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(Multimode) cavity QED
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I Oscillator-strength sum rules
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I Tuning parameters?
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F Cavity size/concentration
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Synthetic cavity QED: Raman driving

Tunable coupling via Raman
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news & views

Just as matter is used to control the 
propagation of light waves, light can 
be used to manipulate matter waves. 

In typical situations, such as when light 
is guided by lenses or mirrors or when 
particles are trapped by optical tweezers and 
laser cooling, only one of the two e!ects 
is signi"cant.

However, con"ning a cold gas in a 
high-"nesse optical resonator creates an 
unusual situation in which particles and 
photons dynamically in#uence each other’s 
motion by momentum exchange on an 
equal footing. $e particles create a dynamic 
refractive index that di!racts the light waves. 
$ese interfere and form structured optical 
potentials that guide the particles’ motion. In 
the simple generic case of high-"eld-seeking 
atoms in between two plane mirrors, one 
"nds a well-de"ned threshold illumination 
intensity above which the particles order in 
a regular crystalline structure. $ey form 
ordered patterns with Bragg planes, which 
optimally couple the pump laser into the 
resonator1. $is maximizes the resonator 
"eld and thus minimizes the potential 
energy of particles trapped around local "eld 
maxima. $e scaling of this phase-stable 
super-radiant scattering with the square 
of the particle number has been observed 
experimentally, and is a clear signature of 
such self-ordering2.

Sarang Gopalakrishnan and colleagues, 
reporting on page 845 of this issue3, 
generalize the description of these complex 
coupled nonlinear dynamics by considering 
ultracold quantum gases in a multimode 
optical resonator. Here, photons and 
atoms can dynamically occupy a large 
number of modes. Using a functional-
integral formalism adapted from quantum 
"eld theory, Gopalakrishnan et al. are 
able to derive an e!ective atom-only 
action from which they uncover a wealth 
of new phenomena in this generalized 
con"guration. One important result is that 
the phase transition to a crystal arrangement 
is "rst order and persists down to zero 
temperature. $is represents a genuine 
quantum phase transition that involves 
translational-symmetry breaking. It is 

analogous to Brazovskii’s transition — where 
a uniform spatial distribution abruptly 
transforms into a stripe pattern4. $is phase 
transition at zero temperature is solely driven 
by quantum #uctuations of the particle 
"elds, which are dynamically ampli"ed and 
develop into macroscopic spatial-density 
variations. ($is resembles the way that 
large-scale structures are supposed to have 
appeared from quantum noise in the early 
Universe.) $e spatial correlations and 
the form of the emerging structures are 
determined by the wavevectors supported 
by the optical-resonator geometry. With 
the help of extra con"nement potentials for 
the particles that are introduced by light 
sheets, the dimensions of the emerging 
patterns can be externally controlled. Models 
with several interacting layered planes can 
be implemented.

As an extra bonus, the set-up includes a 
built-in non-destructive monitoring system 
by virtue of analysis of the scattered light 
"elds. In particular, at near-zero temperature 
the scattered light contains clear signatures 

of the nucleation of new atomic quantum 
phases5. $us, real-time non-destructive 
monitoring of the dynamics of a quantum 
phase transition can be foreseen.

As cavity quantum electrodynamics 
(QED) set-ups with single particles 
coupled to super-mirror resonators pose 
severe experimental challenges, theoretical 
considerations invoking degenerate 
quantum gases were long considered to be 
thought experiments only. However, using 
the recent exciting developments in the 
optical manipulation of ultracold gases, 
several teams have now implemented cavity-
QED systems involving Bose–Einstein 
condensates and super mirrors. Up to 
a million atoms at close to T = 0 can be 
trapped in the "eld of a few photons (or 
even a single one)6,7. $ese experiments 
enter the strong-coupling regime where 
coherent quantum coupling dominates 
dissipation by more than three orders of 
magnitude. Here, the optical potentials 
and thus the light forces have genuine 
quantum properties so that the light and the 
particles become dynamically entangled. 
As a consequence, the dynamics can lead to 
superpositions of light-"eld states associated 
with di!erent atomic quantum phases as 
an exotic form of a Schrödinger-cat state. 
$e strong coherent coupling of atoms and 
photons can also be used as a controllable 
prototype interface of photonic- and atom-
based quantum computing.

Whereas ultracold atoms interact directly 
only at close distances, the modi"cation of 
the light "eld induced by a single particle 
in#uences the optical potential for virtually 
all other particles in the system8. $is long-
range interaction can be tailored through the 
mirror geometry, and acts in a similar way to 
acoustic phonons in solid crystals. $is adds 
an extra dimension to optical-lattice physics 
with ultracold quantum gases, which is 
already one of the most fruitful areas at the 
boundary of atomic and solid-state physics9, 
including the physics of phonons, polarons 
or momentum-space pairing of particles.

$e tremendous recent progress 
has now surpassed the limits in readily 
available theoretical models. In complex 

QUANTUM OPTICS

Crystals of atoms and light
Cold atoms and photons confined together in high-quality optical resonators self-organize into complicated 
crystalline structures that have an optical-wavelength scale. Complex solid-state phenomena can be studied in real 
time on directly observable scales.

Helmut Ritsch

Bragg planes
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Figure 1 | Simulated stationary distribution of 
1,000 high-field-seeking atoms in an optical 
resonator transversely illuminated by laser light. 
The atoms self-order in a crystalline structure with 
Bragg planes (dashed diagonal lines as a guide to 
the eye) maximizing the coherent scattering into 
the resonator mode as predicted and observed in 
refs 1 and 2.
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the light "eld induced by a single particle 
in#uences the optical potential for virtually 
all other particles in the system8. $is long-
range interaction can be tailored through the 
mirror geometry, and acts in a similar way to 
acoustic phonons in solid crystals. $is adds 
an extra dimension to optical-lattice physics 
with ultracold quantum gases, which is 
already one of the most fruitful areas at the 
boundary of atomic and solid-state physics9, 
including the physics of phonons, polarons 
or momentum-space pairing of particles.

