Bubbles, Crashes and Risk

William A. Branch and George W. Evans

CDMA Working Paper Series No. 1306
20 Mar 2013
JEL Classification: G12; G14; D82; D83
Keywords: Risk, asset pricing, bubbles, adaptive learning
Bubbles, Crashes and Risk*

William A. Branch†
University of California, Irvine

George W. Evans
University of Oregon
University of St. Andrews

March 20, 2013

Abstract

In an asset-pricing model, risk-averse agents need to forecast the conditional variance of a stock’s return. A near-rational restricted perceptions equilibrium exists in which agents believe prices follow a random walk with a conditional variance that is self-fulfilling. When agents estimate risk in real-time, recurrent bubbles and crashes can arise. These effects are stronger when agents allow for ARCH in excess returns.

JEL Classifications: G12; G14; D82; D83
Key Words: Risk, asset pricing, bubbles, adaptive learning.

1 Introduction

An open question in models of asset pricing is the role played by movements in risk premia in generating bubbles and crashes (Greenspan (2005)). Branch and Evans (2011), building on the adaptive learning literature in asset pricing (e.g. Barsky and DeLong (1993), Timmermann (1993), Brock and Hommes (1998),

*We thank Robert Engle for the suggestion to examine the role of ARCH learning in bubbles and crashes. Financial support from National Science Foundation Grant no. SES-1025011 is gratefully acknowledged.

†Corresponding author: Department of Economics, 3151 Social Science Plaza, Irvine, CA 92697-5100; Email: wbranchuci.edu; Phone: 1-949-824-4221; Fax: 1-949-824-2182.
Evans and Honkapohja (2001), Lansing (2010) and Adam, Marcet, and Nicolini (2010)), replace rational expectations with an econometric learning rule. A feature of Branch-Evans is that agents estimate risk—the conditional variance of net stock returns—and when this is combined with estimating stock returns, adaptive learning can generate bubbles and crashes. A key mechanism is that adaptive learning introduces serial correlation that would not otherwise exist, which can lead agents’ forecasting rule to track this correlation with an approximately self-fulfilling random-walk model.

This paper focuses in more detail on the role of risk in propagating bubbles and crashes, and in particular examines the role of ARCH effects that may be present. We begin by attributing to traders random-walk beliefs about stock prices. We then assume that traders estimate the risk of the stock by formulating one of two econometric models: a simple recursive algorithm and an ARCH model for the conditional variance of stock returns. It is not obvious, a priori, whether an econometric learning rule designed to account for ARCH effects (as in Engle (1982)) will weaken or strengthen the bubble effect. We find that when agents allow for ARCH effects the tendency for learning about risk to generate bubbles and crashes actually appears strengthened.

We proceed as follows. To begin, we demonstrate that there exists a unique, stable restricted perceptions equilibrium under random-walk beliefs. We then show that when agents use a constant gain (or “perpetual learning”) algorithm, bubbles and crashes can emerge. ARCH effects can arise from agents’ updating of their risk estimates, and these effects are stronger when agents estimate an ARCH model. Bubbles in this setting emerge as sequences of shocks push agents’ estimates of risk down—in the case of the ARCH model agents explicitly forecast that this lower risk will persist into the near future. The lower estimates of risk leads to prices being bid up, buoyed by the feedback from random walk beliefs. This cycle persists until agents’ estimates of risk eventually increases as the dynamics push estimates back towards the stable equilibrium value. The process as a whole generates recurrent bubbles and crashes.

2 Asset Pricing with Random-Walk Beliefs

We follow De Long, Shleifer, Summers, and Waldmann (1990) and adopt a mean-variance linear asset pricing model with one risky asset that yields dividends \{y_t\} and trades at the price \(p_t\), net of dividends, and a risk-free asset that pays the
rate of return $R = \beta^{-1} > 1$. The demand for the risky asset is

$$z_{dt} = \frac{\hat{E}_t(p_{t+1} + y_{t+1}) - \beta^{-1}p_t}{a\sigma^2_t}$$

where \hat{E}_t is the conditional expectations operator based on the agent’s subjective probability distribution and σ^2_t is the corresponding perceived conditional variance of excess returns $p_{t+1} + y_{t+1} - \beta^{-1}p_t$. The equilibrium price p_t is given by $z_{dt} = z_{st}$, where z_{st} is the (random) supply of the risky asset at time t.

