Supermode-density-wave-polariton condensation, and Meissner-like effect with multimode cavity-QED
Supermode-density-wave-polariton condensation, and Meissner-like effect with multimode cavity-QED

Jonathan Keeling

Trento, January 2017
What can quantum systems do?

Condensed matter physics: two types of question

What physics is needed to explain the material properties we do see
What can quantum systems do?

Condensed matter physics: two types of question

What physics is needed to explain the material properties we do see
What can quantum systems do?

Condensed matter physics: two types of question

What physics is needed to explain the material properties we do see

to

What material properties can be possible from quantum physics?
Once upon a time there was cavity QED . . .

- Precision tests of quantum optics
 - Purcell effect, strong coupling
 - Rabi oscillations, collapse & revival
 - Resonant fluorescence, EIT

- Many atom physics
 - Phase transitions: Lasing, superfluorescence, superradiance
Once upon a time there was cavity QED . . .

- Precision tests of quantum optics
 - Purcell effect, strong coupling
 - Rabi oscillations, collapse & revival
 - Resonant fluorescence, EIT

- Many atom physics
 - Phase transitions: Lasing, superfluorescence, superradiance
Once upon a time there was cavity QED . . .

- Precision tests of quantum optics
 - Purcell effect, strong coupling
 - Rabi oscillations, collapse & revival
 - Resonant fluorescence, EIT

- Many atom physics
 - Phase transitions: Lasing, superfluorescence, superradiance
Once upon a time there was cavity QED . . .

- Precision tests of quantum optics
 - Purcell effect, strong coupling
 - Rabi oscillations, collapse & revival
 - Resonant fluorescence, EIT

- Many atom physics
 - Phase transitions: Lasing, superfluorescence, superradiance
Synthetic cavity QED: Raman driving

- Tunable coupling via Raman

\[H_{\text{eff}} = \ldots \frac{\Omega g}{\Delta} (\sigma_n^+ a + \text{H.c.}) \]

- Real systems: loss

\[\partial_t \rho = -i[H, \rho] + \kappa \mathcal{L}[a, \rho] + \ldots \]

- To balance loss, counter-rotating:

\[H_{\text{eff}} = \ldots \frac{\Omega g}{\Delta} \sigma_n^x (a + a\dagger) \]

[Dimer et al. PRA '07]
Synthetic cavity QED: Raman driving

- Tunable coupling via Raman

\[H_{\text{eff}} = \ldots \frac{\Omega g}{\Delta} \left(\sigma_n^+ a + \text{H.c.} \right) \]

- Real systems: loss \(\partial_t \rho = -i[H, \rho] + \kappa \mathcal{L}[a, \rho] + \ldots \)
- To balance loss, counter-rotating:

\[H_{\text{eff}} = \ldots \frac{\Omega g}{\Delta} \sigma_n^x (a + a^\dagger) \]

[Dimer et al. PRA ’07]
Multimode cavity QED

- Full model:

\[
H_{\text{eff}} = \sum_{\mu} \left(\omega_{\mu} - \omega_{P} \right) a_{\mu}^\dagger a_{\mu} + \sum_{N} \frac{\omega_{0}}{2} \sigma_{n}^{z} + \frac{\Omega g_{0}}{\Delta} \sum_{\mu} \Xi_{\mu}(r_{n}) \sigma_{n}^{x}(a + a^\dagger)
\]

Possibilities

- **XY vs Ising**

- **Momentum state vs hyperfine state**

- **Single mode vs multimode**

- **Thermal gas vs BEC vs disorder localised**
Possibilities

- **XY vs Ising**

- **Momentum state vs hyperfine state**

- **Single mode vs multimode**

- **Thermal gas vs BEC vs disorder localised**
Possibilities

- **XY vs Ising**

- **Momentum state vs hyperfine state**

- **Single mode vs multimode**

- **Thermal gas vs BEC vs disorder localised**
Possibilities

- **XY vs Ising**

- **Momentum state vs hyperfine state**

- **Single mode vs multimode**

- **Thermal gas vs BEC vs disorder localised**
Introduction: Tunable multimode Cavity QED

1. Introduction: Tunable multimode Cavity QED

2. Single mode cavity QED
 - Spin-non-conserving loss

3. Multimode cavity QED experiments
 - Experimental setup
 - Supermode density wave polariton condensation

4. Theoretical possibilities
 - Spin glass, Hopfield memory
 - Meissner-like effect
Single mode cavity QED

1. Introduction: Tunable multimode Cavity QED

2. Single mode cavity QED
 - Spin-non-conserving loss

3. Multimode cavity QED experiments
 - Experimental setup
 - Supermode density wave polariton condensation

4. Theoretical possibilities
 - Spin glass, Hopfield memory
 - Meissner-like effect
Single mode experiments

Ritsch et al. PRL ’02
Single mode experiments

![Diagram of single mode experiment](image)

Ritsch *et al.* PRL '02

Thermal atoms, momentum state

![Diagram of thermal atoms and momentum state](image)