$e tremendous recent progress 
has now surpassed the limits in readily 
available theoretical models. In complex 

QUANTUM OPTICS

Crystals of atoms and light
Cold atoms and photons confined together in high-quality optical resonators self-organize into complicated 
crystalline structures that have an optical-wavelength scale. Complex solid-state phenomena can be studied in real 
time on directly observable scales.
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Figure 1 | Simulated stationary distribution of 
1,000 high-field-seeking atoms in an optical 
resonator transversely illuminated by laser light. 
The atoms self-order in a crystalline structure with 
Bragg planes (dashed diagonal lines as a guide to 
the eye) maximizing the coherent scattering into 
the resonator mode as predicted and observed in 
refs 1 and 2.

nphys_N&Vs_NOV09.indd   781 23/10/09   11:08:09

σ
−

σ
+

m =−1

m =0

m =+1

F

F

F

Single mode vs multimode

Thermal gas vs BEC vs disorder localised

Jonathan Keeling Tunable multimode cQED Chichley, March 2016 6



Single mode theory

Momentum degrees of freedom:
ψ(r) = ψ⇓(r) + ψ⇑(r) cos(kx) cos(kz)

Effective 2LS (ψ⇓, ψ⇑)

κ

Pump

κ

x

z

Heff = (ωc − ωP)︸ ︷︷ ︸
−∆c

a†a +
∑

n

ω0

2
σz

n +
Ωg0

∆︸︷︷︸
geff

σx
n(a + a†)

−g0
2

4∆︸ ︷︷ ︸
U

σz
na†a

Extra “feedback” term
Single mode – mean-field EOM, α = 〈ψ〉,Si =

∑
n σ

i
n/2.
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Single mode experiments
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news & views

Just as matter is used to control the 
propagation of light waves, light can 
be used to manipulate matter waves. 

In typical situations, such as when light 
is guided by lenses or mirrors or when 
particles are trapped by optical tweezers and 
laser cooling, only one of the two e!ects 
is signi"cant.

However, con"ning a cold gas in a 
high-"nesse optical resonator creates an 
unusual situation in which particles and 
photons dynamically in#uence each other’s 
motion by momentum exchange on an 
equal footing. $e particles create a dynamic 
refractive index that di!racts the light waves. 
$ese interfere and form structured optical 
potentials that guide the particles’ motion. In 
the simple generic case of high-"eld-seeking 
atoms in between two plane mirrors, one 
"nds a well-de"ned threshold illumination 
intensity above which the particles order in 
a regular crystalline structure. $ey form 
ordered patterns with Bragg planes, which 
optimally couple the pump laser into the 
resonator1. $is maximizes the resonator 
"eld and thus minimizes the potential 
energy of particles trapped around local "eld 
maxima. $e scaling of this phase-stable 
super-radiant scattering with the square 
of the particle number has been observed 
experimentally, and is a clear signature of 
such self-ordering2.

Sarang Gopalakrishnan and colleagues, 
reporting on page 845 of this issue3, 
generalize the description of these complex 
coupled nonlinear dynamics by considering 
ultracold quantum gases in a multimode 
optical resonator. Here, photons and 
atoms can dynamically occupy a large 
number of modes. Using a functional-
integral formalism adapted from quantum 
"eld theory, Gopalakrishnan et al. are 
able to derive an e!ective atom-only 
action from which they uncover a wealth 
of new phenomena in this generalized 
con"guration. One important result is that 
the phase transition to a crystal arrangement 
is "rst order and persists down to zero 
temperature. $is represents a genuine 
quantum phase transition that involves 
translational-symmetry breaking. It is 

analogous to Brazovskii’s transition — where 
a uniform spatial distribution abruptly 
transforms into a stripe pattern4. $is phase 
transition at zero temperature is solely driven 
by quantum #uctuations of the particle 
"elds, which are dynamically ampli"ed and 
develop into macroscopic spatial-density 
variations. ($is resembles the way that 
large-scale structures are supposed to have 
appeared from quantum noise in the early 
Universe.) $e spatial correlations and 
the form of the emerging structures are 
determined by the wavevectors supported 
by the optical-resonator geometry. With 
the help of extra con"nement potentials for 
the particles that are introduced by light 
sheets, the dimensions of the emerging 
patterns can be externally controlled. Models 
with several interacting layered planes can 
be implemented.

As an extra bonus, the set-up includes a 
built-in non-destructive monitoring system 
by virtue of analysis of the scattered light 
"elds. In particular, at near-zero temperature 
the scattered light contains clear signatures 

of the nucleation of new atomic quantum 
phases5. $us, real-time non-destructive 
monitoring of the dynamics of a quantum 
phase transition can be foreseen.

