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Motivation: polariton condensates

@ Anthracene Polariton Lasing
T ~ 300K

[Kena Cohen and Forrest, Nat.
Photon ’10]
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Motivation: polariton condensates

@ Anthracene Polariton Lasing Q1. Vibrational replicas?
T ~ 300K Q2. Relevance of disorder?
| oom L 1 = Q3. Lasing vs
M’v o i 7 condensation?

T W [Kena Cohen and Forrest, Nat.
eI 2 Photon ’10]

N

@ Polariton condensates, other
materials, e.g. polymers:

[Plumhoff et al. Nat. Materials '14, Daskalakis
et al. ibid "14]
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Motivation: polariton condensates

@ Anthracene Polariton Lasing Q1. Vibrational replicas?
T ~ 300K Q2. Relevance of disorder?
= Q3. Lasing vs
condensation?

[Kena Cohen and Forrest, Nat.

Y Photon ’10]

. Frenkel to Wannier
crossover?

. Optimal vibrational
properties?
. Nonlinearities?

[Plumhoff et al. Nat. Materials '14, Daskalakis
et al. ibid "14]
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Motivation: vacuum-state strong coupling

@ Linear response (no pump, no
condensate): effects of
matter-light coupling alone.

[

om —

[Canaguier-Durand et al. Angew. Chem. '13;
Baumberg group]

Jonathan Keeling Spatial dynamics & thermalization Chichley, January 2016 3



Motivation: vacuum-state strong coupling

@ Linear response (no pump, no Q1. Can ultra-strong coupling
condensate): effects of to light change:
matter-light coupling alone.

v

charge distribution?

» vibrational configuration?
molecular orientation?
crystal structure?

v

\4

. Are changes collective
(+/N factor) or not?

[Canaguier-Durand et al. Angew. Chem. '13;
Baumberg group]
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Motivation: photon condensates

@ Photon Condensate T ~ 300K

[Klaers et al. Nature, *10, Marelic et al. '15]
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Motivation: photon condensates

@ Photon Condensate T ~ 300K Q1. Relation to dye laser?
Q2. Relation to polaritons?

n e Q3. Thermalisation
v breakdown?

[Klaers et al. Nature, *10, Marelic et al. '15]
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Toy models

@ Full molecular spectra electronic
structure & Raman spectrum
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Toy models

@ Full molecular spectra electronic
structure & Raman spectrum
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. nuclear coordinaté
© Focus on low-energy effective theory \/ il

@ Two-level system, HOMO/LUMO See also [Galego, Garcia-Vidal,
@ Single DoF PES Feist. PRX '15]
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Toy models

@ Full molecular spectra electronic
structure & Raman spectrum
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. nuclear coordinaté
© Focus on low-energy effective theory %/— il
@ Two-level system, HOMO/LUMO See also [Galego, Garcia-Vidal,
@ Single DoF PES Feist. PRX "15]

© Simplified archetypal model: Dicke-Holstein

@ Each molecule: two DoF

» Electronic state: 2LS
» Vibrational state: harmonic oscillator
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Dicke Holstein Model

@ Dicke model: 2LS <« photons

Heys = wipTep + Z Eaé +9 <1/1 + W) (of + U;)]
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Dicke Holstein Model

@ Dicke model: 2LS <« photons
@ Molecular vibrational mode

» Phonon frequency Q
» Huang-Rhys parameter S —
coupling strength

Heys = wipTep + Z Eaé +9 <1/1 + W) (of + 05)]
+3a {bgba +/So? (b; + ba)}
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Modelling photon BEC

ﬂ Modelling photon BEC
@ Uniform pumping results

9 Modelling steady-state spatial profile
@ Spatial profile vs spot size
@ Threshold vs spot size

e Modelling spatial oscillations
@ Toy problem; validating model
@ Oscillation results
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Photon: Microscopic Model

Hsys Zwm¢m¢m+2[ U +9g ¢m0 ‘|‘HC)]
+yQ {bLba +/So? (bL + ba)}

@ 2D harmonic oscillator
Wm = Weutoff T MWH.O.
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Photon: Microscopic Model

Hsys = Zwmwnibm + Z [%02 + g (Ymog + H.c.)]

+yQ {bLba +/So? (bL + ba)}

@ 2D harmonic oscillator
Wm = Weutoff + MwH.O.

