatility, however, the risk-aversion parameter

remains unchanged. However, when a fourth-order approximation is applied (the dot-dash

green line), the term premium rises with ω and hence the the risk-aversion parameter can be

reduced in order to maintain a constant term premium.

The range of ω in Figure 1 is greater than economically plausible values. The upper

value used by Andreasen (2012) is indicated with the dashed black line. However, the quali-

tative result is striking. Even if the term premium in a New-Keynesian model was sensitive to

stochastic volatility, standard solution methods would not have detected that relationship. In

trying to jointly match stylized business cycle and asset pricing facts in production economies

using perturbation methods, an order of approximation above third-order is clearly necessary.
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Figure 1: Matching term premiums in New-Keynesian models
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Note: The model and calibration is Andreasen (2012).
Changes to the calibration include σg = σr = ρr = 0.
The figure shows combinations of ω and risk aversion
γ + θ (1− γ) (by varying θ) for the difference between the
nominal 10 year government bond yield and the 3 month
Treasury bill yield is 1.40 annualized percent. The black
dashed line shows the upper value for ω used in Andreasen
(2012).

5 Discussion

In light of the results from Section 4, this section does two things. First, it calculates the

computational costs of using higher-order perturbation methods. Second, it shows an alter-

native way of using perturbation methods to risk-correct a first-order order approximation

in order to incorporate the role of ω.

5.1 Complexity of higher-order perturbation solutions

Low-order perturbation solutions can be computed efficiently. And, for many applications,

the low-order approximate solutions can be very accurate. Third-order perturbation methods

efficiently and accurately capture the time variation in endogenous variables resulting from

time varying uncertainty. However, the inability of third-order approximations to risk-correct

for the conditional variance of stochastic volatility is problematic. While fourth- and sixth-

order solutions are possible in small-scale models, as the order of approximation rises, the

15

                            16 / 28



 

complexity of the perturbation solution expands exponentially.

Table 4 shows how quickly complexity increases. The term si in the second col-

umn shows the number of coefficient that a perturbation solution has at each order of

approximation i, where ny are the number of endogenous variables and nx are the num-

ber of state variables. For example, the long-run risk model from Section 4.1 has nine

endogenous variables
{
gt, gd,t, xt, r

f
t , r

m
t ,Etrmt+1, χt, ya,t, ym,t

}
and seven exogenous variables

{ym,t−1, xt−1, χt−1, εg,t, εd,t, εχ,t, εx,t}. The number of coefficients increases by two orders of

magnitude in going from a third- to a sixth-order solution, and the time taken to compute

the solution increases by one order of magnitude. Even for this relatively small-scale model,

a seventh-order approximation was not possible on a standard laptop.

Table 4: Complexity of higher-order perturbation solutions

Order Number of elements Example with Time
(i) (si) ny = 9, nx = 7 (sec)
i = 1 s1 = nynx 63 0.99
i = 2 s2 = s1 + ny (1 + n2

x) 513 2.87
i = 3 s3 = s2 + nynx (1 + n2

x) 3,663 11.29
i = 4 s4 = s3 + ny (1 + n2

x + n4
x) 25,722 39.77

i = 5 s5 = s4 + nynx (1 + n2
x + n4

x) 180,135 118.19
i = 6 s6 = s5 + ny (1 + n2

x + n4
x + n6

x) 1,261,035 344.91
i = 7 s7 = s6 + nynx (1 + n2

x + n4
x + n6

x) 8,827,335 —†

i = 8 s8 = s7 + ny (1 + n2
x + n4

x + n6
x + n8

x) 61,791,444 —†

Note: Times based on solving the Bansal and Yaron (2004) using Dynare++ on
a 2.1GHz Intel laptop with Windows 7. † Lack of memory prevented a solution
being found.