As cavity quantum electrodynamics 
(QED) set-ups with single particles 
coupled to super-mirror resonators pose 
severe experimental challenges, theoretical 
considerations invoking degenerate 
quantum gases were long considered to be 
thought experiments only. However, using 
the recent exciting developments in the 
optical manipulation of ultracold gases, 
several teams have now implemented cavity-
QED systems involving Bose–Einstein 
condensates and super mirrors. Up to 
a million atoms at close to T = 0 can be 
trapped in the "eld of a few photons (or 
even a single one)6,7. $ese experiments 
enter the strong-coupling regime where 
coherent quantum coupling dominates 
dissipation by more than three orders of 
magnitude. Here, the optical potentials 
and thus the light forces have genuine 
quantum properties so that the light and the 
particles become dynamically entangled. 
As a consequence, the dynamics can lead to 
superpositions of light-"eld states associated 
with di!erent atomic quantum phases as 
an exotic form of a Schrödinger-cat state. 
$e strong coherent coupling of atoms and 
photons can also be used as a controllable 
prototype interface of photonic- and atom-
based quantum computing.

Whereas ultracold atoms interact directly 
only at close distances, the modi"cation of 
the light "eld induced by a single particle 
in#uences the optical potential for virtually 
all other particles in the system8. $is long-
range interaction can be tailored through the 
mirror geometry, and acts in a similar way to 
acoustic phonons in solid crystals. $is adds 
an extra dimension to optical-lattice physics 
with ultracold quantum gases, which is 
already one of the most fruitful areas at the 
boundary of atomic and solid-state physics9, 
including the physics of phonons, polarons 
or momentum-space pairing of particles.

$e tremendous recent progress 
has now surpassed the limits in readily 
available theoretical models. In complex 

QUANTUM OPTICS

Crystals of atoms and light
Cold atoms and photons confined together in high-quality optical resonators self-organize into complicated 
crystalline structures that have an optical-wavelength scale. Complex solid-state phenomena can be studied in real 
time on directly observable scales.
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Figure 1 | Simulated stationary distribution of 
1,000 high-field-seeking atoms in an optical 
resonator transversely illuminated by laser light. 
The atoms self-order in a crystalline structure with 
Bragg planes (dashed diagonal lines as a guide to 
the eye) maximizing the coherent scattering into 
the resonator mode as predicted and observed in 
refs 1 and 2.
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For short Toff , the relative phase is predominantly
!! ! 0. As Toff increases, relative phases of !! ! "
appear, and the difference f0 " f" decays with a time
constant # ! #11$ 3% $s. Optical-path-length drifts in
the interferometer then cause a slow decay in f0 and f",
and an increase in f"=2 to the 10% random-phase level.

Having confirmed a mechanism for the emission, we
investigate the forces on falling atoms interacting with
the pump light after the MOT is extinguished. The col-
lective emission into the cavity leads to strong damping of
the c.m. motion of the atoms, an effect qualitatively
similar to that predicted by Gangl et al. for atoms in a
multimode ring cavity [11]. The TOF measurements in-
dicate that, following emission, a large fraction of the
atoms is substantially decelerated (inset of Fig. 4). For
atoms with an initial velocity v0 ! 15 cm=s at the time of
illumination, decelerations of about 300 m=s2 are ob-
served, with typically a third of the atoms being slowed.
The TOF trace shown indicates a final velocity of 4 cm=s,
while those with the largest delays indicate that the cloud
is stopped before the emission ends.

For driven atoms falling at velocity v > 0, the mea-
sured intracavity power is modulated at a frequency given
initially by twice the atomic Doppler effect 2!d ! 2kv
(Fig. 4). This modulation can be explained as the beat note
between fields emitted upward and downward, which are
Doppler shifted by &!d. Alternatively, it can be ex-
plained by the spatial variation with period %=2 of the
atom-cavity coupling, whereby falling atoms cannot emit
at a node of the intracavity standing wave. The changing
modulation frequency then indicates the atomic accelera-
tion, as displayed in Fig. 4. These measured accelerations
are consistent with the TOF measurements. The peak
accelerations, up to "1000 m=s2, occur shortly after the
onset of the collective emission. Heating of the delayed
atoms is consistent with recoil heating at the photon
scattering rate into the cavity. While most of our data
are taken in the range "1:77 ' &a=2" ' "1:57 GHz,

we observe damping for pump-atom detunings up to
&a=2" ( "5:7 GHz, limited only by the pump intensity
needed to reach threshold. For blue pump-atom detunings
up to &a=2" ( 2:5 GHz there is collective emission but
no c.m. damping.

Since the pump-atom detuning &a is much larger than
the atoms’ excited-state hyperfine splitting [Fig. 1(a)], the
transition Fg ! 4 ! Fe can be treated as an open, two-
level system with decay to the Fg ! 3 ground state. If the
repumper counteracting the decay is turned off during the
application of the pump beam, the ensuing TOF traces are
similar to that displayed in the inset of Fig. 4, with a
similar fraction of 40% of the sample being slowed. For
an initial c.m. velocity of v0 ! 15 cm=s the Bragg scat-
tering lasts up to 200 $s, slowing the sample to a final
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the particles that are introduced by light 
sheets, the dimensions of the emerging 
patterns can be externally controlled. Models 
with several interacting layered planes can 
be implemented.

As an extra bonus, the set-up includes a 
built-in non-destructive monitoring system 
by virtue of analysis of the scattered light 
"elds. In particular, at near-zero temperature 
the scattered light contains clear signatures 
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(QED) set-ups with single particles 
coupled to super-mirror resonators pose 
severe experimental challenges, theoretical 
considerations invoking degenerate 
quantum gases were long considered to be 
thought experiments only. However, using 
the recent exciting developments in the 
optical manipulation of ultracold gases, 
several teams have now implemented cavity-
QED systems involving Bose–Einstein 
condensates and super mirrors. Up to 
a million atoms at close to T = 0 can be 
trapped in the "eld of a few photons (or 
even a single one)6,7. $ese experiments 
enter the strong-coupling regime where 
coherent quantum coupling dominates 
dissipation by more than three orders of 
magnitude. Here, the optical potentials 
and thus the light forces have genuine 
quantum properties so that the light and the 
particles become dynamically entangled. 
As a consequence, the dynamics can lead to 
superpositions of light-"eld states associated 
with di!erent atomic quantum phases as 
an exotic form of a Schrödinger-cat state. 
$e strong coherent coupling of atoms and 
photons can also be used as a controllable 
prototype interface of photonic- and atom-
based quantum computing.