@ Incoherent processes: excitation,
decay, loss, vibrational
thermalisation.
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Photon: Microscopic Model

Heys = > wmtbhtbm + > [%02 + g (Ymog + H.c.)]

+yQ {bLba +/So? (bL + ba)}

@ 2D harmonic oscillator
Wm = Weutoff + MwH.O.

@ Incoherent processes: excitation,
decay, loss, vibrational
thermalisation.

@ Weak coupling, perturbative in g
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Microscopic model — all orders in S
@ Polaron transform (exact), H = 3=, wm®htom + 3, Pas

ha—2 o4 + 9 (Ymog Do +HC)+leba, Da:ez\@(bl*ba)
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Microscopic model — all orders in S
@ Polaron transform (exact), H = 3=, wm®htom + 3, Pas

ha—2 02 + g (Ymot D, +H.c.) +Qblb,, Da:ezﬁ(bg,b&)

@ Master equation

= =ilbous] + 3 5 LTl + X | Lot + el ]

N e (L e ]

Jonathan Keeling Spatial dynamics & thermalization Chichley, January 2016 9



Microscopic model — all orders in S
@ Polaron transform (exact), H = 3=, wm®htom + 3, Pas

he = =02 + g (Ymod Do + H.e.) + Qblb,,

D, = ?VS(bl-b,)
@ Master equation

p=—ilbe, 1+ Yy Clim + 30 | G loi] + i)
N Z {r(&m =wm — E)C[U;rwm] N [(—0m=¢€—wm)

—
. 5 cloavhi]
m,«
@ Correlation function:

e r(6) = 2g°R [ / dte"ét‘(rT+r¢)’/2<Dj¥(t)Da(0)>]
OZ__,// \ [Marthaler et al PRL ’11, Kirton & JK PRL ’13]
906 100 -0 100200

& [THz]
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Steady state populations and equilibrium
@ Rate equation:

[m] = = =
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Steady state populations and equilibrium
@ Rate equation:
OtNm = —KkNm + T (=0m)(Nm + 1)NT — F(dm)an
@ Steady state distribution:

Nm+1  k+T(0m)N,
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Steady state populations and equilibrium
@ Rate equation:
OtNm = —KkNm + T (=0m)(Nm + 1)NT — I'((Sm)nmN¢
@ Steady state distribution:

@ Microscopic conditions for equilibrium:
» Emission/absorption rate:

F(5) = 2g?R [ Jatem -t (1D, (0)
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Steady state populations and equilibrium
@ Rate equation:

OtNm = —KkNm + T (=0m)(Nm + 1)NT — F(ém)an
@ Steady state distribution:

@ Microscopic conditions for equilibrium:
» Emission/absorption rate:

F(5) = 2g?R [ Jatem 01002001 (9D, 0)

» Equilibrium, — Kubo-Martin-Schwinger condition:

(DL(1)Da(0)) = (D}(~t — i3)Da(0))
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Steady state populations and equilibrium
@ Rate equation:

OtNm = —KkNm + T (=0m)(Nm + 1)NT — F(ém)an
@ Steady state distribution:

@ Microscopic conditions for equilibrium:
» Emission/absorption rate:

(o) =29°R [/dte"”(“”L“/z(DL(t)Da(O))
» Equilibrium, — Kubo-Martin-Schwinger condition:
(DL(1)Da(0)) = (DL(~t — i3)Da(0))
> [(+6) =T(—6)e*



Steady state populations vs loss
@ Steady state distribution:

Nm [(=6m) Ny 56
e = r -
Nm+1  x+T(0m)N, F(+0) (=o)e

[Kirton & JK PRL '13]
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Steady state populations vs loss
@ Steady state distribution:
M T(=0m)Ny

@ Bose-Einstein distribution without losses
10° T T T

[(+0) = r(—6)e”
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Low loss: Thermal
[Kirton & JK PRL ’13]



Steady state populations vs loss
@ Steady state distribution:
Nm F(—0m)Ny
Nm+1  x+T(0m)N,
@ Bose-Einstein distribution without losses

109-(

[(+0) = r(—6)e”

10°F
g
QE 10°F
(=) x*
100, x X% *%
x"xxx
10 ™ 950 100 50 0 10500 150 —100 =50 0
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Low loss: Thermal High loss — Laser

[Kirton & JK PRL '13]
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Chemical potential?
@ Steady state distribution:

@ k < NI'(9), Kennard-Stepanov

Nm
Nm-+1

Ny

[Kirton & JK, PRA *15]

— e_ﬁém"rﬁﬂf’ eﬂ/J' = _1 =

107
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m (THz)

Tr + 2 m T (0m)Nm

Ny T+ 30T (=0m)(nm + 1)
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Chemical potential?