Vuletic *et al.* PRL '03 (MIT)
Single mode experiments

BEC, momentum state

Ritsch et al. PRL ’02

Thermal atoms, momentum state

(a) Pump beams

(b) Emitted light

Cavity Mirrors

Baumann et al. Nature ’10 (ETH)

Kinder et al. PRL ’15 (Hamburg)

Vuletic et al. PRL ’03 (MIT)

Jonathan Keeling

Multimode cavity QED
Single mode experiments

BEC, momentum state

Ritsch et al. PRL ’02
Thermal atoms, momentum state

(a) Pump Beams
(b) Emitted Light
(Cavity Mirrors)

Pump laser
Bragg planes

Baumann et al. Nature ’10 (ETH)
Kinder et al. PRL ’15 (Hamburg)
BEC, hyperfine states
Badeen et al. PRL ’14 (Singapore)

Vuletic et al. PRL ’03 (MIT)
Single mode theory

- Momentum degrees of freedom:
 \[\psi = \psi_\downarrow + \psi_\uparrow \cos(kx) \cos(kz) \]
- Effective 2LS \((\psi_\downarrow, \psi_\uparrow)\)

\[H_{\text{eff}} = (\omega_c - \omega_P) a^\dagger a + \sum_n \frac{\omega_0}{2} \sigma_n^z + \frac{\Omega g_0}{\Delta} \sigma_n^x (a + a^\dagger) \]

- Extra “feedback” term \(U\), cavity loss \(\kappa\)
- Single mode – mean-field EOM, \(\alpha = \langle \hat{a} \rangle\), \(S_i = \sum_n \sigma_n^i/2\).

\[
\begin{align*}
\dot{S}^- &= -i(\omega_0 + U|\alpha|^2) S^- + 2i g_{\text{eff}} (\alpha + \alpha^*) S^x \\
\dot{S}^x &= i g_{\text{eff}} (\alpha + \alpha^*) (S^- - S^+) \\
\dot{\alpha} &= -[\kappa + i(-\Delta_c + US^2)] \alpha - i g_{\text{eff}} (S^- + S^+)
\end{align*}
\]
Single mode theory

- Momentum degrees of freedom:
 \[\psi = \psi_\downarrow + \psi_\uparrow \cos(kx) \cos(kz) \]

- Effective 2LS \((\psi_\downarrow, \psi_\uparrow)\)

\[
H_{\text{eff}} = \left(\omega_c - \omega_P\right) a^\dagger a + \sum_n \frac{\omega_0}{2} \sigma_n^z + \frac{\Omega g_0}{\Delta} \sigma_n^x (a + a^\dagger) - \frac{g_0^2}{4\Delta} \sigma_n^z a^\dagger a
\]

- Extra “feedback” term \(U\), cavity loss \(\kappa\)

- Single mode – mean-field EOM, \(\dot{\alpha} = (\hat{a})\), \(S^i = \sum_n \sigma_n^i / 2\).
 \[
 \dot{S}^- = -i(\omega_0 + U|\alpha|^2)S^- + 2ig_{\text{eff}}(\alpha + \alpha^*)S^z
 \]
 \[
 \dot{S}^z = ig_{\text{eff}}(\alpha + \alpha^*)(S^- - S^+)
 \]
 \[
 \dot{\alpha} = -[\kappa + i(-\Delta_c + US^z)]\alpha - ig_{\text{eff}}(S^- + S^+).\]
Single mode theory

- Momentum degrees of freedom:
 \[\psi = \psi_\downarrow + \psi_\uparrow \cos(kx) \cos(kz) \]
- Effective 2LS \((\psi_\downarrow, \psi_\uparrow)\)

\[
H_{\text{eff}} = (\omega_c - \omega_P) a^\dagger a + \sum_n \frac{\omega_0}{2} \sigma_n^z + \frac{\Omega g_0}{\Delta} \sigma_n^x (a + a^\dagger) - \frac{g_0^2}{4\Delta} \sigma_n^z a^\dagger a
\]

- Extra “feedback” term \(U\), cavity loss \(\kappa\)
- Single mode – mean-field EOM, \(\alpha = \langle \hat{a} \rangle\), \(S_i = \sum_n \sigma_n^i / 2\).

\[
\dot{S}^- = -i(\omega_0 + U|\alpha|^2)S^- + 2ig_{\text{eff}}(\alpha + \alpha^*)S^z
\]

\[
\dot{S}^z = ig_{\text{eff}}(\alpha + \alpha^*)(S^- - S^+)
\]

\[
\dot{\alpha} = -[\kappa + i(-\Delta_c + US^z)] \alpha - ig_{\text{eff}}(S^- + S^+)
\]
Classical dynamics

Changing U:

$U = 0$

$U < 0$

$U > 0$

[JK et al. PRL ’10, Bhaseen et al. PRA ’12]
Classical dynamics

Changing U:
- $U = 0$
- $U < 0$
- $U > 0$

$U \propto \frac{g_0^2}{\omega_c - \omega_a}$

[JK et al. PRL '10, Bhaseen et al. PRA '12]
Classical dynamics

Changing U:

- $U = 0$
- $U < 0$
- $U > 0$

$$U \propto \frac{g_0^2}{\omega_c - \omega_a}$$

2 Level System

Ω

ψ_g

ψ

\rightarrow

\downarrow

\uparrow

SRA

\downarrow

\uparrow

SRA

UN=40

ω (MHz)

$g\sqrt{N}$ (MHz)

0 0.5 1 1.5

0 200 400 600 800 1000 1200

$|\psi|$ 2

0 5 10 15

0 400 800 1200

[JK et al. PRL ’10, Bhaseen et al. PRA ’12]
Classical dynamics

Changing U:

$U = 0$
$U < 0$
$U > 0$

$U \propto \frac{g_0^2}{\omega_c - \omega_a}$

Persistent Oscillations

[JK et al. PRL '10, Bhaseen et al. PRA '12]
Effect of particle losses

- Adding other loss terms

\[\partial_t \rho = -i[H, \rho] + \kappa \mathcal{L}[\hat{a}] + \sum_i \Gamma_{\downarrow} \mathcal{L}[\sigma_i^-] + \Gamma_{\phi} \mathcal{L}[\sigma_i^z] \]

\[\mathcal{L}[X] = X_\rho X^\dagger - (X^\dagger X_\rho + \rho X^\dagger X)/2 \]

- \(\Gamma_{\downarrow}, \Gamma_{\phi} \) break S conservation.

[Dalla Torre et al., PRA (Rapid) 2016, Kirton & JK, arXiv:1611.03342]
Effect of particle losses

- Adding other loss terms

\[\partial_t \rho = -i[H, \rho] + \kappa \mathcal{L}[\hat{a}] + \sum_i \Gamma_\downarrow \mathcal{L}[\sigma_i^-] + \Gamma_\phi \mathcal{L}[\sigma_i^z] \]

\[\mathcal{L}[X] = X\rho X^\dagger - (X^\dagger X\rho + \rho X^\dagger X)/2 \]

- \(\Gamma_\downarrow, \Gamma_\phi \) break \(S \) conservation.

[Dalla Torre et al., PRA (Rapid) 2016, Kirton & JK, arXiv:1611.03342]
Effect of particle losses

- Wigner function $W(\hat{a} = \hat{x} + i\hat{p})$

- Finite N: no symmetry breaking

- Γ_{ϕ} only: MFT \rightarrow no SR

- Asymptotic scaling

[Kirton & JK, arXiv:1611.03342]
Effect of particle losses

- **Wigner function** $W(\hat{a} = \hat{x} + i\hat{p})$

![Graph showing Wigner functions for different cases: (a) κ, (b) $\kappa, \Gamma_\downarrow$, (c) κ, Γ_ϕ, and (d) $\kappa, \Gamma_\downarrow, \Gamma_\phi$.]

- Finite N: no symmetry breaking
- Γ_ϕ only: MFT \to no SR
- Asymptotic scaling

[Kirton & JK, arXiv:1611.03342]
Effect of particle losses

- Wigner function $W(\hat{a} = \hat{x} + i\hat{p})$

- Finite N: no symmetry breaking
 [Kirton & JK, arXiv:1611.03342]

- Γ_ϕ only: MFT \rightarrow no SR
- Asymptotic scaling
Effect of particle losses

- **Wigner function** $W(\hat{a} = \hat{x} + i\hat{p})$

- Γ_ϕ only: MFT \rightarrow no SR

- Finite N: no symmetry breaking

[Kirton & JK, arXiv:1611.03342]
Effect of particle losses

- Wigner function $W(\hat{a} = \hat{x} + i\hat{p})$
- Γ_ϕ only: MFT \rightarrow no SR
- Asymptotic scaling

Finite N: no symmetry breaking

[Kirton & JK, arXiv:1611.03342]
Effect of particle losses

- Wigner function $W(\hat{a} = \hat{x} + i\hat{p})$
- Γ_ϕ only: MFT \rightarrow no SR
- Asymptotic scaling

- Finite N: no symmetry breaking
 [Kirton & JK, arXiv:1611.03342]
Multimode cavity QED experiments

1. Introduction: Tunable multimode Cavity QED

2. Single mode cavity QED
 - Spin-non-conserving loss

3. Multimode cavity QED experiments
 - Experimental setup
 - Supermode density wave polariton condensation

4. Theoretical possibilities
 - Spin glass, Hopfield memory
 - Meissner-like effect
Multimode cavities

Confocal cavity $L = R$:

- **Modes**
 \[\Xi_{l,m}(r) = H_l(x)H_m(y), \]
 $l + m$ fixed parity

- Extra distinction: degenerate vs non-degenerate
Multimode cavities

Confocal cavity $L = R$:

- Modes
 $\Xi_{l,m}(\mathbf{r}) = H_l(x)H_m(y)$, $l + m$ fixed parity

- Extra distinction: degenerate vs non-degenerate
Adjustable length multimode cavity