It follows that

$$p_t = \beta\hat{E}_t(p_{t+1} + y_{t+1}) - \beta a\sigma^2_t z_{st}$$

(1)

We assume that $y_t = y_0 + \varepsilon_t$, and that $z_{st} = \{\min(s_0, \Phi p_t)\} \cdot V_t$, where ε_t, V_t are uncorrelated iid shocks with $EV_t = 1, s_0 > 0$ and $\Phi = s_0/(\bar{p}\xi)$, where \bar{p} is the mean stock price in a fundamentals based equilibrium and $0 < \xi < 1$. Share supply is exogenous except when price falls well below its fundamental value. This assumption provides a flexible price floor in the event of a stock-price crash. We will assume throughout that agents know the true dividend process, so that $\hat{E}_t y_{t+1} = y_0$.

In Branch and Evans (2011), we studied the price dynamics under learning, about both expected future price p_{t+1} and the risk of the stock σ^2_t, and found that under constant-gain learning the model could generate recurring bubbles and crashes. A key to these results was that under learning agents might believe, often for a long stretch of time, that stock prices were following a random walk. Furthermore we found that these beliefs are nearly self-fulfilling. The current paper assumes that agents perceive stock prices to follow a random-walk process, and then use an econometric model to uncover the stock’s riskiness in real time.

We also assume that under random-walk beliefs the conditional variance $\sigma^2_t = \hat{E}_t\left(p_{t+1} - \hat{E}_t p_{t+1} + y_{t+1} - \hat{E}_t y_{t+1}\right)^2$ is believed to be given by

$$\sigma^2_t = \hat{E}_t(p_{t+1} - p_{t-1} + \varepsilon_{t+1})^2 = \hat{E}_t(p_{t+1} - p_{t-1})^2 + \sigma^2_v.$$

Before turning to the dynamics under learning we first solve for the restricted perceptions equilibrium (RPE), in which agents treat σ^2_t as a constant over time, $\sigma^2 = \sigma^2 = E(p_{t+1} - p_{t-1} + \varepsilon_{t+1})^2$. We then look for the the self-fulfilling value of σ^2.

1In simulations, we set $\xi = 0.1$ which implies share supply is exogenous except when price falls below 10% of its mean value.

2In a model of heterogeneous beliefs, Gaunersdorfer (2000) models agents who estimate asset price risk.
When agents hold random-walk beliefs about stock prices, the actual process for stock prices is \(p_t = \beta y_0 + \beta p_{t-1} - \beta a \sigma^2 z_{st} \). Here we have assumed that current price \(p_t \) is not part of the information set when expectations of \(p_{t+1} \) are formed, so that under random-walk beliefs \(\hat{E}_t p_{t+1} = \hat{E}_t p_t = p_{t-1} \). The actual price process can be rewritten as

\[
p_t = \beta (y_0 - a \sigma^2 s_0) + \beta p_{t-1} - \beta a \sigma^2 v_t, \quad \text{or} \quad (2)
\]

\[
\tilde{p}_t = \beta \tilde{p}_{t-1} - \beta a \sigma^2 v_t, \quad \text{where} \quad \tilde{p}_t = p_t - E p_t
\]

where \(v_t \) is the zero-mean shock defined by \(V_t = 1 + v_t / s_0 \).\(^3\) Note that for \(0 < \beta < 1 \) close to \(\beta = 1 \) random-walk beliefs are almost self-fulfilling. The actual conditional variance of excess returns implied by these beliefs is

\[
E_t (p_{t+1} - p_{t-1})^2 + E_t \xi^2_{t+1} = (\beta^2 - 1)^2 \tilde{p}_{t-1}^2 + (1 + \beta^2)(\beta a \sigma^2)^2 \sigma^2_v + \sigma^2_e.
\]

where \(\sigma^2_v \) denotes the variance of \(v_t \). Noting that \(E \tilde{p}_t^2 = (1 - \beta^2)^{-1}(\beta a \sigma^2)^2 \sigma^2_v \) it is straightforward to compute that the mapping from perceived \(\sigma^2 \) to actual \(\sigma^2 \) is

\[
T(\sigma^2) = 2(a \beta \sigma^2)^2 \sigma^2_v + \sigma^2_e.
\]

An RPE is then a fixed point of the T-map, i.e. \(\sigma^2 = T(\sigma^2) \). It follows that in a RPE

\[
\sigma^2 = \frac{1 \pm \sqrt{1 - 8a^2 \beta^2 \sigma^2_v \sigma^2_e}}{4a^2 \sigma^2_v \beta^2}
\]

There are two positive roots. However, Proposition 1 below demonstrates that (only) the smaller root, \(\sigma^2_L \) is stable under learning.

It is worth remarking that in a fundamentals-based rational expectations equilibrium (REE), the mean stock price is \(\beta (y_0 - a \sigma^2 s_0) / (1 - \beta) \), which is identical to the mean stock price in a RPE. However, the equilibrium risk \(\sigma^2 \) is higher in a RPE than in the REE. In addition, as discussed below, learning about risk can give rise to additional stock-price dynamics that are qualitatively very different from the RE.