@ Steady state distribution:

@ k < NI'(9), Kennard-Stepanov

Mm _ somtbn o= M Tt 2 m(Om)m
m 1 | Ny T+ 30 T (=0m)(nm + 1)

@ Below threshold,

pw=kgTIn[l4+/I]

[Kirton & JK, PRA '15]
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Chemical potential?
@ Steady state distribution:

@ k < NI'(9), Kennard-Stepanov

Nm
Nm-+1

Ny

@ Below threshold,

p=kgTIn[l+/T]

@ At/above threshold, 1 — dg

[Kirton & JK, PRA *15]

Tr + 2 m T (0m)Nm

_ e PomtBu gfn= M
Ny T+ m T (=0m)(Nm +1)
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Chemical potential?
@ Steady state distribution:

@ k < NI'(9), Kennard-Stepanov

nmni1 _ g Oontbu B = % _
@ Below threshold,
o= KgTIn[M/T]
@ At/above threshold, 1 — dg

[Kirton & JK, PRA *15]

Tr + 2 m T (0m)Nm

T+, T(=6m)(Nm + 1)
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Modelling steady-state spatial profile

9 Modelling steady-state spatial profile
@ Spatial profile vs spot size
@ Threshold vs spot size
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Spatially varying pump intensity

My exp(—ré /202
e Consider effects of pump profile, [;(r) = — (2p( z)d//szp)
Yi¥ea
o
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Spatially varying pump intensity

. _ Iy exp(—r?/203)
@ Consider effects of pump profile, I'+(r) = (2r02)d72
yixe
p

@ Experiments: [Marelic & Nyman, PRA *15]
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Modelling spatial profile.

o = = = = DAl
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Modelling spatial profile.

@ Gauss-Hermite modes

I(r) = 3= 1y Ao (P2

w_

=} = = = = DAl
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Modelling spatial profile.

@ Gauss-Hermite modes

I(r) = 3= 1y Ao (P2

__w._

I

@ Varying excited density — differential coupling to modes

On= [ dtpy(®NimOF, o1+ 0. = pm
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Modelling spatial profile.

@ Gauss-Hermite modes @ Use exact R6G spectrum
/(r) = Zm nm‘wm(r)|2 1 Ty
og | @ f
_w_ £ 06 2
f@ 0.4 / %
-400  -200 0 200 400

=0 - ozpp,

@ Varying excited density — differential coupling to modes

On= [ dtorlim®E o1y =pm
Drpr(r) = =T (Npr(r) + Fr(npy(r))
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Spatially varying pump: below threshold

@ Far below threshold:

Nm
> If k< pml (0m),

Nm+ 1

~ e 0n x / At (1) (1) 2

[m] = = =
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Spatially varying pump: below threshold

@ Far below threshold:

Nm
> Ifx < pml (6m), ~ e Pm o [ drpy(r)|ym(r)?
Nm + 1
@ Resulting profile, I(r) = 3=, Nm|¥m(r)[?
S ! ‘ Pump shape ‘
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Spatially varying pump: below threshold

@ Far below threshold:

Nm
» Itk < pml (0m), ~ e 7 x /drPT om(r)?
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Spatially varying pump: below threshold

@ Far below threshold:

Nm
o 1 < ol (0m), = o [ dipr(Olum(r)?
Nm +1
@ Resulting profile, I(r) = 3=, Nm|¥m(r)[?
S ! ‘ Pump shape ‘
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Spatially varying pump: below threshold

@ Far below threshold:

Nm
b 1 5 < pl (Om), =~ e~ x / dtpi (1) m(P)?
Nm + 1

@ Resulting profile, I(r) = 3=, Nm|¥m(r)[?
~ 1 ‘ ‘ :
S Pump shape 6
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Near threshold behaviour
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2
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g 0.002
o
2
5 /_\
=
0
? L L L L L L L
g 7\ 1) —
§ 05F by L Boltz. - - -~ 1
= ‘ ‘ s

0 ‘ ‘
20 -15 -10 -5 0 5 10 15 20
/o

@ Large spot, op > ho
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Near threshold behaviour
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Near threshold behaviour

0.004

Excited molecules, f

0

Photons
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Y ENEET)
05} ’,'/\\‘Boltz.

