Tunable ultra-strong coupling in multimode cavity QED systems

Jonathan Keeling

Chichley Hall, March 2016

Jonathan Keeling

A BARRY COMPANY

Tunable multimode cQED

Chichley, March 2016 1

Acknowledgments

Experiment (Stanford): Benjamin Lev

Theory:

Ben Simons (Cambridge), Joe Bhaseen (KCL), James Mayoh (Southampton)

Sarang Gopalakrishnan (Caltech) Surya Ganguli, Jordan Cotler (Stanford) Laura Staffini, Kyle Ballantine (St Andrews)

Engineering and Dhysical Sciences Chichley, March 2016 2

Tunable multimode cQED

Tunable Cavity QED with many atoms

2 Tunable multimode Cavity QED

- With momentum states
- With spin states
- Other multimode setups

3 Tunable Cavity QED: Experimental progress

-

$$H = \sum_{k} \omega_{k} a_{k}^{\dagger} a_{k} + \sum_{n} \omega_{0} \sigma_{n}^{+} \sigma_{n}^{-} + \sum_{n,k} g_{k,n} (a_{k}^{\dagger} + a_{-k}) (\sigma_{n}^{+} + \sigma_{n}^{-})$$
$$\dot{\rho} = -i[H, \rho] + \kappa \sum_{k} \mathcal{L}[a_{k}, \rho] + \gamma \sum_{k} \mathcal{L}[\sigma_{n}^{-}, \rho]$$

- Purcell effect, superfluorescence
- Rabi oscillations, Polaritons,
- Phase transitions (superradiance, lasing)
- P

Problems:

- Oscillator-strength sum rules
- Fabrication constraints
- Tuning parameters?
 - Chemical potential (pumping)
 - Cavity size/concentration occur concentration

$$H = \sum_{k} \omega_{k} a_{k}^{\dagger} a_{k} + \sum_{n} \omega_{0} \sigma_{n}^{+} \sigma_{n}^{-} + \sum_{n,k} g_{k,n} (a_{k}^{\dagger} + a_{-k}) (\sigma_{n}^{+} + \sigma_{n}^{-})$$

$$\dot{\rho} = -i[H, \rho] + \kappa \sum_{k} \mathcal{L}[a_{k}, \rho] + \gamma \sum_{k} \mathcal{L}[\sigma_{n}^{-}, \rho]$$

• Compare g (or $g\sqrt{N}$) vs:

$$\overset{\kappa, \gamma}{\models} \text{bandwidth}$$

$$\vdots \omega_{k}, \omega_{0}$$

- Physics:
 - Purcell effect, superfluorescence
 - Rabi oscillations, Polaritons,
 - Phase transitions (superradiance, lasing)
 - P

Problems:

- Oscillator-strength sum rules
- Fabrication constraints
- Tuning parameters?
 - Chemical potential (pumping)

• Physics:

 $\blacktriangleright \kappa, \gamma$

- Purcell effect, superfluorescence
- Rabi oscillations, Polaritons,
- Phase transitions (superradiance, lasing)

• . . .

$$H = \sum_{k} \omega_{k} a_{k}^{\dagger} a_{k} + \sum_{n} \omega_{0} \sigma_{n}^{+} \sigma_{n}^{-} + \sum_{n,k} g_{k,n} (a_{k}^{\dagger} + a_{-k}) (\sigma_{n}^{+} + \sigma_{n}^{-})$$

$$\dot{\rho} = -i[H,\rho] + \kappa \sum_{k} \mathcal{L}[a_{k},\rho] + \gamma \sum_{k} \mathcal{L}[\sigma_{n}^{-},\rho]$$

• Compare g (or $g\sqrt{N}$) vs:
• κ, γ
• bandwidth
• ω_{k}, ω_{0}
• Physics:
• Purcell effect, superfluorescence
• Rabi oscillations, Polaritons,
• Phase transitions (superradiance,

- -abrication constraints
- Tuning parameters?
 - ★ Chemical potential (pumping)
 - ★ Cavity size/concentration
 - Stark/Zooman/strain_shifts

 $\blacktriangleright \kappa, \gamma$

Rabi

lasing)

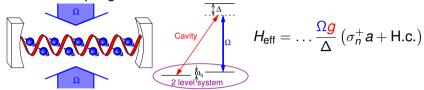
• Physics:

. . .