5.2 Risk-adjusted linear perturbation

One potential alternative to using higher-order standard perturbation methods is to con-

struct a risk-adjusted—or non-certainty equivalent—linear perturbation. The idea is to “fold”

second-order terms into a linear structure. Despite only needing to compute second-order

derivatives and no higher, ω as well as the first-order effects of time-varying uncertainty sur-

vives in this risk-adjusted linear solution. This builds on work by Coeurdacier et al. (2011),

Juillard (2011), and de Groot (2013) on solving DSGE models around the risky steady state.

Here I sketch the idea using the simple asset pricing model from Section 2. For an extensive

presentation of the methodology, see de Groot (2016).
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Consider the equilibrium conditions

Etf (yt+1,yt,xt+1,xt) = 0 and xt+1 = h (xt, σεt+1) , (22)

where, for the sake of simplicity, (but without loss of generality) we assume all state variables,

xt, are exogenous. The unknown decision rules for the endogenous variables are denoted

yt = g (xt). To find a non-certainty equivalent linear solution, we need to simultaneously

solve for y (ny unknown steady state values) and gx (ny × nx unknown coefficients). Higher

order terms like gxx are ignored but known terms like hxx are exploited in the method. In

particular, for

zt = z + ρz (zt−1 − z) +
√
xtεz,t we have hxεz ≡

1

2
√
x
. (23)

Substituting the decision rules into the equilibrium conditions gives

F (xt,y,gx, σ) ≡
Et [f (y + gx (h (xt, σεt+1)− x) ,y + gx (xt − x) ,h (xt, σεt+1) ,xt)] = 0.

(24)

The steady state conditions (when xt = x) are

F (x,y,gx, σ) ≡ E [f (y + gx (h (x, σε)− x) ,y,h (x, σε) ,x)] = 0. (25)

Unlike standard perturbation methods, these conditions are not going to be evaluated at the

deterministic steady state. But, since we can’t evaluate E (.) exactly, we take a second-order

approximation around σ = 0 which gives

[F (x,y, ., 0)]i︸ ︷︷ ︸
A

+
1

2
[Fσσ (x,y,gx, 0)]i︸ ︷︷ ︸

B

= 0, (26)

where i denotes the ith endogenous variable. Term A alone would be the deterministic steady

state (with no gx terms). Term B is an additive scalar risk-adjustment to each steady state

equation. The risk-adjustment is a function of gx, that is a function of the conditional

variance-covariance matrix of the endogenous variables.

To apply this to the model from Section 2, (and for further simplicity set ρz = 0), we

have a problem in two unknowns, y and gx. We therefore need two equations. One is the
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steady state equation, which for the model is

0 = βeθz (y + 1)− y︸ ︷︷ ︸
A

+
1

2
βeθz

(y + 1)xθ2︸ ︷︷ ︸
V(z) risk-adj.

+ g2xω
2︸︷︷︸

SV risk-adj.


︸ ︷︷ ︸

B

, (27)

where θ ≡ 1− γ. Notice there are two risk-adjustments. First, for the conditional dividend

growth rate variance. Second, for the presence of stochastic volatility. If gx is non-zero (i.e.

stochastic volatility creates time variation in yt), then the risk-adjusted steady state equation

includes ω, the parameter that only appears in a sixth-order approximation using standard

perturbation methods.

The second equation to solve for the two unknowns comes from the first-derivatives of

equation (24), namely

[Fx (xt,y,gx, σ)]ij = 0, (28)

where j denotes the jth state variable. This matrix of equations also has an expectations

operator which requires another second-order approximation around σ = 0 (and evaluated

at xt = x). This gives

[Fx (x,y,gx, 0)]ij︸ ︷︷ ︸
C

+
1

2
[Fxσσ (x,y,gx, 0)]ij︸ ︷︷ ︸

D

= 0. (29)

Term C alone generates a linear-homogenous system for the j corresponding to the stochas-

tic volatility variable xt resulting in gx = 0. The D term is another additive scalar risk-

adjustment that breaks the linear-homogenous property and ensures gx is non-zero.8.