3 Two Learning Models for Risk

This section develops two theories of how agents might econometrically estimate risk and demonstrates that the RPE is stable under learning.

\(^3\)We are assuming that \(\Phi \) and the support of the \(z_{st} \) are sufficiently small so that in the RPE we always have \(z_{st} = s_0 V_t \).
A simple recursive model for estimating the risk of a stock is given by

\[\sigma_t^2 = \sigma_{t-1}^2 + \gamma_t \left[(p_t - p_{t-2} + \varepsilon_t)^2 - \sigma_{t-1}^2 \right] \]

(3)

For the stability results in this section, the gain \(\gamma_t \) is set to \(\gamma_t = t^{-1} \) so that (3) corresponds to the recursive least squares estimator for a regression on a constant of the squared forecast error of excess returns. In the numerical simulations below we assume a constant gain \(\gamma_t = \gamma \), where \(0 < \gamma < 1 \) is small, so that the recursive algorithm is a form of discounted least squares. Decreasing gains, such as \(\gamma_t = t^{-1} \), allow for convergence to the RPE and is thus suitable for studying the local stability of an equilibrium. Constant gains are preferable in environments where agents might be concerned with structural change and also have the advantage of being a time-invariant, or perpetual, learning rule.

An alternative learning algorithm arises when agents perceive the conditional variance of returns to follow an autoregressive conditional heteroskedasticity (ARCH) process. Suppose that agents believe that risk follows the perceived law of motion

\[\sigma_t^2 = \alpha_0 + \alpha_1 \sigma_{t-1}^2 + \eta_t \]

where \(\eta_t \) is a perceived white noise error. Agents estimate their ARCH coefficients \((\alpha_0, \alpha_1) \) by regressing the squared forecast error of excess returns on a constant and on an average of \(m \) of its own lagged values. Let \(\theta' = (\alpha_0, \alpha_1) \), \(z_t = p_t - p_{t-2} + \varepsilon_t \), \(\bar{z}_t^2 = \frac{1}{m} \sum_{j=0}^{m-1} z_{t-j}^2 \) and \(X'_t = (1, \bar{z}_t^2) \). Then a recursive ARCH estimator is

\[\begin{align*}
\theta_t &= \theta_{t-1} + \gamma_t S_{t-1}^{-1} X_{t-1} \left(z_{t}^2 - \theta_{t-1}' X_{t-1} \right) \\
S_t &= S_{t-1} + \gamma_{t+1} (X_t X'_t - S_{t-1})
\end{align*} \]

(4)

Here \(S_t \) is an estimate of \(EX_t X'_t \), the second moment matrix of the regressors. Combining (2) with learning algorithm (3) or (4) leads to a fully specified data-generating process under learning.\(^5\) We have the following stability result for the risk estimator (3).

Proposition 1 Under the adaptive learning algorithm (3) with exogenous share supply and gains \(\gamma_t = t^{-1} \), the restricted perceptions equilibrium \(\sigma^2 = \sigma_L^2 \) is locally stable under learning.

Analytic results are unavailable for algorithm (4), however, numerical analysis shows that \(\sigma^2 = \sigma_L^2 \) is stable under ARCH learning.

\(^4\)A similar learning rule was employed by Branch and Evans (2011) and LeBaron (2010).

\(^5\)For simplicity we have specified the ARCH as a parsimonious ARCH(m) model in which the \(m \) slope coefficients are constrained to be equal. The results are not greatly sensitive to this specification.
4 Bubbles, Crashes, and Risk

In this section, we consider a constant gain learning version of the model and use numerical simulations to demonstrate the theoretical possibility that stock prices can exhibit nearly self-fulfilling ARCH effects and recurrent bubbles and crashes that result from the real-time updating of risk. We choose the following parameterization: $\beta = .98$, $y_0 = 1.5$, $s_0 = 1$, $a = 0.55$, $\sigma_\epsilon^2 = 0.95$, $\sigma_\nu^2 = 0.45$.\footnote{These parameter values are chosen for illustrative purposes; a serious calibration would require a more complicated model than the simple mean-variance framework employed here.}

Figure 1 plots the results of a 10,000 period simulation for a small constant gain of $\gamma = .0001$. The top panel plots the stock price and the bottom panel plots the real time risk estimates. The right panels are for the ARCH learning model, while the left is the simple recursive algorithm. In a fundamentals REE stock price follows an iid process. With random walk beliefs, stock price is strongly serially correlated. Figure 1 demonstrates that with a small gain there is little variation in real time risk estimates and stock prices do not exhibit bubbles or crashes.