Whereas ultracold atoms interact directly 
only at close distances, the modi"cation of 
the light "eld induced by a single particle 
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all other particles in the system8. $is long-
range interaction can be tailored through the 
mirror geometry, and acts in a similar way to 
acoustic phonons in solid crystals. $is adds 
an extra dimension to optical-lattice physics 
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available theoretical models. In complex 
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Having confirmed a mechanism for the emission, we
investigate the forces on falling atoms interacting with
the pump light after the MOT is extinguished. The col-
lective emission into the cavity leads to strong damping of
the c.m. motion of the atoms, an effect qualitatively
similar to that predicted by Gangl et al. for atoms in a
multimode ring cavity [11]. The TOF measurements in-
dicate that, following emission, a large fraction of the
atoms is substantially decelerated (inset of Fig. 4). For
atoms with an initial velocity v0 ! 15 cm=s at the time of
illumination, decelerations of about 300 m=s2 are ob-
served, with typically a third of the atoms being slowed.
The TOF trace shown indicates a final velocity of 4 cm=s,
while those with the largest delays indicate that the cloud
is stopped before the emission ends.

For driven atoms falling at velocity v > 0, the mea-
sured intracavity power is modulated at a frequency given
initially by twice the atomic Doppler effect 2!d ! 2kv
(Fig. 4). This modulation can be explained as the beat note
between fields emitted upward and downward, which are
Doppler shifted by &!d. Alternatively, it can be ex-
plained by the spatial variation with period %=2 of the
atom-cavity coupling, whereby falling atoms cannot emit
at a node of the intracavity standing wave. The changing
modulation frequency then indicates the atomic accelera-
tion, as displayed in Fig. 4. These measured accelerations
are consistent with the TOF measurements. The peak
accelerations, up to "1000 m=s2, occur shortly after the
onset of the collective emission. Heating of the delayed
atoms is consistent with recoil heating at the photon
scattering rate into the cavity. While most of our data
are taken in the range "1:77 ' &a=2" ' "1:57 GHz,

we observe damping for pump-atom detunings up to
&a=2" ( "5:7 GHz, limited only by the pump intensity
needed to reach threshold. For blue pump-atom detunings
up to &a=2" ( 2:5 GHz there is collective emission but
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Since the pump-atom detuning &a is much larger than
the atoms’ excited-state hyperfine splitting [Fig. 1(a)], the
transition Fg ! 4 ! Fe can be treated as an open, two-
level system with decay to the Fg ! 3 ground state. If the
repumper counteracting the decay is turned off during the
application of the pump beam, the ensuing TOF traces are
similar to that displayed in the inset of Fig. 4, with a
similar fraction of 40% of the sample being slowed. For
an initial c.m. velocity of v0 ! 15 cm=s the Bragg scat-
tering lasts up to 200 $s, slowing the sample to a final
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of a falling atomic cloud. The beat frequency is used to
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out (gray line) and with (black line) a 400 $s exposure to the
pump beam. Here the pump I=Is ! 420, &a=2" !
"1:580 GHz, and !c=2" ! "10 MHz. The atom number is
N ! 2:6) 107.

420

1

2

Time (ms)

E
m

is
si

on
 

1 3

0

π

0
φ

(a)

(b)

FIG. 2. Simultaneous time traces of the intracavity
intensity (a) (arbitrary units) and field phase (b). The param-
eters are N ! 8:2) 106, &a=2" ! "1:59 GHz, !c=2" !
"20 MHz, and I=Is ! 440.
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the same as for Fig. 2, except here N ! 1:3) 107. The inset
shows the two possible lattice configurations producing relative
phase shift !! ! " in the emitted light.
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Single mode experiments
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news & views

Just as matter is used to control the 
propagation of light waves, light can 
be used to manipulate matter waves. 

In typical situations, such as when light 
is guided by lenses or mirrors or when 
particles are trapped by optical tweezers and 
laser cooling, only one of the two e!ects 
is signi"cant.

However, con"ning a cold gas in a 
high-"nesse optical resonator creates an 
unusual situation in which particles and 
photons dynamically in#uence each other’s 
motion by momentum exchange on an 
equal footing. $e particles create a dynamic 
refractive index that di!racts the light waves. 
$ese interfere and form structured optical 
potentials that guide the particles’ motion. In 
the simple generic case of high-"eld-seeking 
atoms in between two plane mirrors, one 
"nds a well-de"ned threshold illumination 
intensity above which the particles order in 
a regular crystalline structure. $ey form 
ordered patterns with Bragg planes, which 
optimally couple the pump laser into the 
resonator1. $is maximizes the resonator 
"eld and thus minimizes the potential 
energy of particles trapped around local "eld 
maxima. $e scaling of this phase-stable 
super-radiant scattering with the square 
of the particle number has been observed 
experimentally, and is a clear signature of 
such self-ordering2.