For the simple model, the risk-adjusted first-derivative equation is

0 = βeθzgxρx − gx︸ ︷︷ ︸
C

+
1

2
βeθzρx

(
2√
x
hxεzθ

2 (y + 1) + gxy
(
xθ2 + g2xω

2
))

︸ ︷︷ ︸
D

. (30)

In a standard perturbation solution, we have term C only resulting in gx = 0. With the risk-

adjustment, we get term D. Since gx in this equation is, in general, non-zero, by equation

(27), both the (risk-adjusted) steady state, y, and the linear coefficient, gx, are functions of

ω.

In summary, given computational complexity it is unclear whether higher-order pertur-

bation methods are the way forward to accurately incorporate the effect of ω when solving

8Since these are simply scalar adjustment this is still a standard matrix quadratic system
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macro models. This section sketches an alternative based on the idea of a risk-adjusted

perturbation method that incorporates ω with a linear decision rule.

6 Related literature

Perturbation methods were first extensively applied to dynamic stochastic models by Judd

and co-authors (see Judd (1998)). (Log)-linear approximation techniques (equivalent to a

first-order perturbation solution) have been common place in macroeconomics since Kydland

and Prescott (1982). Schmitt-Grohé and Uribe (2004) showed analytically that in a second-

order expansion the coefficients linear and quadratic in the state vector are independent of

the volatility of the exogenous shocks and therefore that the presence of uncertainty affects

only the constant term of the decision rules.

The use of time-varying uncertainty has for a long time been popular in finance but only

recently has the role of time-varying uncertainty been applied to macroeconomic variables.

For example, Bloom (2009) investigates how uncertainty affects investment and labor demand

decisions while Fernández-Villaverde et al. (2011) investigates how interest rate volatility can

explain output and investment in emerging economies.

Third-order perturbation methods are the standard solution method used for stochastic

volatility macro models, as surveyed in Fernández-Villaverde and Rubio-Ramı́rez (2013).

Benigno et al. (2013) develop perturbation methods in a nonstandard way to construct a

second-order approximation with time-varying risk. The toolbox Dynare can handle third-

order approximation while Dyanre++ can handle higher-order approximations. However, the

properties of these higher-order approximations have not been documented in the literature.

de Groot (2015) presents a closed-form model featuring stochastic volatility that de-

velops the first insights into the relationship between ω and standard perturbation methods.

de Groot (2016) develops a risk-adjusted linear solution that incorporates ω into a linear

approximation of the decision rules.

7 Conclusion

In this paper, I have shown that for models with stochastic volatility, perturbation meth-

ods only capture the risk-correction due to the standard deviation of stochastic volatility

innovations when the approximation is taken to fourth- or sixth-order, depending on the

functional form of the stochastic volatility process. I have shown the important role that

stochastic volatility plays in quantitatively driving risk premiums and the welfare costs of

business cycles.
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However, asset pricing insights from partial equilibrium endowment models do not easily

translate to general equilibrium production economy models. While getting the solution

techniques for DSGE models right is important, the missing ω in third-order perturbation

solutions does not, unfortunately, appear to resolve the difficulty of simultaneously matching

asset pricing and business cycle stylized facts as shown with the New-Keynesian model of

Section 4.3.

Low-order perturbation methods often offer a good trade-off between efficiency and

accuracy in solving DSGE models. However, the need for higher-order perturbation methods

for certain classes of model increases the computational challenges, especially when working

with large-scale models. New methods such as Fernández-Villaverde and Levintal (2016),

den Haan et al. (2015), and de Groot (2016) provide promising alternatives.
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A ONLINE APPENDIX (NOT FOR PUBLICATION)

This appendix presents the models used in Section 4. Notation has been changed from the

original so as to, where possible, provide consistent notation across the three models. For

full details, please consult the original papers. Replication code is available on request.