@ Large spot, op > ho
@ “Gain saturation” at centre
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@ Saturation of f(r) = 1/(1 + e #*) — spatial equilibriation
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Near threshold behaviour
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Near threshold behaviour
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Threshold condition
@ Lasing threshold, dependence on spot size.

» Equilibrium: pu = 6,
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Threshold condition
@ Lasing threshold, dependence on spot size.

» Equilibrium: pu = d¢
» Gives I'+(r=0) =T e%%
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Threshold condition
@ Lasing threshold, dependence on spot size.

200 Tl kHzl o
» Equilibrium: = 6, E%Hoo = 2
> Gives [4(r=0) =T, e Z 0 z
i 0 ©,=3250THz
0 5 pltyo 10 15
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Threshold condition
@ Lasing threshold, dependence on spot size.

200[ 2 Tl
> Equilibrium: s = 6 - =l
—
» Gives I+(r=0) =T, e% Z 0 ;
i o ©,=3250THz
0 5 pltyo 10 15

@ Dependence on w; — experimental spectrum

RO
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£ ¥
S04 %
02
0
5—“’ Wzpr,
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Threshold condition
@ Lasing threshold, dependence on spot size.

200 2 ToadKH2 0
: / i =
N 5 —
R g 10
» Equilibrium: = 6, Z =,
= 0 2
» Gives I'+(r=0) =T e%% 1
B
0 ©,=3250THz
0 5 Gpltyo 10 15

@ Dependence on w; — experimental spectrum
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Threshold vs spot size

© Modeliing spatial oscillations
@ Toy problem; validating model
@ Oscillation results
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Off centre pumping; oscillations

@ Experiments [Schmitt et al. PRA '15]

Position, x (um)
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Off centre pumping; oscillations

@ Experiments [Schmitt et al. PRA '15]

0 50
x (um)

Position, x (um)

@ Oscillations in space — beating of normal modes
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Off centre pumping; oscillations

@ Experiments [Schmitt et al. PRA '15]

0 50
x (um)

Position, x (um)

@ Oscillations in space — beating of normal modes
@ Thermalisation depends on cutoff
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Limit of rate equations

Position, x (um)

0 100 200 300
Time, t (ps)
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Limit of rate equations

Position, x (um)

SR TR R e oy

Emission into Gauss-Hermite mode m:

0 100 200 30

Time, t (ps) ° /(X) = Z an’m(X)’z
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Limit of rate equations

Position, x (um)

SR TR R e oy

Emission into Gauss-Hermite mode m:

0 100 200 30

Time, t (ps) ° /(X) = Z an’m(X)’z

@ Oscillations: beating of modes.
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Limit of rate equations

Position, x (um)

B, Do e s o vooond

Emission into Gauss-Hermite mode m:

0 100 200 30

Time, t (ps) ° /(X) = Z an’m(X)’z

@ Oscillations: beating of modes.

Emission must create coherence between non-degenerate modes. J
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Limit of rate equations

Position, x (um)

Emission into Gauss-Hermite mode m:

0 100 200 300
Time, t(ps) I(X) =" Nmlthm(x)|?
m

@ Oscillations: beating of modes.

® Need /(x) = 3 1 v My ¥m(X) o (X)
@ Thermalisation from I'(+4)

Emission must create coherence between non-degenerate modes. J
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Toy problem: two bosonic modes

@ Basic problem: Emission from thermal bath

.........