[Kollár, Papgeorge, Baumann, Armen & Lev, NJP ’15]
Superradiance in multimode cavity: Even family

![Graph showing cavity transmission vs frequency with peaks at multiples of 2 MHz.]
Superradiance in multimode cavity: Even family

![Graph with frequency and cavity transmission](image)

- **a**: Lower frequency side
- **b**: Higher frequency side
Superradiance in multimode cavity: Even family

![Graph showing cavity transmission vs frequency (MHz)]

- **Frequency (MHz)**
 - l+m = 0
 - 0
 - 50
 - 100
 - 150

- **Cavity transmission (arb. units)**
 - 1
 - 10

- **Images**
 - a
 - b
 - c
 - d
 - e
 - f
 - g
Supermodes vs polariton condensation

Supermode density-wave polariton:
- Hybrid cavity photon and atomic density wave
- Atoms remix cavity modes → superposition
- Condensation of polaritons remixes again
Supermodes vs polariton condensation

Supermode density-wave polariton:
- Hybrid cavity photon and atomic density wave
- Atoms remix cavity modes \rightarrow superposition
- Condensation of polaritons remixes again
Supermodes vs polariton condensation

Supermode density-wave polariton:

- Hybrid cavity photon and atomic density wave
- Atoms remix cavity modes \rightarrow superposition
- Condensation of polaritons remixes again

Bare modes:

Super modes:

Graph showing counts and admixture fraction vs frequency (MHz).
Superradiance in multimode cavity: Odd family

- Dependence on cloud position

Near-degeneracy of (1, 0), (0, 1) modes broken by matter-light coupling.

Atomic time-of-flight — structure factor

Jonathan Keeling
Multimode cavity QED
Trento, 2017
Superradiance in multimode cavity: Odd family

- Dependence on cloud position

- Near-degeneracy of $(1, 0), (0, 1)$ modes broken by matter-light coupling.
Superradiance in multimode cavity: Odd family

- Dependence on cloud position
- Atomic time-of-flight — structure factor

Near-degeneracy of \((1, 0), (0, 1)\) modes broken by matter-light coupling.
Theoretical possibilities

1. Introduction: Tunable multimode Cavity QED

2. Single mode cavity QED
 - Spin-non-conserving loss

3. Multimode cavity QED experiments
 - Experimental setup
 - Supermode density wave polariton condensation

4. Theoretical possibilities
 - Spin glass, Hopfield memory
 - Meissner-like effect
Theoretical possibilities

1. Introduction: Tunable multimode Cavity QED

2. Single mode cavity QED
 - Spin-non-conserving loss

3. Multimode cavity QED experiments
 - Experimental setup
 - Supermode density wave polariton condensation

4. Theoretical possibilities
 - Spin glass, Hopfield memory
 - Meissner-like effect
Disordered atoms

- Multimode cavity, Hyperfine states,

\[H_{\text{eff}} = -\sum_{\mu} \Delta_{\mu} a_{\mu}^{\dagger} a_{\mu} + \sum_{n} \frac{\omega_{0}^{2}}{2} \sigma_{n}^{z} + \frac{\Omega g_{0}}{\Delta} \sum_{\mu} \Xi_{\mu}(r_{n}) \sigma_{n}^{x}(a_{\mu} + a_{\mu}^{\dagger}) \]

- Random atom positions – queched disorder

Effective XY/Ising spin glass

\[H_{\text{eff}} = \sum_{n,m} J_{n,m} \begin{cases} \sigma_{n}^{x} \sigma_{m}^{x} & \text{Ising} \\ \sigma_{n}^{+} \sigma_{m}^{-} & \text{XY} \end{cases} \]

\[J_{nm} = \sum_{\mu} \frac{\Omega^{2} g_{0}^{2} \Xi_{\mu}(r_{n}) \Xi_{\mu}(r_{m})}{\Delta^{2} \Delta_{\mu}} \]

[Gopalakrishnan, Lev and Goldbart. PRL ’11, Phil. Mag. ’12]
Disordered atoms

- Multimode cavity, Hyperfine states,

\[H_{\text{eff}} = -\sum_{\mu} \Delta_{\mu} a^{\dagger}_{\mu} a_{\mu} + \sum_{n} \frac{\omega}{2} \sigma_{n}^{z} + \frac{\Omega g_{0}}{\Delta} \sum_{\mu} \Xi_{\mu}(r_{n}) \sigma_{n}^{x}(a_{\mu} + a_{\mu}^{\dagger}) \]

- Random atom positions – queched disorder

- Effective XY/Ising spin glass

\[H_{\text{eff}} = \sum_{n,m} J_{n,m} \begin{cases} \sigma_{n}^{x} \sigma_{m}^{x} & \text{Ising} \\ \sigma_{n}^{+} \sigma_{m}^{\dagger} & \text{XY} \end{cases} \]

\[J_{nm} = \sum_{\mu} \frac{\Omega^{2} g_{0}^{2} \Xi_{\mu}(r_{n}) \Xi_{\mu}(r_{m})}{\Delta^{2} \Delta_{\mu}} \]