A.1 Bansal and Yaron (2004)

The asset pricing restriction for asset i with log gross return ri,t ≡ log (Ri,t) for a represen-

tative agent with recursive preferences is given by

βθEt exp

(
− θ
ψ
gt+1 + (θ − 1)ra,t+1 + ri,t+1

)
= 1, (31)

where gt ≡ (Gt) is the log aggregate gross growth rate of consumption and ra,t ≡ log (Ra,t)

is the log gross return on an asset that delivers aggregate consumption as its dividend. The

parameter β is the discount factor and θ ≡ (1− γ) / (1− 1/ψ) is a function of γ, the risk-

aversion parameter and ψ, the intertemporal elasticity of substitution. The dynamics of

consumption and dividends are as specified as follows

χt = ρχχt−1 + ϕe
√
xt−1εχ,t, εχ,t ∼ Niid (0, 1) (32)

gt = µ+ χt−1 +
√
xt−1εg,t, εg,t ∼ Niid (0, 1) (33)

gd,t = µd + φχt−1 + ϕd
√
xt−1εd,t, εd,t ∼ Niid (0, 1) (34)

xt = x+ ρx (xt−1 − x) + ωεx,t, εx,t ∼ Niid (0, 1) , (35)

where both consumption and dividend growth rates, gt+1 and gd,t+1, respectively, contain a

small persistent predictable component, χt, which determines the conditional expectation of

consumption growth. The parameters φ and ϕd control the relative volatility of dividends

and correlation with consumption, respectively. The parameter ρχ determines the persis-

tence of the expected growth rate process. Finally, xt represents time-varying uncertainty

incorporated in consumption growth, with x its unconditional mean, ρx its persistence, and

ω its conditional standard deviation.

The calibrated parameter values are given in Table 5. The decision frequency h = 11

implies 11 periods per year.
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Table 5: Long-run risk model: Calibrated parameters

Parameter β µ µd
√
x φ ϕe ϕd

Value .9985 .0012 .002 .0073 4.45 .0306 5

Parameter ρχ ρx ω γ ψ h
Value .9812 .9983 2.61e-6 7.42 2.05 11

Note: Parameter values are from Bansal et al. (2012) Table III except
β which has been lowered from .9989 to .9985 to aid convergence of the
perturbation solution.

A.2 Caldara et al. (2012)

A representative household has recursive preferences over streams of consumption, ct, and

leisure, lt, given by

Vt = max
ct,lt

(
(1− β)

(
cνt (1− lt)1−ν

) 1−γ
θ + β

(
EtV 1−γ

t+1

) 1
θ

) θ
1−γ

, (36)

where β is the discount factor, ν controls labor supply, θ ≡ (1− γ) / (1− 1/ψ), where γ

controls risk-aversion and ψ is the elasticity of intertemporal substitution. When θ = 1

preferences are CRRA and the elasticity of intertemporal substitution and risk aversion

coincide. The household’s budget constraint is

ct + it +
bt+1

Rf
t

= wtlt + rtkt + bt, (37)

where it is investment, Rf
t is the risk-free gross interest rate, bt is the holding of a bond that

pays one unit of consumption in period t+ 1, wt is the wage, lt is labor, rt is the rental rate

of capital, and kt is capital. Households accumulate capital according to the law of motion

kt+1 = (1− δ) kt+it, where δ is the depreciation rate. Competitive firms produce final goods,

yt, with Cobb-Douglas technology yt = exp (zt) k
α
t l

1−α
t . The level of productivity, zt, evolves

exogenously and the processes is given by

zt = ρzzt−1 + exp (xt) εz,t εz,t ∼ Niid (0, 1) (38)

xt = (1− ρx)x+ ρxxt−1 + ωεx,t εx,t ∼ Niid (0, 1) . (39)

The innovations to the level of productivity, εz,t, are scaled by the stochastic volatility term,

exp (xt). The stochastic volatility process has persistence ρx and the stochastic volatility in-
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novations have standard deviation of ω. Finally, the economy satisfies the aggregate resource

constraint yt = ct + it.