-

Synthetic cavity QED: Raman driving

• Tunable coupling via Raman



Neal systems: loss $\partial_t
ho = -i[H,
ho] + \kappa \mathcal{L}[a,
ho] + \dots$

To balance loss, counter-rotating:

$$H_{ ext{eff}} = \dots rac{\Omega g}{\Delta} \sigma^{\chi}_n(a+a^\dagger) \, ,$$

[Dimer et al. PRA '07]

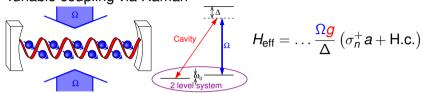
Jonathan Keeling

Tunable multimode cQED

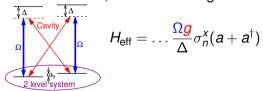
Chichley, March 2016 5

Synthetic cavity QED: Raman driving

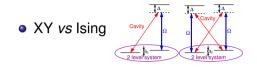
• Tunable coupling via Raman



- Real systems: loss $\partial_t \rho = -i[H, \rho] + \kappa \mathcal{L}[a, \rho] + \dots$
- To balance loss, counter-rotating:



[Dimer et al. PRA '07]



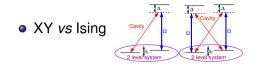
Momentum state vs hyperfine state

Single mode vs multimode

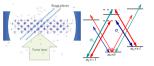
Thermal gas vs BEC vs disorder localised

Jonathan Keeling

◆□ ▶ ▲□ ▶ ▲目 ▶ ▲□ ▶ ▲□ ▶



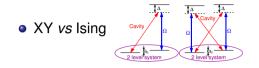
• Momentum state vs hyperfine state



Single mode vs multimode

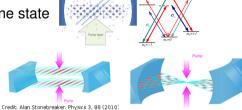
Thermal gas vs BEC vs disorder localised

《日》《四》《王》《王》《曰》

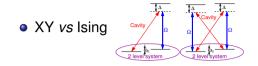


• Momentum state vs hyperfine state

• Single mode vs multimode

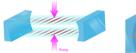


Thermal gas vs BEC vs disorder localised



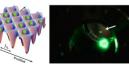
• Momentum state vs hyperfine state

• Single mode vs multimode



Credit: Alan Stonebreaker, Physics 3, 88 (2010)

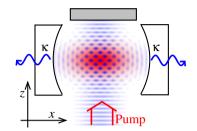
• Thermal gas vs BEC vs disorder localised



Tunable multimode cQED

Single mode theory

- Momentum degrees of freedom: $\psi(\mathbf{r}) = \psi_{\Downarrow}(\mathbf{r}) + \psi_{\uparrow}(\mathbf{r}) \cos(kx) \cos(kz)$
- Effective 2LS ($\psi_{\downarrow}, \psi_{\uparrow}$)



$$H_{\text{eff}} = \underbrace{(\omega_c - \omega_P)}_{-\Delta_c} a^{\dagger} a + \sum_n \frac{\omega_0}{2} \sigma_n^z + \underbrace{\frac{\Omega g_0}{\Delta}}_{g_{\text{eff}}} \sigma_n^x (a + a^{\dagger})$$

Extra "feedback" term
 Single mode – mean-field EOM, $\alpha = \langle \psi \rangle$, $S' = \sum_n \sigma_n^l / 2$.

 $S^- = -i(\omega_0 + U|lpha|^2)S^- + 2ig_{\mathsf{eff}}(lpha + lpha^*)S^2$

Tunable multimode cQED

Single mode theory

- Momentum degrees of freedom: $\psi(\mathbf{r}) = \psi_{\Downarrow}(\mathbf{r}) + \psi_{\uparrow}(\mathbf{r}) \cos(kx) \cos(kz)$
- Effective 2LS ($\psi_{\downarrow}, \psi_{\uparrow}$)

$$H_{\text{eff}} = \underbrace{(\omega_c - \omega_P)}_{-\Delta_c} a^{\dagger} a + \sum_n \frac{\omega_0}{2} \sigma_n^z + \underbrace{\frac{\Omega g_0}{\Delta}}_{g_{\text{eff}}} \sigma_n^x (a + a^{\dagger}) \underbrace{-\frac{g_0^2}{4\Delta}}_{U} \sigma_n^z a^{\dagger} a$$

- Extra "feedback" term
- Single mode mean-field EOM, $lpha=\langle\psi
 angle, S^{l}=\sum_{n}\sigma_{n}^{l}/2.$

 $S^{+}=-i(\omega_{0}\!+\!U|lpha|^{2})S^{-}+2ig_{ ext{eff}}(lpha+lpha^{*})S^{2}$

• • • • • • • •

Single mode theory

- Momentum degrees of freedom:
 ψ(r) = ψ_↓(r) + ψ_↑(r) cos(kx) cos(kz)
- Effective 2LS ($\psi_{\Downarrow}, \psi_{\uparrow}$)

$$H_{\text{eff}} = \underbrace{(\omega_c - \omega_P)}_{-\Delta_c} a^{\dagger} a + \sum_n \frac{\omega_0}{2} \sigma_n^z + \underbrace{\frac{\Omega g_0}{\Delta}}_{g_{\text{eff}}} \sigma_n^x (a + a^{\dagger}) \underbrace{-\frac{g_0^2}{4\Delta}}_{U} \sigma_n^z a^{\dagger} a$$

- Extra "feedback" term
- Single mode mean-field EOM, $\alpha = \langle \psi \rangle$, $S^i = \sum_n \sigma_n^i / 2$.