[Gopalakrishnan, Lev and Goldbart. PRL ’11, Phil. Mag. ’12]
Disordered atoms

- Multimode cavity, Hyperfine states,

\[H_{\text{eff}} = - \sum_{\mu} \Delta_{\mu} a_{\mu}^\dagger a_{\mu} + \sum_{n} \frac{\omega_0}{2} \sigma_n^z + \frac{\Omega g_0}{\Delta} \sum_{\mu} \Xi_{\mu}(r_n) \sigma_n^x (a_{\mu} + a_{\mu}^\dagger) \]

- Random atom positions – queched disorder

- Effective XY/Ising spin glass

\[H_{\text{eff}} = \sum_{n,m} J_{n,m} \begin{cases} \sigma_n^x \sigma_m^x & \text{Ising} \\ \sigma_n^+ \sigma_m^- & \text{XY} \end{cases}, \quad J_{nm} = \sum_{\mu} \frac{\Omega^2 g_0^2 \Xi_{\mu}(r_n) \Xi_{\mu}(r_m)}{\Delta^2 \Delta_{\mu}} \]

[Gopalakrishnan, Lev and Goldbart. PRL ’11, Phil. Mag. ’12]
Tunable spin glass

\[H_{\text{eff}} = \sum_{n,m} J_{n,m} \sigma_n^x \sigma_m^x \]

\[J_{nm} = \sum_{\mu} \frac{\Omega^2 g_0^2 \Xi_{\mu}(\mathbf{r}_n) \Xi_{\mu}(\mathbf{r}_m)}{\Delta^2 \Delta_{\mu}} \]

- Tunable complexity
- Explore RSB/Droplet order
- Open system spin-glass.
 [Strack & Sachdev PRL '11]

[Gopalakrishnan, Lev and Goldbart. PRL '11, Phil. Mag. '12]
Tunable spin glass

\[H_{\text{eff}} = \sum_{n,m} J_{n,m} \sigma_n^x \sigma_m^x \quad J_{nm} = \sum_{\mu} \frac{\Omega^2 g_0^2 \Xi_\mu(r_n) \Xi_\mu(r_m)}{\Delta^2 \Delta_\mu} \]

- Tunable complexity
- Explore RSB/Droplet order
- Open system spin-glass

[Strack & Sachdev PRL ’11]

\[\begin{align*}
\text{Tunable spin glass} & \quad \text{Ferromagnet} \\
\text{Ferromagnet} & \quad \text{Spin glass} \\
\text{Paramagnet} & \quad \text{Sherrington Kirkpatrick} \\
\text{Sherrington Kirkpatrick} & \quad \text{Edwards Anderson} \\
\text{Edwards Anderson} & \quad \text{(short range)}
\end{align*} \]

[Jonathan Keeling, Lev and Goldbart. PRL ’11, Phil. Mag. ’12]
Tunable spin glass

\[H_{\text{eff}} = \sum_{n,m} J_{n,m} \sigma_n^x \sigma_m^x \quad \text{and} \quad J_{nm} = \sum_{\mu} \frac{\Omega^2 g_0^2 \Xi_{\mu}(r_n) \Xi_{\mu}(r_m)}{\Delta^2 \Delta_{\mu}} \]

- Tunable complexity
- Explore RSB/Droplet order
- Open system spin-glass.
 [Strack & Sachdev PRL ’11]

[Strack & Sachdev PRL ’11, Gopalakrishnan, Lev and Goldbart. PRL ’11, Phil. Mag. ’12]
Tunable spin glass

\[H_{\text{eff}} = \sum_{n,m} J_{n,m} \sigma_n^x \sigma_m^x \quad J_{nm} = \sum_{\mu} \frac{\Omega^2 g_0^2 \Xi_{\mu}(r_n) \Xi_{\mu}(r_m)}{\Delta^2 \Delta_{\mu}} \]

- Tunable complexity
- Explore RSB/Droplet order
- Open system spin-glass.

[Strack & Sachdev PRL ’11]

[Gopalakrishnan, Lev and Goldbart. PRL ’11, Phil. Mag. ’12]
Hopfield memory

- Between Mean-Field and Spin-Glass
 - Multiple fixed points
 - Recover corrupted image

Low dimensional cartoon:

- Neurons → Spins
- Synapses → Modes
- Plasticity → Atom movement
- Need \(|s_n| = 1\) (hard spins)

[\text{Gopalakrishnan, Lev and Goldbart. PRL ‘11, Phil. Mag. ’12}]
Hopfield memory

- Between Mean-Field and Spin-Glass
- Multiple fixed points
- Recover corrupted image

Low dimensional cartoon:

- Neurons → Spins
- Synapses → Modes
- Plasticity → Atom movement
- Need $|s_n| = 1$ (hard spins)

[Hertz, Krogh, Palmer '91]

[Gopalakrishnan, Lev and Goldbart. PRL '11, Phil. Mag. '12]
Hopfield memory

- Between Mean-Field and Spin-Glass
- Multiple fixed points
- Recover corrupted image

