From neural codes to cognitive processes and perception: What we need to model and why

Mike Oram
School of Psychology
University of St Andrews

Overview

• Why is attention limited?
 – Need to do more “realistic” modelling work
• How does stimulus contrast influence neuronal activity?
 – Need to understand the processing
• Why should we care?
 – Predicting visual search with stimulus inversion
 • Can this be related to “optimal” attention?
 – Predicting visual search with contrast
 • Oh my £U&K*NG G&D – what is going on?

Framework of research

Neural codes and attention

• Fixating monkey doing sequential DMS task

Sample Non-match Non-match Match

Attention and neuronal codes

Spike count Time of spike count effect

Fine temporal response measures

Identifying repeating triplets Behavioural relevance
Neural codes in visual system

- Coarse/medium (20-500ms resolution)
 - Plenty of evidence for spike count
 - Evidence of medium (Richmond)
- Fine temporal measures (1-2ms resolution)
 - “Synfire chains” (includes synchrony)
 - We find no evidence (LGN, V1, Motor)
 - Even with behavioural relevance (Oram, Lui, Richmond, in prep)
 - Synchrony
 - No evidence (TE/STS, Rolls et al. 2003, 2004)

Why is attention limited?

- Doesn’t seem to be a “I’m attending” signal
- Response magnitude to attended stimuli boosted
 - Inhibitory interactions between neurones biased
- Examine decoding of signals to answer?

Decoding

- Model response distributions
 - Mean ~ Variance relationship
 - Non-Gaussian, Non-Poissonian spike count distributions
 - Use Fano factor (Variance/mean) 1.5
 - Truncate the Gaussian
- Apply Bayesian decoding
 - Get $p(s)$ for each stimulus: Use MAP = ML in these simulations
 - Estimate error & information
Model different decoding

- "Ideal observer" decoding
 - Assumes that system "knows" which response distribution the signal came from (stimulus ignored or stimulus attended)
- Constant decoding
 - Decode assuming responses generated from distributions when stimuli attended
 - Decode assuming responses generated from distributions when stimuli ignored
 - Decode assuming responses generated from mixture of distributions (ignored/attended)
Decode as unattended when the stimulus is attended?

- **Attended and Ignored populations**

 - **Response (Spikes/sec)**
 - **Stimulus Class**

 ![Graph of attended and ignored populations](image1)

Decode as attended when the stimulus is unattended?

- **Attended and Ignored populations**

 - **Response (Spikes/sec)**
 - **Stimulus Class**

 ![Graph of attended and ignored populations](image2)

Why is attention limited?

- **Simulations**
 - Optimal decoding does not give highest information!
 - Does about stimulus/attention combination
 - Decoding assuming ignored “better”
 - Information to attended stimuli rises faster than ideal observer
 - Error has local minimum

- **Anyone want to find out what’s going on?**
 - Do we still see this with more “accurate” model of attention (biases in inhibitory interactions)?
 - How does this local minimum vary?
Stimulus contrast and neuronal response latency

- Latency increases and response magnitude decreases as stimulus contrast is decreased
- Carrandini & Heeger model “explains” this
 - Pooled activity across neurones gives shunting (divisive) inhibitory input
 - Changes the membrane time constant (RC circuit)
 - Gives results from V1
 - But NOT STS

Stimulus contrast and response latency in TE/STS

Latency change and specificity

- Why should effect of contrast vary with degree of response selectivity?
 - Latency to high contrast stimuli the same
 - Increase in latency with decreasing contrast higher for neurones showing higher response selectivity
 - Not effect of changes in response magnitude
 - Not effect of “type” of effective stimulus
 - Possible effect of “contrast” (difference) in inputs

Neural codes in late visual system

- Evidence for spike count and response latency
 - Information encoded by spike count, latency when
- Do these codes “mean” anything?
 - Spike counts
 - Micro-stimulation studies (e.g. Newsome, Parker)
 - Latency
 - How to test?
 - Can’t stimulate to change latency
 - Want to relate to behaviour

Models of decisions

- Information acquisition hypothesis
 - Decisions when information reaches threshold
 - Ratcliff 1978
 - McClelland 1979
 - Carpenter & Williams, Nature 1995
 - Gold & Shadlen, TICS, 2001
 - Carpenter & Williams, Nature, 1995
Modeling a decision

Create 2nd “distracter” response (0.8 * Target)

Threshold the difference to get RT

0 500
Time (ms)

What do neural codes predict for RT?
– Latency (change contrast)
– Magnitude (change orientation)

What happens experimentally?
– Are the codes reflected in behaviour (i.e. “mean” anything)?