$$\dot{S}^- = -i(\omega_0 + U|lpha|^2)S^- + 2ig_{eff}(lpha + lpha^*)S^z$$

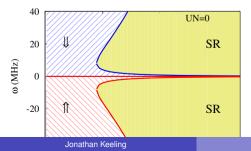
 $\dot{S}^z = ig_{eff}(lpha + lpha^*)(S^- - S^+)$

Jonathan Keeling

Tunable multimode cQED

Classical dynamics

Changing U: U = 0



Tunable multimode cQED

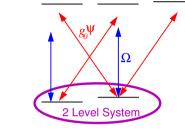
▲□▶▲□▶▲□▶▲□▶ 三日 のへで

Classical dynamics

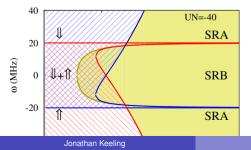
Changing *U*:

U = 0

U > 0

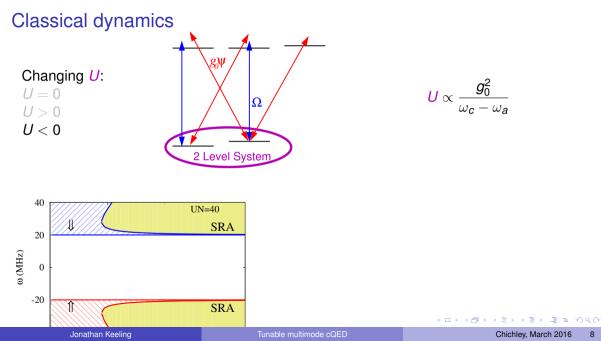


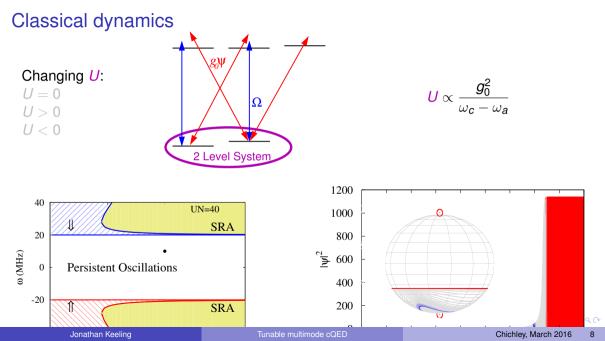
 $m{U} \propto rac{g_0^2}{\omega_c - \omega_a}$

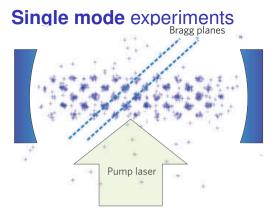


Tunable multimode cQED

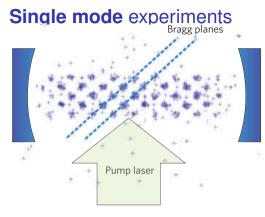
▲□▶▲□▶▲□▶▲□▶ 三日 のへで



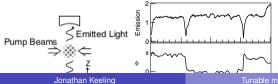




Ritsch et al. PRL '02

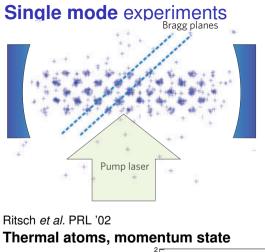


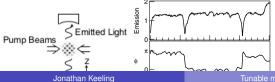
Ritsch et al. PRL '02 Thermal atoms, momentum state



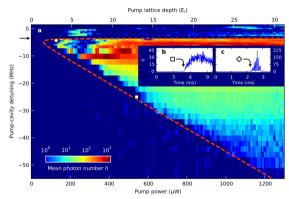
-

A D b A A b A



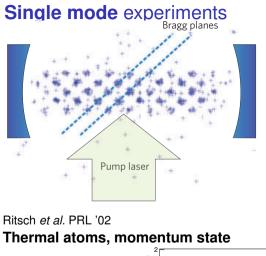


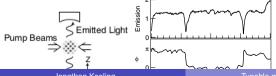
BEC, momentum state



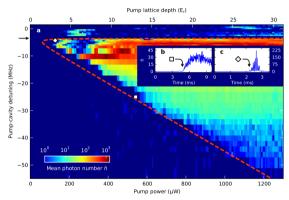
Baumann *et al.* Nature '10 (ETH) Kinder *et al.* PRL '15 (Hamburg)

315





BEC, momentum state



Baumann et al. Nature '10 (ETH) Kinder et al. PRL '15 (Hamburg) BEC, hyperfine states

Jonathan Keeling

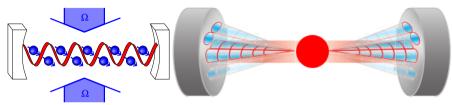
Tunable multimode Cavity QED

Tunable Cavity QED with many atoms

Tunable multimode Cavity QED

- With momentum states
- With spin states
- Other multimode setups

3 Tunable Cavity QED: Experimental progress



Hyperfine states:

• Full model:

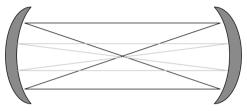
$$H_{\text{eff}} = \sum_{\mu} \underbrace{(\omega_{\mu} - \omega_{P})}_{-\Delta_{\mu}} a^{\dagger}_{\mu} a_{\mu} + \sum_{N} \frac{\omega_{0}}{2} \sigma^{z}_{n} + \underbrace{\frac{\Omega g_{0}}{\Delta}}_{g_{\text{eff}}} \sum_{\mu} \Xi_{\mu}(\mathbf{r}_{n}) \sigma^{x}_{n}(a + a^{\dagger})$$

[Gopalakrishnan, Lev, Goldbart. Nat. Phys '09, PRA '10]

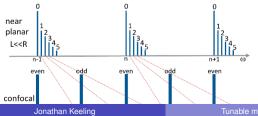
• Can reach $|\Delta_0| \ll \delta \Delta_\mu < g_{\text{eff}}$

Multimode cavities

Confocal cavity:



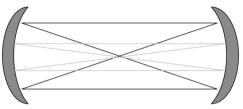
Modes Ξ_μ(**r**) = H_{μx}(x)H_{μy}(y), μ_x + μ_y fixed parity



315

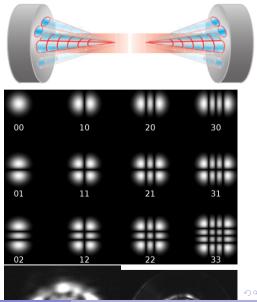
Multimode cavities

Confocal cavity:



Modes Ξ_μ(**r**) = H_{μx}(x)H_{μy}(y), μ_x + μ_y fixed parity





Degenerate: Short range interactions

Eliminate photons

$$H_{\text{eff}} = \sum_{n,m} J_{n,m} \begin{cases} \sigma_n^x \sigma_m^x & \text{lsing} \\ \sigma_n^+ \sigma_m^- & XY \end{cases}, \quad J_{nm} = \sum_{\mu} \frac{\Omega^2 g_0^2 \Xi_{\mu}(\mathbf{r}_n) \Xi_{\mu}(\mathbf{r}_m)}{\Delta^2 \Delta_{\mu}} \end{cases}$$

If degenerate

• In general, complete set of modes, $J_{nm} \rightarrow \delta(\mathbf{r}_n - \mathbf{r}_m)$ • Gauss-Hermite: Christoffel-Darboux summation formula:

$$J_{nm}\sim ext{sinc}\left(\sqrt{1+2M}|x_n-x_m|
ight) ext{sinc}\left(\sqrt{1+2M}|y_n-y_m|
ight)$$

Short range interactions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Degenerate: Short range interactions

• Eliminate photons

$$H_{\text{eff}} = \sum_{n,m} J_{n,m} \begin{cases} \sigma_n^x \sigma_m^x & \textit{Ising} \\ \sigma_n^+ \sigma_m^- & XY \end{cases}, \quad J_{nm} = \sum_{\mu} \frac{\Omega^2 g_0^2 \Xi_{\mu}(\mathbf{r}_n) \Xi_{\mu}(\mathbf{r}_m)}{\Delta^2 \Delta_{\mu}} \end{cases}$$

• If degenerate,

$$J_{nm} \propto \sum_{\mu}^{M} \Xi_{\mu}(\mathbf{r}_n) \Xi_{\mu}(\mathbf{r}_m)$$

- In general, complete set of modes, $J_{nm} \rightarrow \delta(\mathbf{r}_n \mathbf{r}_m)$
- Gauss-Hermite: Christoffel-Darboux summation formula:

$$J_{nm} \sim \operatorname{sinc}\left(\sqrt{1+2M}|x_n-x_m|\right)\operatorname{sinc}\left(\sqrt{1+2M}|y_n-y_m|\right)$$

Short range interactions

Degenerate: Short range interactions

• Eliminate photons

$$H_{\text{eff}} = \sum_{n,m} J_{n,m} \begin{cases} \sigma_n^x \sigma_m^x & \text{lsing} \\ \sigma_n^+ \sigma_m^- & XY \end{cases}, \quad J_{nm} = \sum_{\mu} \frac{\Omega^2 g_0^2 \Xi_{\mu}(\mathbf{r}_n) \Xi_{\mu}(\mathbf{r}_m)}{\Delta^2 \Delta_{\mu}} \end{cases}$$

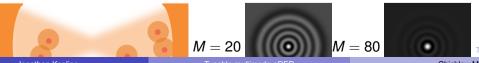
• If degenerate,

$$J_{nm} \propto \sum_{\mu}^{M} \Xi_{\mu}(\mathbf{r}_n) \Xi_{\mu}(\mathbf{r}_m)$$

- In general, complete set of modes, $J_{nm} \rightarrow \delta(\mathbf{r}_n \mathbf{r}_m)$
- Gauss-Hermite: Christoffel-Darboux summation formula:

$$J_{nm} \sim \operatorname{sinc}\left(\sqrt{1+2M}|x_n-x_m|\right)\operatorname{sinc}\left(\sqrt{1+2M}|y_n-y_m|\right)$$