Low dimensional cartoon:

- Neurons \rightarrow Spins
- Synapses \rightarrow Modes
- Plasticity \rightarrow Atom movement

[Need $|s_n| = 1$ (hard spins)]

[Hertz, Krogh, Palmer ’91]

[Gopalakrishnan, Lev and Goldbart. PRL ’11, Phil. Mag. ’12]
Hopfield memory

- Between Mean-Field and Spin-Glass
- Multiple fixed points
- Recover corrupted image

Low dimensional cartoon:

- Neurons \rightarrow Spins
- Synapses \rightarrow Modes
- Plasticity \rightarrow Atom movement
- Need $|s_n| = 1$ (hard spins)

[Hertz, Krogh, Palmer ’91]

[Gopalakrishnan, Lev and Goldbart. PRL ’11, Phil. Mag. ’12]
Theoretical possibilities

1. Introduction: Tunable multimode Cavity QED

2. Single mode cavity QED
 - Spin-non-conserving loss

3. Multimode cavity QED experiments
 - Experimental setup
 - Supermode density wave polariton condensation

4. Theoretical possibilities
 - Spin glass, Hopfield memory
 - Meissner-like effect
Cavity QED and synthetic gauge fields

- [Spielman, PRA '09] scheme, hyperfine states A, B

\[H = (\psi_A \ \psi_B) \begin{pmatrix} E_a + (\nabla - Q\hat{x})^2 & \Omega/2 \\ \Omega/2 & E_B + (\nabla + Q\hat{x})^2 \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} \]

Feedback
- Why?
 - Meissner effect, Anderson-Higgs mechanism, confinement-deconfinement transition.
Cavity QED and synthetic gauge fields

- [Spielman, PRA '09] scheme, hyperfine states A, B

\[
H = \begin{pmatrix} \psi_A & \psi_B \end{pmatrix} \begin{pmatrix} E_a + (\nabla - Q\hat{x})^2 & \Omega/2 \\ \Omega/2 & E_B + (\nabla + Q\hat{x})^2 \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}
\]

Ground state:

\[
E_-(k) \approx \frac{(k - \frac{(E_B - E_A)Q\hat{x}}{\Omega})^2}{2m^*}
\]

- Feedback
 - Why?
 - Meissner effect, Anderson-Higgs mechanism, confinement-deconfinement transition.
Cavity QED and synthetic gauge fields

- [Spielman, PRA ’09] scheme, hyperfine states A, B

\[H = \begin{pmatrix} \psi_A & \psi_B \end{pmatrix} \begin{pmatrix} E_a + (\nabla - Q\hat{x})^2 & \Omega/2 \\ \Omega/2 & E_B + (\nabla + Q\hat{x})^2 \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} \]

Ground state:

\[E_- (k) \simeq \frac{(k - \frac{(E_B - E_A)Q\hat{x}}{\Omega})^2}{2m^*} \]

- Feedback
 - Why?
 - Meissner effect, Anderson-Higgs mechanism, confinement-deconfinement transition.

- How?
 - Multimode cavity QED
Cavity QED and synthetic gauge fields

- [Spielman, PRA ’09] scheme, hyperfine states A, B

\[H = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} \begin{pmatrix} E_a + (\nabla - Q\hat{x})^2 & \Omega/2 \\ \Omega/2 & E_B + (\nabla + Q\hat{x})^2 \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} \]

Ground state:

\[E_-(k) \approx \frac{(k - \frac{(E_B-E_A)Q\hat{x}}{\Omega})^2}{2m^*} \]

- Feedback
 - Why?
 - Meissner effect, Anderson-Higgs mechanism, confinement-deconfinement transition.
 - How?
 - Multimode cavity QED
Meissner-like physics: idea

- Follow Spielman scheme

\[\left(\frac{E_A + (\nabla - Q\hat{x})^2}{\Omega/2} E_B + (\nabla + Q\hat{x})^2 \right) \]

- \(E_A, E_B \propto |\phi|^2 \) from cavity Stark shift
- Ground state: \(E_\gamma (k) \propto (k - Q\hat{x}|\phi|^2)^2 \)

- Multimode cQED \(\rightarrow \) local matter-light coupling
- Variable profile synthetic gauge field?
- Reciprocity: matter affects field

[Ballantine et al. arXiv:1608.07246]
Meissner-like physics: idea

- Follow Spielman scheme

\[
\begin{pmatrix}
E_A + (\nabla - Q\hat{x})^2 & \Omega/2 \\
\Omega/2 & E_B + (\nabla + Q\hat{x})^2
\end{pmatrix}
\]

- \(E_A, E_B \propto |\varphi|^2\) from cavity Stark shift

- Ground state \(E_-(k) \propto (k - Q\hat{x})|\varphi|^2\)

- Multimode cQED → local matter-light coupling
- Variable profile synthetic gauge field?
- Reciprocity: matter affects field