Sarang Gopalakrishnan and colleagues, 
reporting on page 845 of this issue3, 
generalize the description of these complex 
coupled nonlinear dynamics by considering 
ultracold quantum gases in a multimode 
optical resonator. Here, photons and 
atoms can dynamically occupy a large 
number of modes. Using a functional-
integral formalism adapted from quantum 
"eld theory, Gopalakrishnan et al. are 
able to derive an e!ective atom-only 
action from which they uncover a wealth 
of new phenomena in this generalized 
con"guration. One important result is that 
the phase transition to a crystal arrangement 
is "rst order and persists down to zero 
temperature. $is represents a genuine 
quantum phase transition that involves 
translational-symmetry breaking. It is 

analogous to Brazovskii’s transition — where 
a uniform spatial distribution abruptly 
transforms into a stripe pattern4. $is phase 
transition at zero temperature is solely driven 
by quantum #uctuations of the particle 
"elds, which are dynamically ampli"ed and 
develop into macroscopic spatial-density 
variations. ($is resembles the way that 
large-scale structures are supposed to have 
appeared from quantum noise in the early 
Universe.) $e spatial correlations and 
the form of the emerging structures are 
determined by the wavevectors supported 
by the optical-resonator geometry. With 
the help of extra con"nement potentials for 
the particles that are introduced by light 
sheets, the dimensions of the emerging 
patterns can be externally controlled. Models 
with several interacting layered planes can 
be implemented.

As an extra bonus, the set-up includes a 
built-in non-destructive monitoring system 
by virtue of analysis of the scattered light 
"elds. In particular, at near-zero temperature 
the scattered light contains clear signatures 

of the nucleation of new atomic quantum 
phases5. $us, real-time non-destructive 
monitoring of the dynamics of a quantum 
phase transition can be foreseen.

As cavity quantum electrodynamics 
(QED) set-ups with single particles 
coupled to super-mirror resonators pose 
severe experimental challenges, theoretical 
considerations invoking degenerate 
quantum gases were long considered to be 
thought experiments only. However, using 
the recent exciting developments in the 
optical manipulation of ultracold gases, 
several teams have now implemented cavity-
QED systems involving Bose–Einstein 
condensates and super mirrors. Up to 
a million atoms at close to T = 0 can be 
trapped in the "eld of a few photons (or 
even a single one)6,7. $ese experiments 
enter the strong-coupling regime where 
coherent quantum coupling dominates 
dissipation by more than three orders of 
magnitude. Here, the optical potentials 
and thus the light forces have genuine 
quantum properties so that the light and the 
particles become dynamically entangled. 
As a consequence, the dynamics can lead to 
superpositions of light-"eld states associated 
with di!erent atomic quantum phases as 
an exotic form of a Schrödinger-cat state. 
$e strong coherent coupling of atoms and 
photons can also be used as a controllable 
prototype interface of photonic- and atom-
based quantum computing.

Whereas ultracold atoms interact directly 
only at close distances, the modi"cation of 
the light "eld induced by a single particle 
in#uences the optical potential for virtually 
all other particles in the system8. $is long-
range interaction can be tailored through the 
mirror geometry, and acts in a similar way to 
acoustic phonons in solid crystals. $is adds 
an extra dimension to optical-lattice physics 
with ultracold quantum gases, which is 
already one of the most fruitful areas at the 
boundary of atomic and solid-state physics9, 
including the physics of phonons, polarons 
or momentum-space pairing of particles.

$e tremendous recent progress 
has now surpassed the limits in readily 
available theoretical models. In complex 

QUANTUM OPTICS

Crystals of atoms and light
Cold atoms and photons confined together in high-quality optical resonators self-organize into complicated 
crystalline structures that have an optical-wavelength scale. Complex solid-state phenomena can be studied in real 
time on directly observable scales.

Helmut Ritsch

Bragg planes

Pump laserPump laser

Figure 1 | Simulated stationary distribution of 
1,000 high-field-seeking atoms in an optical 
resonator transversely illuminated by laser light. 
The atoms self-order in a crystalline structure with 
Bragg planes (dashed diagonal lines as a guide to 
the eye) maximizing the coherent scattering into 
the resonator mode as predicted and observed in 
refs 1 and 2.
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For short Toff , the relative phase is predominantly
!! ! 0. As Toff increases, relative phases of !! ! "
appear, and the difference f0 " f" decays with a time
constant # ! #11$ 3% $s. Optical-path-length drifts in
the interferometer then cause a slow decay in f0 and f",
and an increase in f"=2 to the 10% random-phase level.

Having confirmed a mechanism for the emission, we
investigate the forces on falling atoms interacting with
the pump light after the MOT is extinguished. The col-
lective emission into the cavity leads to strong damping of
the c.m. motion of the atoms, an effect qualitatively
similar to that predicted by Gangl et al. for atoms in a
multimode ring cavity [11]. The TOF measurements in-
dicate that, following emission, a large fraction of the
atoms is substantially decelerated (inset of Fig. 4). For
atoms with an initial velocity v0 ! 15 cm=s at the time of
illumination, decelerations of about 300 m=s2 are ob-
served, with typically a third of the atoms being slowed.
The TOF trace shown indicates a final velocity of 4 cm=s,
while those with the largest delays indicate that the cloud
is stopped before the emission ends.

For driven atoms falling at velocity v > 0, the mea-
sured intracavity power is modulated at a frequency given
initially by twice the atomic Doppler effect 2!d ! 2kv
(Fig. 4). This modulation can be explained as the beat note
between fields emitted upward and downward, which are
Doppler shifted by &!d. Alternatively, it can be ex-
plained by the spatial variation with period %=2 of the
atom-cavity coupling, whereby falling atoms cannot emit
at a node of the intracavity standing wave. The changing
modulation frequency then indicates the atomic accelera-
tion, as displayed in Fig. 4. These measured accelerations
are consistent with the TOF measurements. The peak
accelerations, up to "1000 m=s2, occur shortly after the
onset of the collective emission. Heating of the delayed
atoms is consistent with recoil heating at the photon
scattering rate into the cavity. While most of our data
are taken in the range "1:77 ' &a=2" ' "1:57 GHz,

we observe damping for pump-atom detunings up to
&a=2" ( "5:7 GHz, limited only by the pump intensity
needed to reach threshold. For blue pump-atom detunings
up to &a=2" ( 2:5 GHz there is collective emission but
no c.m. damping.