Short range interactions

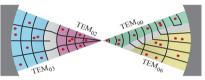


Jonathan Keeling

Tunable multimode cQED

Degenerate multimode: Liquid crystal physics

- Spatial states of atoms $\psi(\mathbf{r}) = \psi_{\Downarrow}(\mathbf{r}) + \psi_{\Uparrow}(\mathbf{r}) \cos(kx) \cos(kz)$
- Coupled dynamics of $\alpha(\mathbf{r}) = \sum_{\mu} \langle \hat{a}_{\mu} \rangle \Xi_{\mu}(\mathbf{r})$, and $\psi_{0,1}(\mathbf{r})$
- Non-mean-field
- Allow sharp structures defects

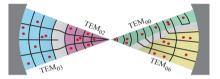


• Degenerate limit, transverse pump: $i\partial_l \Psi_{\mathbf{k}} = \left[\Delta + \lambda (|\mathbf{k}| - q)^2\right] \Psi_{\mathbf{k}} + U_{\text{contact}} \sum_{\mathbf{k}', \mathbf{q}} \Psi_{\mathbf{k}'+\mathbf{q}}^* \Psi_{\mathbf{k}-\mathbf{c}}$

Smectic Brazovskii transition

Degenerate multimode: Liquid crystal physics

- Spatial states of atoms $\psi(\mathbf{r}) = \psi_{\downarrow}(\mathbf{r}) + \psi_{\uparrow}(\mathbf{r}) \cos(kx) \cos(kz)$
- Coupled dynamics of $\alpha(\mathbf{r}) = \sum_{\mu} \langle \hat{a}_{\mu} \rangle \Xi_{\mu}(\mathbf{r})$, and $\psi_{0,1}(\mathbf{r})$
- Non-mean-field
- Allow sharp structures defects



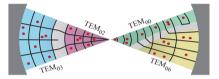
• Degenerate limit, transverse pump:

$$i\partial_t \Psi_{\mathbf{k}} = \left[\Delta + \lambda (|\mathbf{k}| - q)^2
ight] \Psi_{\mathbf{k}} + U_{ ext{contact}} \sum_{\mathbf{k}', \mathbf{q}} \Psi_{\mathbf{k}'+\mathbf{q}}^* \Psi_{\mathbf{k}'} \Psi_{\mathbf{k}-\mathbf{q}}$$

Smectic Brazovskii transition

Degenerate multimode: Liquid crystal physics

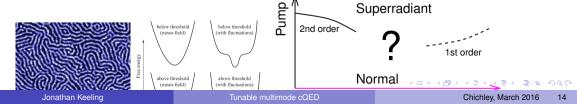
- Spatial states of atoms $\psi(\mathbf{r}) = \psi_{\Downarrow}(\mathbf{r}) + \psi_{\Uparrow}(\mathbf{r}) \cos(kx) \cos(kz)$
- Coupled dynamics of $\alpha(\mathbf{r}) = \sum_{\mu} \langle \hat{a}_{\mu} \rangle \Xi_{\mu}(\mathbf{r})$, and $\psi_{0,1}(\mathbf{r})$
- Non-mean-field
- Allow sharp structures defects



• Degenerate limit, transverse pump:

$$i\partial_t \Psi_{\mathbf{k}} = \left[\Delta + \lambda (|\mathbf{k}| - q)^2
ight] \Psi_{\mathbf{k}} + U_{ ext{contact}} \sum_{\mathbf{k}', \mathbf{q}} \Psi^*_{\mathbf{k}' + \mathbf{q}} \Psi_{\mathbf{k}'} \Psi_{\mathbf{k} - \mathbf{q}}$$

Smectic Brazovskii transition



Tunable multimode Cavity QED

Tunable Cavity QED with many atoms

Tunable multimode Cavity QED With momentum states

• With spin states

Other multimode setups

3 Tunable Cavity QED: Experimental progress

Disordered atoms

• Multimode cavity, Hyperfine states,

$$H_{\rm eff} = -\sum_{\mu} \Delta_{\mu} a_{\mu}^{\dagger} a_{\mu} + \sum_{n} \frac{\omega_{0}}{2} \sigma_{n}^{z} + \frac{\Omega g_{0}}{\Delta} \sum_{\mu} \Xi_{\mu}(\mathbf{r}_{n}) \sigma_{n}^{x}(a_{\mu} + a_{\mu}^{\dagger})$$

Random atom positions – queched disorder

Effective XY/Ising spin glass

Jonathan Keeling

-

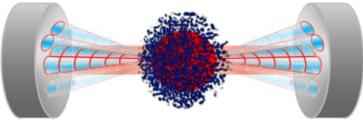
4 31 k - 4 (10 k - 4)