[Ballantine et al. arXiv:1608.07246]
Meissner-like physics: idea

- Follow Spielman scheme

\[
\left(E_A + (\nabla - Q\hat{x})^2 \frac{\Omega}{2} \right) \quad \frac{\Omega}{2} \quad E_B + (\nabla + Q\hat{x})^2
\]

- \(E_A, E_B \propto |\varphi|^2 \) from cavity Stark shift

- Ground state \(E_-(\mathbf{k}) \propto (\mathbf{k} - Q\hat{x}|\varphi|^2)^2 \)

[Ballantine et al. arXiv:1608.07246]
Meissner-like physics: idea

- Follow Spielman scheme

\[
\begin{pmatrix}
E_A + (\nabla - Q \hat{x})^2 & \frac{\Omega}{2} \\
\frac{\Omega}{2} & E_B + (\nabla + Q \hat{x})^2
\end{pmatrix}
\]

- \(E_A, E_B \propto |\varphi|^2\) from cavity Stark shift

- Ground state \(E_-(\mathbf{k}) \propto (\mathbf{k} - Q \hat{x})|\varphi|^2)^2\)

[Ballantine et al. arXiv:1608.07246]

- Multimode cQED → local matter-light coupling
- Variable profile synthetic gauge field?
- Reciprocity: matter affects field
Meissner-like physics: idea

- Follow Spielman scheme

\[
\left(E_A + (\nabla - Q \hat{x})^2 \right) \frac{\Omega}{2} \quad E_B + (\nabla + Q \hat{x})^2
\]

- \(E_A, E_B \propto |\varphi|^2 \) from cavity Stark shift

- Ground state \(E_-(\mathbf{k}) \propto (\mathbf{k} - Q \hat{x})|\varphi|^2)^2 \)

- Multimode cQED \(\rightarrow \) local matter-light coupling
- Variable profile synthetic gauge field?
- Reciprocity: matter affects field

[Ballantine et al. arXiv:1608.07246]
Meissner-like physics: idea

- Follow Spielman scheme

\[
\begin{pmatrix}
E_A + (\nabla - Q\hat{x})^2 & \Omega/2 \\
\Omega/2 & E_B + (\nabla + Q\hat{x})^2
\end{pmatrix}
\]

- \(E_A, E_B \propto |\varphi|^2 \) from cavity Stark shift

- Ground state \(E_-(\mathbf{k}) \propto (\mathbf{k} - Q\hat{x}|\varphi|^2)^2 \)

- Multimode cQED \(\rightarrow \) local matter-light coupling
- Variable profile synthetic gauge field?
- Reciprocity: matter affects field

[Ballantine et al. arXiv:1608.07246]
Meissner-like physics: setup

Atoms:
\[i \frac{\partial}{\partial t} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = \left[-\frac{\nabla^2}{2m} + \left(-\mathcal{E}_\Delta |\varphi|^2 + i \frac{q}{m} \partial_x \right) \frac{\Omega}{2} \right. \left. \mathcal{E}_\Delta |\varphi|^2 - i \frac{q}{m} \partial_x \right) - \frac{\Omega}{2} \right] \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} \]

Light:
\[i \frac{\partial}{\partial t} \varphi = \left[\frac{\partial}{\partial r} \left(-l^2 \nabla^2 + \frac{l^2}{r^2} \right) - \Delta_0 - i\kappa - N\mathcal{E}_\Delta (|\psi_A|^2 - |\psi_B|^2) \right] \varphi \]

[Ballantine et al. arXiv:1608.07246]
Meissner-like physics: setup

- **Atoms:**
 \[i \partial_t \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = \left[-\frac{\nabla^2}{2m} + \left(-\mathcal{E}_\Delta |\varphi|^2 + \frac{i q_m \partial_x}{\Omega/2} \mathcal{E}_\Delta |\varphi|^2 - i \frac{q_m \partial_x}{\Omega/2} \right) \right] \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}. \]

- **Light:**
 \[i \partial_t \varphi = \frac{\delta}{2} \left(-l^2 \nabla^2 + \frac{r^2}{l^2} \right) - \Delta_0 - i \kappa - N \mathcal{E}_\Delta (|\psi_A|^2 - |\psi_B|^2) \varphi . \]

[Ballantine et al. arXiv:1608.07246]
Meissner-like physics: setup

- **Atoms:**
 \[i \partial_t \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = \left[-\frac{\nabla^2}{2m} + \left(-\mathcal{E}_\Delta |\varphi|^2 + i \frac{q m}{\hbar} \partial_x \frac{\Omega}{2} \right) \mathcal{E}_\Delta |\varphi|^2 - i \frac{q m}{\hbar} \partial_x \right] \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}. \]

- **Light:**
 \[i \partial_t \varphi = \left[\frac{\delta}{2} \left(-l^2 \nabla^2 + \frac{r^2}{l^2} \right) - \Delta_0 - i \kappa - N \mathcal{E}_\Delta (|\psi_A|^2 - |\psi_B|^2) \right] \varphi + f(r). \]

[Ballantine et al. arXiv:1608.07246]
Consider \(f(\mathbf{r}) \) such that
\[
|\varphi|^2 \propto y.
\]
Without feedback (\(\mathcal{E}_\Delta = 0 \)) for field

With feedback

[Ballantine et al. arXiv:1608.07246]
Meissner-like physics: numerical simulations

Consider $f(r)$ such that $|\varphi|^2 \propto y$.