Since the pump-atom detuning &a is much larger than
the atoms’ excited-state hyperfine splitting [Fig. 1(a)], the
transition Fg ! 4 ! Fe can be treated as an open, two-
level system with decay to the Fg ! 3 ground state. If the
repumper counteracting the decay is turned off during the
application of the pump beam, the ensuing TOF traces are
similar to that displayed in the inset of Fig. 4, with a
similar fraction of 40% of the sample being slowed. For
an initial c.m. velocity of v0 ! 15 cm=s the Bragg scat-
tering lasts up to 200 $s, slowing the sample to a final
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FIG. 4. The emitted power (thin line) during the illumination
of a falling atomic cloud. The beat frequency is used to
calculate the deceleration (thick line). The inset shows the
time-of-flight signal, in arbitrary units, of atomic clouds with-
out (gray line) and with (black line) a 400 $s exposure to the
pump beam. Here the pump I=Is ! 420, &a=2" !
"1:580 GHz, and !c=2" ! "10 MHz. The atom number is
N ! 2:6) 107.
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FIG. 2. Simultaneous time traces of the intracavity
intensity (a) (arbitrary units) and field phase (b). The param-
eters are N ! 8:2) 106, &a=2" ! "1:59 GHz, !c=2" !
"20 MHz, and I=Is ! 440.
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FIG. 3. The fraction of pulse pairs with relative phase shift
!! is plotted versus pulse separation time. The solid circles,
open circles, and solid squares correspond to !! ! 0$ "=10,
"$ "=10, and "=2$ "=10, respectively. The parameters are
the same as for Fig. 2, except here N ! 1:3) 107. The inset
shows the two possible lattice configurations producing relative
phase shift !! ! " in the emitted light.
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Just as matter is used to control the 
propagation of light waves, light can 
be used to manipulate matter waves. 

In typical situations, such as when light 
is guided by lenses or mirrors or when 
particles are trapped by optical tweezers and 
laser cooling, only one of the two e!ects 
is signi"cant.

However, con"ning a cold gas in a 
high-"nesse optical resonator creates an 
unusual situation in which particles and 
photons dynamically in#uence each other’s 
motion by momentum exchange on an 
equal footing. $e particles create a dynamic 
refractive index that di!racts the light waves. 
$ese interfere and form structured optical 
potentials that guide the particles’ motion. In 
the simple generic case of high-"eld-seeking 
atoms in between two plane mirrors, one 
"nds a well-de"ned threshold illumination 
intensity above which the particles order in 
a regular crystalline structure. $ey form 
ordered patterns with Bragg planes, which 
optimally couple the pump laser into the 
resonator1. $is maximizes the resonator 
"eld and thus minimizes the potential 
energy of particles trapped around local "eld 
maxima. $e scaling of this phase-stable 
super-radiant scattering with the square 
of the particle number has been observed 
experimentally, and is a clear signature of 
such self-ordering2.

Sarang Gopalakrishnan and colleagues, 
reporting on page 845 of this issue3, 
generalize the description of these complex 
coupled nonlinear dynamics by considering 
ultracold quantum gases in a multimode 
optical resonator. Here, photons and 
atoms can dynamically occupy a large 
number of modes. Using a functional-
integral formalism adapted from quantum 
"eld theory, Gopalakrishnan et al. are 
able to derive an e!ective atom-only 
action from which they uncover a wealth 
of new phenomena in this generalized 
con"guration. One important result is that 
the phase transition to a crystal arrangement 
is "rst order and persists down to zero 
temperature. $is represents a genuine 
quantum phase transition that involves 
translational-symmetry breaking. It is 

analogous to Brazovskii’s transition — where 
a uniform spatial distribution abruptly 
transforms into a stripe pattern4. $is phase 
transition at zero temperature is solely driven 
by quantum #uctuations of the particle 
"elds, which are dynamically ampli"ed and 
develop into macroscopic spatial-density 
variations. ($is resembles the way that 
large-scale structures are supposed to have 
appeared from quantum noise in the early 
Universe.) $e spatial correlations and 
the form of the emerging structures are 
determined by the wavevectors supported 
by the optical-resonator geometry. With 
the help of extra con"nement potentials for 
the particles that are introduced by light 
sheets, the dimensions of the emerging 
patterns can be externally controlled. Models 
with several interacting layered planes can 
be implemented.

As an extra bonus, the set-up includes a 
built-in non-destructive monitoring system 
by virtue of analysis of the scattered light 
"elds. In particular, at near-zero temperature 
the scattered light contains clear signatures 

of the nucleation of new atomic quantum 
phases5. $us, real-time non-destructive 
monitoring of the dynamics of a quantum 
phase transition can be foreseen.