Disordered atoms

• Multimode cavity, Hyperfine states,

$$\mathcal{H}_{\mathsf{eff}} = -\sum_{\mu} \Delta_{\mu} a_{\mu}^{\dagger} a_{\mu} + \sum_{n} rac{\omega_{0}}{2} \sigma_{n}^{z} + rac{\Omega g_{0}}{\Delta} \sum_{\mu} \Xi_{\mu}(\mathbf{r}_{n}) \sigma_{n}^{x}(a_{\mu} + a_{\mu}^{\dagger})$$

• Random atom positions – queched disorder



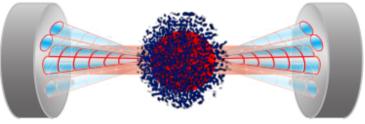
Effective XY/Ising spin glass

Disordered atoms

• Multimode cavity, Hyperfine states,

$$\mathcal{H}_{\mathsf{eff}} = -\sum_{\mu} \Delta_{\mu} a_{\mu}^{\dagger} a_{\mu} + \sum_{n} rac{\omega_{0}}{2} \sigma_{n}^{z} + rac{\Omega g_{0}}{\Delta} \sum_{\mu} \Xi_{\mu}(\mathbf{r}_{n}) \sigma_{n}^{x}(a_{\mu} + a_{\mu}^{\dagger})$$

• Random atom positions – queched disorder



• Effective XY/Ising spin glass

$$H_{\text{eff}} = \sum_{n,m} J_{n,m} \begin{cases} \sigma_n^x \sigma_m^x & \text{lsing} \\ \sigma_n^+ \sigma_m^- & XY \end{cases}, \quad J_{nm} = \sum_{\mu} \frac{\Omega^2 g_0^2 \Xi_{\mu}(\mathbf{r}_n) \Xi_{\mu}(\mathbf{r}_m)}{\Delta^2 \Delta_{\mu^{\text{def}}} \otimes \mathbb{R}^{2} \otimes \mathbb{R}^{2} \otimes \mathbb{R}^{2} \otimes \mathbb{R}^{2}} \end{cases}$$

Jonathan Keeling

Tunable multimode cQED

Tunable spin glass

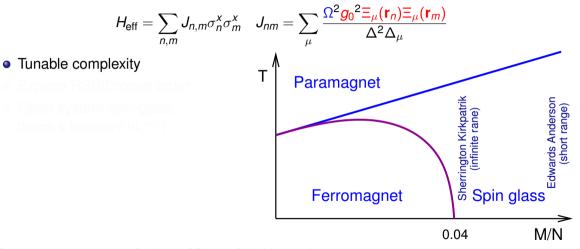
$$H_{\text{eff}} = \sum_{n,m} J_{n,m} \sigma_n^x \sigma_m^x \quad J_{nm} = \sum_{\mu} \frac{\Omega^2 g_0^2 \Xi_{\mu}(\mathbf{r}_n) \Xi_{\mu}(\mathbf{r}_m)}{\Delta^2 \Delta_{\mu}}$$

- Tunable complexity
- Explore RSB/Droplet order
- Open system spin-glass.
 [Strack & Sachdev PRL '11]

[Gopalakrishnan, Lev and Goldbart. PRL '11, Phil. Mag. '12]

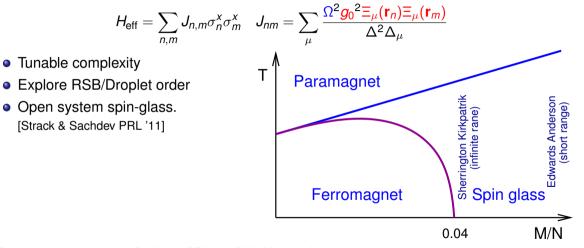
▲□▶▲□▶▲□▶▲□▶ 三回▲ のQ@

Tunable spin glass



[Gopalakrishnan, Lev and Goldbart. PRL '11, Phil. Mag. '12]

Tunable spin glass



[Gopalakrishnan, Lev and Goldbart. PRL '11, Phil. Mag. '12]

Tunable multimode Cavity QED

Tunable Cavity QED with many atoms

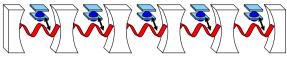
Tunable multimode Cavity QED

- With momentum states
- With spin states
- Other multimode setups

3 Tunable Cavity QED: Experimental progress

Coupled cavity arrays

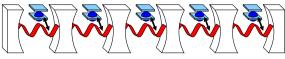
• Control photon dispersion — lattice



[Hartmann et al. Nat. Phys. '06; Greentree et al. ibid 06; Angelakis et al. PRA '07]

Coupled cavity arrays

• Control photon dispersion — lattice

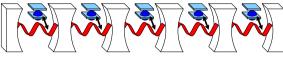


[Hartmann et al. Nat. Phys. '06; Greentree et al. ibid 06; Angelakis et al. PRA '07]

• X-Hubbard Model, $\hat{H} = \sum_{i} \hat{H}_{X,site} - J \sum_{\langle ij \rangle} \hat{a}_{i}^{\dagger} \hat{a}_{j}$ [X=Bose, Jaynes-Cummings, Rabi, ...]

