The temporal resolution of neural codes: A unique role for latency?

Mike Oram, Dengke Xiao, Robin Edwards
Barbara Dritschel & Keith Payne
School of Psychology
University of St. Andrews

Interest in neural codes

• Simple coding: each neurone conveys single message at a time
 – Easy to decode
 – Limited capacity
• Complex code: each neurone conveys multiple messages simultaneously
 – Hard to decode
 – Enhanced capacity

Multiplexing neural signals

Why complex coding?

• Early visual system
 – Neurones selectively responsive to colour
 – Other neurones selectively responsive to shape
 – Neurones not responsive to both shape and colour (although see Johnson et al. 2001)
• How can we see multiple objects and their colour?
 – The binding problem

Red square and blue triangle

• Two visual stimuli
 • give rise to neural signals of shape and colour

Red square and blue triangle

• Combining signals of shape and colour
 • Binding problem: What’s present?
Proposed solution to binding problem

- Role of precisely timed spikes
 - Proposed by von der Malsburg
 - Many groups studying precisely timed spikes
 - Singer, Abeles, Aertsen, Vaark, Konig, Gray……
 - Different “forms” of precise timing
 - Synchrony, Oscillations, “Synfire chains”.

Synchrony and binding

- Identifying repeating triplets
 - Synchrony
 - Intervals of 0
 - Oscillations
 - Equal intervals
 - “Synfire chains”
 - Variable intervals
 - Exist in responses of single neurones

Oscillations and binding

- Numbers expected by chance
 - Depends on model used
 - Dealing with tail of distribution
 - Spike count distribution and PSTH critical
 - Small effect of ISI’s

Synfire chains and binding
Repeating triplets in early vision

LGN

![Graph showing repeated triplets in LGN](image1.png)

Primary Visual Cortex

![Graph showing repeated triplets in Primary Visual Cortex](image2.png)

Repeated comparisons

Graph showing repeated triplets

Information & repeating triplets

- If multiple signals
 - Information from one signal unavailable from another
- SCM model
 - Predicts number of precisely timed spike patterns
- Information theory
 - Signals are not separable
- NO MULTIPLEXING

Synchrony in motor cortex

- As in other cortical areas, responses are correlated
- This effects synchrony

Excess synchrony in motor cortex

- Synchrony is above chance levels
 - Slope ~ 0.8
- Excess varies with direction of arm movement
 - But only by scaling
- Most of variability explained
 - Expect no additional information
Attention and neural codes
• Attention improves performance
 – reduces false conjunctions
• Attention enhances neural responses
 – Selective for neurones with relevant selectivity
 – Acts as a "gain", multiplying spike count
• Precisely timed spikes
 – Associated with binding
• Does attention influence precisely timed spike patterns?

Delayed match to sample
• Present a sample stimulus
• Sequence of stimuli
• Respond when the sample re-appears

Attention & spike count in TE
• Response to effective stimuli enhanced
• Response to ineffective stimuli unchanged
• Variability to effective stimuli also effected

Attention & triplets in TE

Predicting triplets in TE

Importance of analysis method
Information in triplets

Spike times relative to other spikes
- Spike count matched model
 - Need to match coarse temporal statistics
 - Spike count distribution, PSTH
 - Can predict number & types of precisely timed spike patterns
 - Variable excess does not imply a separate code
 - Excess synchrony was a scaling factor
- Information theoretical analysis
 - No extra information carried by precisely timed spike patterns (Confirms SCM model results)

Attention related information

Ambiguous coding with attention
- Attention modulates only firing rate

Modelling attention

Decoding the neural population
- “Ideal observer” decoding of spike count
 - Require p(r|s), p(s), p(s) set to be equal
 - p(r|s) described by multi-dimensional Gaussian
 \[
 p(r|s) = \frac{1}{\sqrt{(2\pi)^{d}|\Sigma|}} e^{-\frac{1}{2} (r-c)^T \Sigma^{-1} (r-c)}
 \]
- When all p(s) equal, p(s|r) = p(r|s) / \sum p(r|s)
- Two measures from p(s|r)
 - Estimate information
 - max p(s|r) and calculate error
Attention and decoding