As cavity quantum electrodynamics 
(QED) set-ups with single particles 
coupled to super-mirror resonators pose 
severe experimental challenges, theoretical 
considerations invoking degenerate 
quantum gases were long considered to be 
thought experiments only. However, using 
the recent exciting developments in the 
optical manipulation of ultracold gases, 
several teams have now implemented cavity-
QED systems involving Bose–Einstein 
condensates and super mirrors. Up to 
a million atoms at close to T = 0 can be 
trapped in the "eld of a few photons (or 
even a single one)6,7. $ese experiments 
enter the strong-coupling regime where 
coherent quantum coupling dominates 
dissipation by more than three orders of 
magnitude. Here, the optical potentials 
and thus the light forces have genuine 
quantum properties so that the light and the 
particles become dynamically entangled. 
As a consequence, the dynamics can lead to 
superpositions of light-"eld states associated 
with di!erent atomic quantum phases as 
an exotic form of a Schrödinger-cat state. 
$e strong coherent coupling of atoms and 
photons can also be used as a controllable 
prototype interface of photonic- and atom-
based quantum computing.

Whereas ultracold atoms interact directly 
only at close distances, the modi"cation of 
the light "eld induced by a single particle 
in#uences the optical potential for virtually 
all other particles in the system8. $is long-
range interaction can be tailored through the 
mirror geometry, and acts in a similar way to 
acoustic phonons in solid crystals. $is adds 
an extra dimension to optical-lattice physics 
with ultracold quantum gases, which is 
already one of the most fruitful areas at the 
boundary of atomic and solid-state physics9, 
including the physics of phonons, polarons 
or momentum-space pairing of particles.

$e tremendous recent progress 
has now surpassed the limits in readily 
available theoretical models. In complex 
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Crystals of atoms and light
Cold atoms and photons confined together in high-quality optical resonators self-organize into complicated 
crystalline structures that have an optical-wavelength scale. Complex solid-state phenomena can be studied in real 
time on directly observable scales.
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Figure 1 | Simulated stationary distribution of 
1,000 high-field-seeking atoms in an optical 
resonator transversely illuminated by laser light. 
The atoms self-order in a crystalline structure with 
Bragg planes (dashed diagonal lines as a guide to 
the eye) maximizing the coherent scattering into 
the resonator mode as predicted and observed in 
refs 1 and 2.
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For short Toff , the relative phase is predominantly
!! ! 0. As Toff increases, relative phases of !! ! "
appear, and the difference f0 " f" decays with a time
constant # ! #11$ 3% $s. Optical-path-length drifts in
the interferometer then cause a slow decay in f0 and f",
and an increase in f"=2 to the 10% random-phase level.

Having confirmed a mechanism for the emission, we
investigate the forces on falling atoms interacting with
the pump light after the MOT is extinguished. The col-
lective emission into the cavity leads to strong damping of
the c.m. motion of the atoms, an effect qualitatively
similar to that predicted by Gangl et al. for atoms in a
multimode ring cavity [11]. The TOF measurements in-
dicate that, following emission, a large fraction of the
atoms is substantially decelerated (inset of Fig. 4). For
atoms with an initial velocity v0 ! 15 cm=s at the time of
illumination, decelerations of about 300 m=s2 are ob-
served, with typically a third of the atoms being slowed.
The TOF trace shown indicates a final velocity of 4 cm=s,
while those with the largest delays indicate that the cloud
is stopped before the emission ends.

For driven atoms falling at velocity v > 0, the mea-
sured intracavity power is modulated at a frequency given
initially by twice the atomic Doppler effect 2!d ! 2kv
(Fig. 4). This modulation can be explained as the beat note
between fields emitted upward and downward, which are
Doppler shifted by &!d. Alternatively, it can be ex-
plained by the spatial variation with period %=2 of the
atom-cavity coupling, whereby falling atoms cannot emit
at a node of the intracavity standing wave. The changing
modulation frequency then indicates the atomic accelera-
tion, as displayed in Fig. 4. These measured accelerations
are consistent with the TOF measurements. The peak
accelerations, up to "1000 m=s2, occur shortly after the
onset of the collective emission. Heating of the delayed
atoms is consistent with recoil heating at the photon
scattering rate into the cavity. While most of our data
are taken in the range "1:77 ' &a=2" ' "1:57 GHz,

we observe damping for pump-atom detunings up to
&a=2" ( "5:7 GHz, limited only by the pump intensity
needed to reach threshold. For blue pump-atom detunings
up to &a=2" ( 2:5 GHz there is collective emission but
no c.m. damping.

Since the pump-atom detuning &a is much larger than
the atoms’ excited-state hyperfine splitting [Fig. 1(a)], the
transition Fg ! 4 ! Fe can be treated as an open, two-
level system with decay to the Fg ! 3 ground state. If the
repumper counteracting the decay is turned off during the
application of the pump beam, the ensuing TOF traces are
similar to that displayed in the inset of Fig. 4, with a
similar fraction of 40% of the sample being slowed. For
an initial c.m. velocity of v0 ! 15 cm=s the Bragg scat-
tering lasts up to 200 $s, slowing the sample to a final
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FIG. 4. The emitted power (thin line) during the illumination
of a falling atomic cloud. The beat frequency is used to
calculate the deceleration (thick line). The inset shows the
time-of-flight signal, in arbitrary units, of atomic clouds with-
out (gray line) and with (black line) a 400 $s exposure to the
pump beam. Here the pump I=Is ! 420, &a=2" !
"1:580 GHz, and !c=2" ! "10 MHz. The atom number is
N ! 2:6) 107.
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FIG. 2. Simultaneous time traces of the intracavity
intensity (a) (arbitrary units) and field phase (b). The param-
eters are N ! 8:2) 106, &a=2" ! "1:59 GHz, !c=2" !
"20 MHz, and I=Is ! 440.
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FIG. 3. The fraction of pulse pairs with relative phase shift
!! is plotted versus pulse separation time. The solid circles,
open circles, and solid squares correspond to !! ! 0$ "=10,
"$ "=10, and "=2$ "=10, respectively. The parameters are
the same as for Fig. 2, except here N ! 1:3) 107. The inset
shows the two possible lattice configurations producing relative
phase shift !! ! " in the emitted light.
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Tunable multimode Cavity QED