Coupled cavity arrays

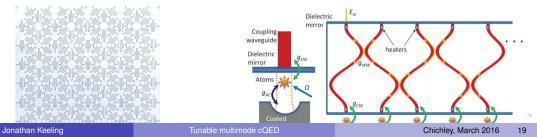
• Control photon dispersion — lattice



[Hartmann et al. Nat. Phys. '06; Greentree et al. ibid 06; Angelakis et al. PRA '07]

• X-Hubbard Model, $\hat{H} = \sum_{i} \hat{H}_{X, \textit{site}} - J \sum_{\langle ij
angle} \hat{a}^{\dagger}_{i} \hat{a}_{j}$

[X=Bose, Jaynes-Cummings, Rabi, ...]



CCA e.g. Raman pumping \rightarrow Rabi-Hubbard model

Incommensurate ordering
 Level inversion — FM/AFM switch

[Schiró et al. arXiv:1503.04456]

$$H = \sum_{i} \omega \psi_{i}^{\dagger} \psi_{i} + \frac{\omega_{0}}{2} \sigma_{i}^{z} - J \psi_{i}^{\dagger} \psi_{i+1} + \left[\psi_{i}^{\dagger} (g\sigma_{i}^{-} + g'\sigma_{i}^{+}) + \text{H.c.} \right]$$

▲□▶▲□▶▲□▶▲□▶ 三日 のへで

CCA e.g. Raman pumping \rightarrow Rabi-Hubbard model



Incommensurate ordering

Level inversion — FM/AFM switch

[Schiró et al. arXiv:1503.04456]

$$H = \sum_{i} \omega \psi_{i}^{\dagger} \psi_{i} + \frac{\omega_{0}}{2} \sigma_{i}^{z} - J \psi_{i}^{\dagger} \psi_{i+1} + \left[\psi_{i}^{\dagger} (g\sigma_{i}^{-} + g'\sigma_{i}^{+}) + \text{H.c.} \right]$$

CCA e.g. Raman pumping \rightarrow Rabi-Hubbard model



- Incommensurate ordering
- Level inversion FM/AFM switch

[Schiró et al. arXiv:1503.04456]

$$\begin{split} H &= \sum_{i} \omega \psi_{i}^{\dagger} \psi_{i} + \frac{\omega_{0}}{2} \sigma_{i}^{z} - J \psi_{i}^{\dagger} \psi_{i+1} \\ &+ \left[\psi_{i}^{\dagger} (g \sigma_{i}^{-} + g' \sigma_{i}^{+}) + \text{H.c.} \right] \end{split}$$

Tunable Cavity QED: Experimental progress

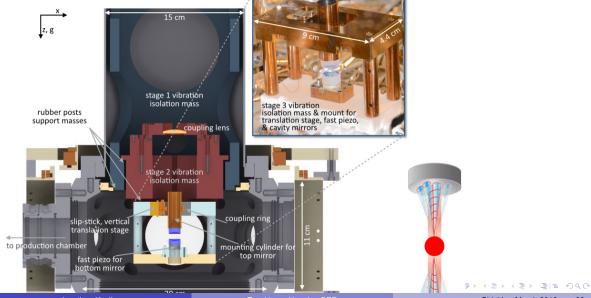
Tunable Cavity QED with many atoms

2) Tunable multimode Cavity QED

- With momentum states
- With spin states
- Other multimode setups

3 Tunable Cavity QED: Experimental progress

Adjustable length multimode cavity

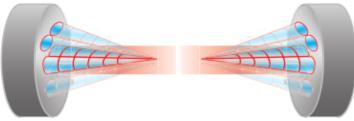


Jonathan Keeling

Tunable multimode cQED

Chichley, March 2016 22

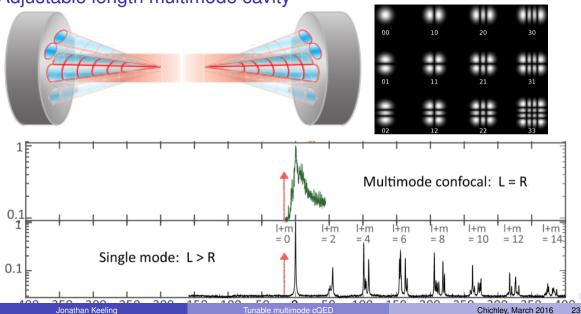
Adjustable length multimode cavity



▲□▶▲□▶▲□▶▲□▶ 三回▲ のQ@

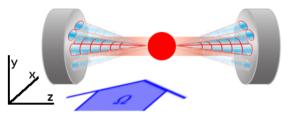
Multimode confocal: L = R0.1 l+m I+m l+m l‡m 1+m l+m l+m l+m = 8 = 10 = 12 = 0= 2 =.4 = 6 = 14 Single mode: L > R 0.1 250 200 250 200 4 5 0 100 E 0 $\overline{}$ **F** O 100 4 5 0 200 250 200 250 Chichley, March 2016 Jonathan Keeling 23