- Without feedback ($\mathcal{E}_\Delta = 0$) for field
- With feedback
 - Field expelled
 - Cloud shrinks

Atoms

Cavity light

Synthetic field

[Ballantine et al. arXiv:1608.07246]
Meissner-like physics: numerical simulations

Atoms

Cavity light

Synthetic field

[Ballantine et al. arXiv:1608.07246]

Consider $f(\mathbf{r})$ such that $|\varphi|^2 \propto y$.

Without feedback ($\mathcal{E}_\Delta = 0$) for field

With feedback

- Field expelled
- Cloud shrinks
Consider $f(r)$ such that $|\varphi|^2 \propto y$.

- Without feedback ($\mathcal{E}_\Delta = 0$) for field
- With feedback
 - Field expelled
 - Cloud shrinks

[Ballantine et al. arXiv:1608.07246]
Acknowledgments

Experiment (Stanford): Benjamin Lev

Theory:

Ben Simons (Cambridge), Joe Bhaseen (KCL), James Mayoh (Southampton)

Sarang Gopalakrishnan (CUNY)
Surya Ganguli, Jordan Cotler (Stanford)
Peter Kirton, Kyle Ballantine, Laura Staffini (St Andrews)

The Leverhulme Trust

EPSRC
Engineering and Physical Sciences Research Council
Summary

- Open Dicke model, $\kappa, \Gamma_\phi, \Gamma_\downarrow$ [Kirton & JK, arXiv:1611.03342]

- Many possibilities of multimode cavity QED

- Supermode polariton condensation [Kollár et al. arXiv:1606.04127]

1 Introduction: Tunable multimode Cavity QED

2 Single mode cavity QED
 • Spin-non-conserving loss

3 Multimode cavity QED experiments
 • Experimental setup
 • Supermode density wave polariton condensation

4 Theoretical possibilities
 • Spin glass, Hopfield memory
 • Meissner-like effect
Training Hopfield
How to train your atoms

- Input/output by cavity modes, \(Q_\mu = \langle \hat{a}_\mu \rangle \)

\[
H_{\text{eff}} = -\sum_\mu \Delta_\mu a_\mu^\dagger a_\mu + \sum_n \frac{\omega_0}{2} \sigma^z_n + E_P \sum_{\mu,n} \Xi_\mu(r_n) \sigma^x_n (a_\mu + a_\mu^\dagger) \\
+ \sum_\mu f_\mu a_\mu^\dagger + \text{H.c.}
\]

- Effective problem:

\[
H_{\text{eff}} = -E_P \sum_\mu (f_\mu + Q_\mu)^2, \quad Q_\mu = \sum_n \Xi_\mu(r_n) \sigma^x_n
\]
How to train your atoms

- Input/output by cavity modes, $Q_\mu = \langle \hat{a}_\mu \rangle$

$$H_{\text{eff}} = -\sum_\mu \Delta_\mu a_\mu^\dagger a_\mu + \sum_n \frac{\omega_0}{2} \sigma_n^Z + E_P \sum_{\mu,n} \Xi_\mu (r_n) \sigma_n^x (a_\mu + a_\mu^\dagger)$$

$$+ \sum_\mu f_\mu a_\mu^\dagger + \text{H.c.}$$

Effective problem:

$$H_{\text{eff}} = -E_P \sum_\mu (f_\mu + Q_\mu)^2, \quad Q_\mu = \sum_n \Xi_\mu (r_n) \sigma_n^x$$
How to train your atoms

- Input/output by cavity modes, $Q_\mu = \langle \hat{a}_\mu \rangle$

\[
H_{\text{eff}} = -\sum_\mu \Delta_\mu \hat{a}_\mu^\dagger \hat{a}_\mu + \sum_n \frac{\omega_0}{2} \sigma_n^z + E_P \sum_{\mu, n} \Xi_\mu (r_n) \sigma_n^x (a_\mu + a_\mu^\dagger) \\
+ \sum_\mu f_\mu a_\mu^\dagger + \text{H.c.}
\]

- Effective problem:

\[
H_{\text{eff}} = -E_P \sum_\mu (f_\mu + Q_\mu)^2, \quad Q_\mu = \sum_n \Xi_\mu (r_n) \sigma_n^x
\]
How to train your atoms

- Before training, many fixed points

Train by moving atoms:

- Recover corrupted image

\[\sigma^x_i \]

\[Q_\mu \]
How to train your atoms

- Before training, many fixed points

\[\sigma^X_i \]

\[Q_\mu \]

- Train by moving atoms:

\[f(x) = \sum_{m} \phi_{m} \]

\[\text{Optimisation Step} \]

- Recover corrupted image
How to train your atoms

- Before training, many fixed points

Train by moving atoms:

- Recover corrupted image