1 Tunable Cavity QED with many atoms

2 Tunable multimode Cavity QED
With momentum states
With spin states
Other multimode setups

3 Tunable Cavity QED: Experimental progress
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Multimode cavity QED

Ω

Ω

Hyperfine states:
Full model:

Heff =
∑
µ

(ωµ − ωP)︸ ︷︷ ︸
−∆µ

a†µaµ +
∑

N

ω0

2
σz

n +
Ωg0

∆︸︷︷︸
geff

∑
µ

Ξµ(rn)σx
n(a + a†)

[Gopalakrishnan, Lev, Goldbart. Nat. Phys ’09, PRA ’10]

Can reach |∆0| � δ∆µ < geff
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Multimode cavities

Confocal cavity:

Modes Ξµ(r) = Hµx (x)Hµy (y), µx + µy fixed
parity

Extra distinction:
degenerate vs non-degenerate
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Degenerate: Short range interactions
Eliminate photons

Heff =
∑
n,m

Jn,m

{
σx

nσ
x
m Ising

σ+
n σ
−
m XY

, Jnm =
∑
µ

Ω2g0
2Ξµ(rn)Ξµ(rm)

∆2∆µ

If degenerate,

Jnm ∝
M∑
µ

Ξµ(rn)Ξµ(rm)

In general, complete set of modes, Jnm → δ(rn − rm)
Gauss-Hermite: Christoffel-Darboux summation formula:

Jnm ∼ sinc
(√

1 + 2M|xn − xm|
)

sinc
(√

1 + 2M|yn − ym|
)

Short range interactions

M = 20 M = 80
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Degenerate multimode: Liquid crystal physics
Spatial states of atoms ψ(r) = ψ⇓(r) + ψ⇑(r) cos(kx) cos(kz)
Coupled dynamics of α(r) =

∑
µ〈âµ〉Ξµ(r), and ψ0,1(r)

I Non-mean-field

I Allow sharp structures – defects

TEM 03

TEM
02

TEM 00

TEM
06

Degenerate limit, transverse pump:
i∂t Ψk =

[
∆ + λ(|k| − q)2

]
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Tunable multimode Cavity QED

1 Tunable Cavity QED with many atoms

2 Tunable multimode Cavity QED
With momentum states
With spin states
Other multimode setups

3 Tunable Cavity QED: Experimental progress
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Disordered atoms
Multimode cavity, Hyperfine states,

Heff = −
∑
µ

∆µa†µaµ +
∑

n

ω0

2
σz

n +
Ωg0

∆

∑
µ

Ξµ(rn)σx
n(aµ + a†µ)

Random atom positions – queched disorder

Effective XY/Ising spin glass

Heff =
∑
n,m

Jn,m

{
σx

nσ
x
m Ising

σ+
n σ
−
m XY

, Jnm =
∑
µ

Ω2g0
2Ξµ(rn)Ξµ(rm)

∆2∆µ

[Gopalakrishnan, Lev and Goldbart. PRL ’11, Phil. Mag. ’12]
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Tunable spin glass

Heff =
∑
n,m

Jn,mσ
x
nσ

x
m Jnm =

∑
µ

Ω2g0
2Ξµ(rn)Ξµ(rm)

∆2∆µ

Tunable complexity
Explore RSB/Droplet order
Open system spin-glass.
[Strack & Sachdev PRL ’11]
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With momentum states
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Coupled cavity arrays
Control photon dispersion — lattice

[Hartmann et al. Nat. Phys. ’06; Greentree et al. ibid 06; Angelakis et al. PRA ’07]

X-Hubbard Model, Ĥ =
∑

i

ĤX ,site − J
∑
〈ij〉

â†i âj

[X=Bose, Jaynes-Cummings, Rabi, . . . ]

[Underwood et al. PRA ’12; Nat. Phys ’12]
[Lepert et al. NJP ’11; APL ’13]
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â†i âj
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CCA e.g. Raman pumping→ Rabi-Hubbard model

H =
∑

i

ωψ†i ψi +
ω0

2
σz

i − Jψ†i ψi+1

+
[
ψ†i (gσ−i + g′σ+

i ) + H.c.
]

Incommensurate ordering
Level inversion — FM/AFM switch

[Schiró et al. arXiv:1503.04456]
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Adjustable length multimode cavity
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Adjustable length multimode cavity

[Kollár, Papgeorge, Baumann, Armen & Lev, NJP ’15]
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Superradiance in multimode cavity

Pump (red of) 0,0 mode:

Cavity Light:

Atom TOF
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Supermode-polaritons
Supermode-polariton:

I Hybrid cavity photon and atomic
density wave

I Composition varies with ∆ (unlike
static atoms)

Odd parity modes, (10,01)

Atomic structure factor

Even mode (20,11,02) family

Strong mode mixing — g � bandwidthJonathan Keeling Tunable multimode cQED Chichley, March 2016 25
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Summary

Many possibilities of multimode cavity QED
Spin glass (XY/Ising) and soft-matter physics with spatial DoF

Ω

2 level system

ω
0

∆

Cavity

TEM 03

TEM
02

TEM 00

TEM
06

[Gopalakrishnan, Lev and Goldbart. PRL ’11, Phil. Mag. ’12,Gopalakrishnan, Lev, Goldbart. Nat. Phys
’09, PRA ’10]

CCA — non-equilibrium lattice models
Schiro et al. arXiv:1503.04456

Working multimode cavity

[Kollár, et al. NJP ’15; Kollár et al. in preparation]
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