Adjustable length multimode cavity

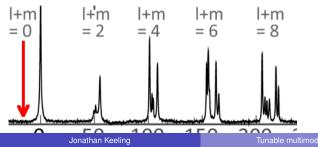


Adjustable length multimode cavity

Superradiance in multimode cavity

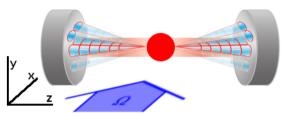


Pump (red of) 0,0 mode:

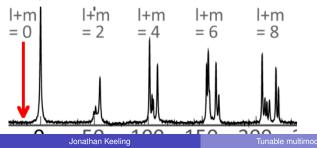


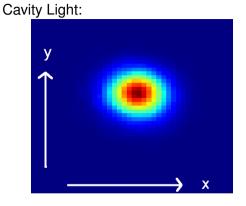
Chichley, March 2016

Superradiance in multimode cavity

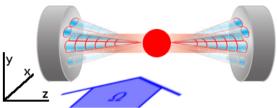


Pump (red of) 0,0 mode:





Superradiance in multimode cavity



l+m

= 4

100

l+m

= 6

1 5 0

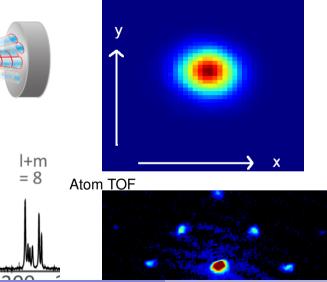
Pump (red of) 0,0 mode: l+m

= 2

Jonathan Keeling

l+m

= 0

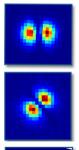


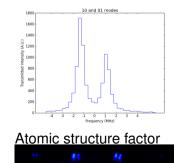
Cavity Light:

- Supermode-polariton:
 - Hybrid cavity photon and atomic density wave
 - Composition varies with ∆ (unlike static atoms)

Odd parity modes, (10,01

- Supermode-polariton:
 - Hybrid cavity photon and atomic density wave
 - Composition varies with ∆ (unlike static atoms)
- Odd parity modes, (10,01)



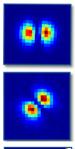


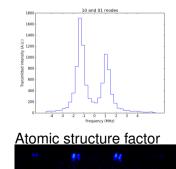
Tunable multimode cQED

315

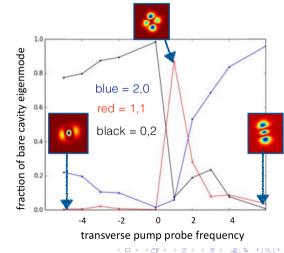
Image: A matrix

- Supermode-polariton:
 - Hybrid cavity photon and atomic density wave
 - Composition varies with ∆ (unlike static atoms)
- Odd parity modes, (10,01)





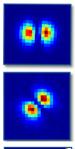
• Even mode (20,11,02) family

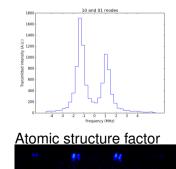


Jonathan Keeling

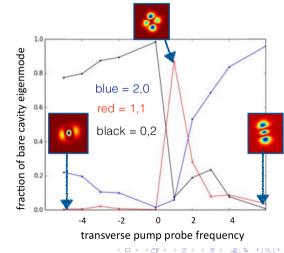
Tunable multimode cQED

- Supermode-polariton:
 - Hybrid cavity photon and atomic density wave
 - Composition varies with ∆ (unlike static atoms)
- Odd parity modes, (10,01)



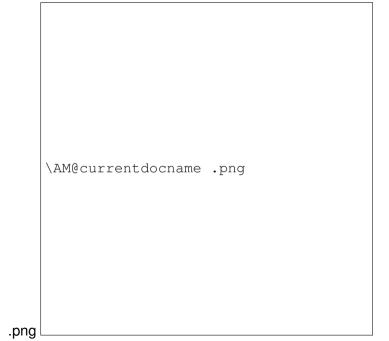


• Even mode (20,11,02) family



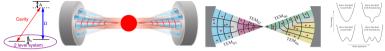
Jonathan Keeling

Tunable multimode cQED



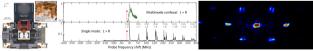
Summary

- Many possibilities of multimode cavity QED
- Spin glass (XY/Ising) and soft-matter physics with spatial DoF



[Gopalakrishnan, Lev and Goldbart. PRL '11, Phil. Mag. '12,Gopalakrishnan, Lev, Goldbart. Nat. Phys '09, PRA '10]

- CCA non-equilibrium lattice models Schiro *et al.* arXiv:1503.04456
- Working multimode cavity



[Kollár, et al. NJP '15; Kollár et al. in preparation]

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ④□ ◇ ◇ ◇

Jonathan Keeling

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ④□ ◇ ◇ ◇