- Decoding depends on how select $p(r|s)$
- Ideal = “know” $p_{\text{ignore}}(r|s)$ & $p_{\text{attend}}(r|s)$
- Choose constant distribution (e.g. $p_{\text{ignore}}(r|s)$)
- Assume learning of combination of both distributions

Benefit of increasing attention is limited

V1 Response latency

V1 Response latency & magnitude

V1 Information

Temporal precision of latency
Stimulus contrast and STS responses

Contrast-latency relationship

Increases through the visual system

Latency is a multiplexed code

- Latency varies with stimulus contrast
 - Carries all available information about contrast
 - Does not depend on spike count
 - Has a temporal precision < 10ms
 - Should be considered a multiplexed signal

Predicting behaviour from the neural code

- Make “decision” when available information reaches threshold
 - Information rises with spike count in early part of the response
- The nature of the neural representation determines the behavioural results
 - What about response latency?
 - Ignore the trivial “low contrast stimuli take longer to recognise”

Behaviour from the neural code

- Take response profiles
 - Stimuli that change in perspective view
- Convert to cumulative
 - When reach threshold?
- What happens if there is a delay in starting the accumulation?

Behaviour from the neural code

- Take response profiles
 - Stimuli that change in perspective view
- Convert to cumulative
 - When reach threshold?
- What happens if there is a delay in starting the accumulation?
Behaviour from the neural code

- Take response profiles
 - Stimuli that change in contrast
- Convert to cumulative
 - When reach threshold?
- What happens if there is a delay in starting the accumulation?

Executive & slave processes

- Use dual task paradigm to distinguish
 - Doing one task when a second task starts
- If executive process
 - Can’t start 2nd task until 1st task is complete
 - Speed of processing unaffected by 1st task
- If slave process
 - 2nd task can start (slave) while 1st task finished
 - Speed of processing influenced by 1st task

Testing the prediction

- Use dual task paradigm to distinguish
 - Doing one task when a second task starts
- 1st Task: Counting task
 - Odd or even number (1-4 pips)
- 2nd Task: Mental rotation task
 - Is a letter (R or G) a normal or mirror image
 - Presented at different orientations
 - Presented at 2 contrast levels (High & low)

Testing the prediction

- 2 delays between last pip and presentation of the visual image
 - No delay
 - Assume subjects doing the counting task
 - 1 second delay
 - Assume the subjects have decided odd or even
- Subjects respond in reverse
 - Odd or even number of pips then
 - Normal / mirror image
 - Avoids interference from response preparation

From neural codes to executive function

- Central executive as a serial processor
 - Can only perform one process at a time
 - Performs decision making
- Slave systems
 - Can run in parallel with each other
 - Includes the “visual-spatial sketchpad”
Predicted pattern of results

Predicted pattern of results

Neural code explanation

• Executive functioning
 – Makes “decision”
• Slave system functioning
 – The neural coding determines the results
• Less total activation
 – Rate of accumulation of evidence slower
 – Occurs for orientation, perspective view, size
 – An “executive process”
• Response latency changes
 – Occurs for contrast
 – A “slave process”

Summary

• Precisely timed spike patterns relative to other spike times
 – Critical to incorporate all coarse & medium resolution statistics (LGN, V1, TE)
 – An excess over chance levels does not imply multiplexing (Motor cortex)
 – Attention does not influence fine temporal structure
 • No latency change, attention is not like contrast
• Implications for cognitive processes
 – Benefits of attention limited by the mechanism
 – Decreased accuracy for unattended stimuli consistent with psychological studies

Summary

• Precisely timed spike patterns relative to stimulus onset
 – Response latency varies with stimulus contrast
 – Resolution < 10ms
 – Evidence for multiplexing - a unique role?
• Implications for cognitive processes
 – Variable activation of representations can predict mental rotation (Perrett et al. 1998)
 – Variable response latency can predict dual task performance
 – Distinction of executive & slave systems needs to take neural code and neural representation into account