Both predict change in RT

Count from 0 ms
Count from 150 ms

Response Latency
Response Magnitude

Both give RT changes

Unless can delay the start of counting

Predicting mean RT

Time to threshold (ms)

0 1000 ms interval
1000 ms interval
Contrast

0 ms interval
Low (5%)
High (100%)
Low (5%)
High (100%)

Rotation (Degrees)

0 45 90 135 180

Testing mean RT predictions

Recognition Time (ms)

0 1250 1500

0 ms interval
Low
High
Low
High
Contrast

Orientation (Degrees)

0 45 90 135 180

Oram et al. Phil Trans R Soc, 2002
Latency and RT

- Model the latency shifts:
 - Mutually inhibitory populations
 - Integrate & fire neurones in simple network (Mark van Rossum: How’s it going?)
- Model predicted RT distributions:
 - Model RT distributions from
 - diffusion models,
 - accumulator models,
 - leaky accumulator models
 - Compare with experimental data

Visual search as signal processing

- Use the same model and apply to visual search
- Target is attended (looked for)
 - Gives a neural response “gain” of about 1.2 to 1.5
- Inhibitory interactions between neurones
 - Attention biases the interactions (see Reynolds)

Modelling visual search

- As the number of stimuli increase, firing rate decreases ((1/sqrt(N) - Ward & McClelland 1986)
- Attention biases the competition
 - Firing rate of neurones selective for the attended stimulus act as if gain control
- Take the modelled activity levels
 - Use in the accumulator model
 - Do pair-wise comparisons in parallel
Visual search: Accumulator model

- **RT(Y) determined by orientation of target**
 - Last time-to-threshold when target identified
 - With all upright:
 - Target upright vs distracter upright
 - With all inverted:
 - Target inverted vs distracter inverted
 - With half upright, half inverted:
 - **Target upright:** Target upright vs distracter upright
 - **Target inverted:** Target inverted vs distracter inverted
- All upright=Mix upright < All inverted=inverted

- **RT(N) determined by distracter inversion**
 - Last time-to-threshold when identified as non-target
 - With all upright:
 - Non-target upright vs distracter upright
 - With all inverted:
 - Non-target inverted vs distracter inverted
 - With half upright half inverted:
 - **Non-target upright:** some non-target inverted vs distracter inverted (same as all inverted)
 - **Non-target inverted:** Non-target inverted vs distracter inverted (same as all inverted)
- **RT(N) mix inversion = all inverted**

Modelling visual search: Inversion

- **Inversion: STSS like visual search**

Visual search: STSS model

- **RT(Y) ½ way between all upright and all inverted**
 - $RT(Y_{mix}) = 0.5 \cdot N_{items} \cdot (t_{switch} + t_{need_rot} + 0.5 \cdot t_{rotate} + t_{decision} + t_{last}) + t_{resp}$
 - $RT(Y_{up}) = 0.5 \cdot N_{items} \cdot (t_{switch} + t_{need_rot} + 0.5 \cdot t_{rotate} + t_{decision} + t_{last}) + t_{resp}$
 - $RT(Y_{inv}) = 0.5 \cdot N_{items} \cdot (t_{switch} + t_{need_rot} + t_{decision} + t_{last}) + t_{resp}$
 - **Target orientation does not matter**

- **Guided search (Wolfe):**
 - $RT(Y_{mix-up}) < RT(Y_{up})$
 - $RT(Y_{mix-inv}) > RT(Y_{inv})$

Visual search with mixed inversion

- **Self-terminating serial search model**
 - **RT(Y) ½ way between all upright and all inverted**
 - **RT(N) ½ way between all upright and all inverted**
 - **Target orientation does not matter**

- **Accumulator model:**
 - **RT (Y):** All upright=mix upright < All inverted=mix inverted
 - **RT (N):** Half-inverted = All inverted
Visual search: Mixed orientation

Search & inversion

• Is the pattern of results related to “optimal” attention
 – Use a more complete model of neural populations (e.g. I&F, attention bias of inhibitory interactions)
 – What is “optimal” attention modulation as number of stimuli increases?
 – What happens to modelled activity levels as more and more stimuli are processed?
Search and contrast

• Results inconsistent with STSS and guided search
• Accumulator model is underspecified
 – What happens to inhibitory interactions when some signals are delayed?
 – What does this predict for RT?
 – Can we reject the simple accumulator model?
 • If so, any ideas as to what is happening?