Figure 2 presents the results from simulations with a larger gain $\gamma = 0.03$. There is significant movement in the estimated risk with periods of declining risk estimates and other periods of elevated risk. Clearly, movements in risk lead to bubbles and crashes in which stock price deviates significantly from its fundamentals value. A decline in perceived risk leads to a bubble: as traders perceive lower risk, their demand increases, leading to higher prices that persist because random walk beliefs interpret these innovations as permanent price increases.

We also note that equation (1) implies that expected future returns decline along a bubble path. In our set-up, lower perceived risk leads to a higher price, and this in turn leads to a higher expected future price next period. However, given expectations, (1) dictates that the market-clearing price must be sufficiently high to give a lower expected rate of return that offsets the lower perceived risk. This is inconsistent with survey evidence that investors typically expect high future returns near market peaks when prices are high relative to the fundamentals (see Jurgilas and Lansing (2012) and Greenwood and Shleifer (2013)).\footnote{Gelain and Lansing (2013) present a model with external habit formation that gives rise to time-varying risk premia and expected returns in line with survey evidence.}

Despite this issue, we believe our model offers a compelling description of the way in which endogenous changes in perceived risk can lead to large, partially self-fulfilling movements of asset prices, manifested as bubbles and crashes.

Recurring bubbles and crashes arise whether or not agents allow for ARCH
effects in their estimation of risk. Figure 2 also demonstrates that constant-
gain learning about risk can generate ARCH effects. In Figure 1, with $\gamma = .0001$, real-time risk estimates were near their equilibrium value. In Figure 2, the estimated risk for the ARCH model (SE corner) exhibit ARCH effects as σ^2_t fluctuates between periods of high and low volatility. Although perhaps not as noticeable for algorithm 1, it is possible to test for ARCH effects by constructing the test statistic in Engle (1982). We found that for $\gamma = .0001$ the test statistic fails to reject the null that squared excess returns are iid, while for $\gamma = .03$ we do reject the null of no ARCH. Learning about risk introduces ARCH effects and allowing for ARCH effects is partially self-fulfilling. Furthermore, when agents allow for ARCH effects in their estimates, this reinforces the role played by risk in generating bubbles and crashes, as can be seen in the top panels of Figure 2. For larger values of the constant gain, γ, the simple recursive algorithm is able to generate more volatile asset prices. However, the ARCH effects from the ARCH model is stronger and, therefore, would be better able to capture ARCH effects in real world stock prices.
Figure 2: Stock price dynamics with gain $\gamma = .03$.

Figure 3 focuses on a bubble episode from a long simulation assuming ARCH learning (4). The bottom panel also includes a plot of the real time least squares ARCH coefficient estimates $\alpha_{0,t}$, $\alpha_{1,t}$. The RPE value computed earlier corresponds to $\alpha_1 = 0$. Beginning at period 0 there is a sustained decrease in perceived risk. Moreover, the estimates for $\alpha_{1,t}$ attribute persistence to the decline in risk, which leads to further declines in perceived risk, and translates into a bubble as these price innovations feedback through the random walk beliefs of agents. This figure clearly demonstrates how real time learning about risk can generate bubbles in stock prices.

5 Conclusion

This paper adopted a least-squares learning environment to generate recurrent bubbles and crashes. The model consists of risk-averse traders each of whom believe that stock prices follow a random walk. Random walk beliefs were shown
by Branch and Evans (2011) to be nearly self-confirming. Risk averse agents need to also forecast the riskiness of stocks – measured as the conditional variance of excess returns – and so they adopt an econometric forecasting model whose parameters are updated with a form of discounted least squares (constant gain learning). The results presented in this paper demonstrate that (1) there exists a unique restricted perceptions equilibrium that is stable under learning, (2) that when agents update their risk estimates in real time with constant gain least squares, recurrent bubbles and crashes can arise, and (3) ARCH effects arise endogenously from agents’ learning. These ARCH effects are detectable, and when agents allow this in their algorithms, it strengthens the effect that risk has in generating bubbles and crashes.

Appendix

Proof of Proposition 1.

Let $z_t = p_t - p_{t-2} + \varepsilon_t$. Let $X_t = (1, z_t^2)'$. Then with exogenous share supply
we have

\[\sigma_t^2 = \sigma_{t-1}^2 + t^{-1}(z_t^2 - \sigma_{t-1}^2) \]

for algorithm 1.

Define \(\phi = \sigma^2 \). Using standard techniques, e.g. Evans and Honkapohja (2001), the differential equation governing local stability of the learning dynamics is

\[\frac{d\phi}{dt} = h(\phi) \]

where \(h(\phi) = T(\sigma^2) - \sigma^2 \). Locally stable RPE are associated with the stable rest points of this equation. It suffices to check \(DT(\sigma_L^2) = 4(\alpha \beta)^2 \sigma_L^2 \sigma_L^\nu \), whereas \(DT > 1 \) at the larger root for \(\sigma^2 \).

References