In order to highlight the role of stochastic volatility, the “extreme” calibration from

Caldara et al. (2012) is used. The calibrated parameter values are given in Table 6.

Table 6: RBC model: Calibrated parameters

Parameter β ν α δ ρz exp (x) ρx ω
Value .991 .362 .3 .0196 .95 .021 .9 .1

Note: Calibrated parameter values are from Caldara et al. (2012)
Table 5. The value of ν is chosen so that steady state labor supply,
l = 1/3

A.3 Andreasen (2012)

This is a standard New-Keynesian DSGE model extended with Epstein and Zin (1989) and

Weil (1989) preferences and stochastic volatility. The value function Vt for the representative

household is given by

Vt ≡ max
ct,lt

(cνt (1− lt)1−ν
)1−γ

1− γ
−

−β
(
Et
(
V 1−θ
t+1

)) 1
1−θ for γ < 1

β
(
Et
(
−V 1−θ

t+1

)) 1
1−θ for γ ≥ 0

 , (40)

where β is the discount factor, and ct and lt denote consumption and labor supply, re-

spectively. The intertemporal elasticity of substitution is given by 1/ (1− ν (1− γ)) and

γ + θ (1− γ) is a measure of risk-aversion that accounts for the leisure decision. The house-

holds real budget constraint is given by

EtMt+1bt+1 + ct =
bt
πt

+ wtlt + Tt, (41)

where Mt+1 is the stochastic discount factor, bt is a nominal state-contingent claim, πt is

inflation, wt is the real wage, and Tt is a real lump-sum transfer.

Final output is produced by perfectly competitive firms using a continuum of interme-

diate goods, yt (i) and technology

yt =

(∫ 1

0

yt (i)
η−1
η di

) η
η−1

, which implies yt (i) =

(
pt (i)

pt

)−η
yt, (42)
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Table 7: New-Keynesian model: Calibrated parameters

Parameter β γ ν θ α η ξ δ φπ φy
Value .9995 2.5 .35 -110 .36 6 260 .025 1.5 .3

Parameter ρr l g/y π µa ρz ρg exp (x) σg σr
Value 0 .38 .17 1.008 1.005 .98 .9 .0075 0 0

Note: Calibrated parameters values are from Andreasen (2012) Table 1. To re-
duce the size of the model, {ρr, σg, σr} have been changed from their original values
{.85, .004, .003}.

where the aggregate price level is given by pt =
(∫ 1

0
pt (i)1−η di

) 1
1−η

. Intermediate firms

produce slightly differentiated goods using technology

yt (i) = at exp (zt) k
αlt (i)1−α , (43)

where k denotes fixed physical capital and lt (i) is labor used by the firm i, zt is an exogenous

stationary technology process, and at is a deterministic technology trend with µa ≡ at/at−1.

Intermediate firms choose lt (i) and pt (i) to solve

max
lt(i),pt(i)

Et
∞∑
j=0

Mt,t+j

(
pt+j (i)

pt+j
yt+j (i)− wt+jlt+j (i)− ξ

2

(
pt+j (i)

pt+j−1π
− 1

)2

yt+j

)
, (44)

subject to equation (43). The central bank sets the nominal interest rate, rt, using a standard

Taylor rule

rt = r (1− ρr) + ρrrt−1 + φπ ln
(πt
π

)
+ φy ln

(
yt
zty

)
+ σrεr,t. (45)

Aggregation implies yt = atztk
αlt

1−α. Each period gtat units of output are used for public

consumption, where gt is exogenously given by

log (gt/g) = ρg log (gt−1/g) + σgεg,t. (46)

The aggregate resource constraint is yt = ct + gtat + δkat, where δkzt units of output are

used every period to maintain the fixed capital stock. Finally, the exogenous process for
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technology, zt, is given by

zt = ρzzt−1 + exp (xt) εz,t (47)

xt = (1− ρx)x+ ρxxt−1 + ωεx,t. (48)

The calibrated parameter values are given in Table 7.
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