The temporal resolution of neural codes: A unique role for latency?

Mike Oram, Dengke Xiao, Robin Edwards Barbara Dritschel & Keith Payne School of Psychology University of St. Andrews

Interest in neural codes

- Simple coding: each neurone conveys single message at a time
 - Easy to decode
 - Limited capacity
- Complex code: each neurone conveys multiple messages simultaneously
 - Hard to decode
 - Enhanced capacity

Why complex coding?

- · Early visual system
 - Neurones selectively responsive to colour
 - Other neurones selectively responsive to shape
 - Neurones not responsive to both shape and colour (although see Johnson et al. 2001)
- How can we see multiple objects and their colour?
 - The binding problem

Proposed solution to binding problem

- Role of precisely timed spikes
 - Proposed by von der Malsburg
 - Many groups studying precisely timed spikes
 - Singer, Abeles, Aertsen, Vaardi, Konig, Gray......
 - Different "forms" of precise timing
 - · Synchrony, Oscillations, "Synfire chains",

Attention and neural codes

- Attention improves performance
 - reduces false conjunctions
- Attention enhances neural responses
 - Selective for neurones with relevant selectivity
 - Acts as a "gain", multiplying spike count
- Precisely timed spikes
 - Associated with binding
- Does attention influence precisely timed spike patterns?

Spike times relative to other spikes

- · Spike count matched model
 - Need to match coarse temporal statistics
 - Spike count distribution, PSTH
 - Can predict number & types of precisely timed spike patterns
 - Variable excess does not imply a separate code
 - · Excess synchrony was a scaling factor
- Information theoretical analysis
 - No extra information carried by precisely timed spike patterns (Confirms SCM model results)

Ambiguous coding with attention

· Attention modulates only firing rate

Decoding the neural population

- · "Ideal observer" decoding of spike count
 - Require p(r|s), p(s). p(s) set to be equal
 - p(r|s) described by multi-dimensional Gaussian

$$p(r \mid s) = \frac{1}{\sqrt{(2\mathbf{p})^n |C|}} e^{-\frac{1}{2} \left((\overline{r} - r)^T C^{-1} (\overline{r} - r) \right)}$$

- When all p(s) equal, $p(s|r) = p(r|s) / \sum_{i=1}^{n} p(r|s_i)$
- Two measures from p(s|r)
 - Estimate information
 - max p(s|r) and calculate error

Attention and decoding

- Decoding depends on how select p(r|s)
- Ideal = "know" the $p_{ignore}(r|s)$ & $p_{attend}(r|s)$
- Choose constant distribution (e.g. p_{ignore(r|s)})
- Assume learning of combination of both distributions

Latency is a multiplexed code

- · Latency varies with stimulus contrast
 - Carries all available information about contrast
 - Does not depend on spike count
 - Has a temporal precision < 10ms
 - Should be considered a multiplexed signal

Predicting behaviour from the neural code

- Make "decision" when available information reaches threshold
 - Information rises with spike count in early part of the response
- The nature of the neural representation determines the behavioural results
 - What about response latency?
 - Ignore the trivial "low contrast stimuli take longer to recognise"

From neural codes to executive function

- Central executive as a serial processor
 - Can only perform one process at a time
 - Performs decision making
- Slave systems
 - Can run in parallel with each other
 - Includes the "visual-spatial sketchpad"

Executive & slave processes

- · Use dual task paradigm to distinguish
 - Doing one task when a second task starts
- If executive process
 - Can't start 2nd task until 1st task is complete
 - Speed of processing unaffected by 1st task
- If slave process
 - 2nd task can start (slave) while 1st task finished
 - Speed of processing influenced by 1st task

Testing the prediction

- · Use dual task paradigm to distinguish
 - Doing one task when a second task starts
- 1st Task: Counting task
 - Odd or even number (1-4 pips)
- 2nd Task: Mental rotation task
 - Is a letter (R or G) a normal or mirror image
 - Presented at different orientations
 - Presented at 2 contrast levels (High & low)

Testing the prediction

- 2 delays between last pip and presentation of the visual image
 - No delay
 - · Assume subjects doing the counting task
 - 1 second delay
 - · Assume the subjects have decided odd or even
- Subjects respond in reverse
 - Odd or even number of pips then
 - Normal / mirror image
 - Avoids interference from response preparation

Neural code explanation

- Executive functioning
 - Makes "decision"
- Slave system functioning
 - The neural coding determines the results
- · Less total activation
 - Rate of accumulation of evidence slower
 - Occurs for orientation, perspective view, size
 - An "executive process"
- Response latency changes
 - Occurs for contrast
 - A "slave process"

Summary

- Precisely timed spike patterns relative to other spike times
 - Critical to incorporate all coarse & medium resolution statistics (LGN, V1, TE)
 - An excess over chance levels does not imply multiplexing (Motor cortex)
 - Attention does not influence fine temporal
 - · No latency change, attention is not like contrast
- Implications for cognitive processes
 - Benefits of attention limited by the mechanism
 - Decreased accuracy for unattended stimuli consistent with psychological studies

Summary

- Precisely timed spike patterns relative to stimulus onset
 - Response latency varies with stimulus contrast
 - Resolution < 10ms
 - Evidence for multiplexing a unique role?
- Implications for cognitive processes
 - Variable activation of representations can predict mental rotation (Perrett et al. 1998)
 - Variable response latency can predict dual task performance
 - Distinction of executive & slave systems needs to take neural code and neural representation into account