: H = wadl, + wb?ﬁwb + Haath
E J(v) + (90212; + @Z@L)Z giéi + H.c.
' i
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Toy problem: naive solutions

@ Two “expected” behaviours:
» At resonance: “weak lasing” — coupling to bath dominates

d ~ n * 7 * 7
i = T Lleaba+ ool + T Llpzbh + b))

Jonathan Keeling Spatial dynamics & thermalization Chichley, January 2016
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Toy problem: naive solutions

@ Two “expected” behaviours:
» At resonance: “weak lasing” — coupling to bath dominates

d ~ n * 7 * 7
i = T Lleaba+ ool + T Llpzbh + b))

» Far from resonance: pointer states are eigenstates

O =Y rheld] + i)

i=a,b
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Toy problem: naive solutions

@ Two “expected” behaviours:
» At resonance: “weak lasing” — coupling to bath dominates

d ~ -~ * 7 * 7
i = T Lleaba+ ool + T Llpzbh + b))

» Far from resonance: pointer states are eigenstates

O =Y rheld] + i)

i=a,b

@ Explicit derivation — Redfield theory

Op = ~ilH, pl + D L} (20,00] — o, TZ;,TTZ;j]Jr)
-

+> L,Tj (Zﬁpﬂgi —lp, 12/1/3;]+) :
;
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Toy problem: exact solution

~

@ Solve via Laplace transform. Find Fj(t) = (@2}(1‘) (1))

[m] = = =
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Toy problem: exact solution

@ Solve via Laplace transform. Find Fj(t) = (ﬂ(t) (1))

@ Steady state: _ 2107 — ] ‘ 1
=
< \
S 1x1072| ]
~ Fyp —
0 L
Ee}
2 02k
5 F. —
Sl
0 L
-0.4 0.2 0 0.2 0.4
-A=2(wy,-0,)
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Toy problem: exact solution

@ Solve via Laplace transform. Find Fj(t) = (ﬂ(t) (1))

@ Steady state: 10— ] ‘ ]
; 3 —
» Singularat A =0 B 102 ]
22 Fyp —
0 ‘
S 02F
8 Faa -
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Toy problem: exact solution

~

@ Solve via Laplace transform. Find Fj(t) = (ﬂ(t) (1))

@ Steady state: 10— ] ‘ ]
; 2 —
» Singularat A =0 02} ]
. . ~ R
@ Time evolution — oL T
2
Fan(t) ~ exp(—aA=t)
Fap 0 0.05 01 o2 02k
[ 1 I ] ::g Faa —
2000 w R
0 ‘ ‘
-0.4 -0.2 0 0.2 0.4
1500 A=2(,-0,)
o
£ 1000
F
500 A

0
-0.4 -0.2 0 0.2 0.4

A=2(w,-0y)
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Toy problem: exact solution

@ Solve via Laplace transform. Find Fj(t) = (ﬂ(t) (1))

@ Steady state: X107 | ‘ ]
> Singularat A =0 S| R
e Time evolution — = e
Fap(1) ~ exp(—aA?t)
Fap 0 0.05 01 o2 02k
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(—)0.4 02 0 012 0.4
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2 1000 @ Always some coherence
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Toy problem: exact solution

@ Solve via Laplace transform. Find Fj(t) = (ﬂ(t) (1))

@ Steady state: X107 | ‘ ]
X ] e
» Singularat A =0 02} ]
. . 22 R
@ Time evolution — oL T
Fab(t) ~ exp(—ai?t)
Fap 0 0.05 01 o2 02k
[ S— j | 5 Fpu —
2000 - Fop
(—)0.4 -0.2 0 0.2 0.4
1500 -A=2(0y,-0,)
£ 1000 @ Always some coherence
= » (individual always wrong)
500 A @ Fap~ Faa, Fpponlyat A =0
. N

-0.4 -0.2 0 0.2 0.4
A=2(w,-0y)
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Toy problem: Redfield theory

Unsecularised Redfield theory:

atp = —I[H ,0] + Z 901 @j |: (W’,/WT [p7 wij]-i-)

ff

K] (28]t~ 1 bid]1) |
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Toy problem: Redfield theory

Unsecularised Redfield theory:

atp = —I[H p] + Z QOI @j |: (2¢,P¢T [p7 wij]+>
ff
+ K,/T (2@[)&; —p, ﬁﬂﬁ}h)] :

~

@ Compare to exact solution: Fj = (1)1

0.1 ; ‘
t=200 X 0.011) A=0.2
2 0.05" (| 2 I NAan,
<5 0.05 I = ol [| [\ \\\AAA~——
Q 11 o] ] IV ¥
=2 | ~ |V Exact
ok~ N I AAAAAA Redfield
' VY YV -0.01t
-0.4 -0.2 0 0.2 0.4 0 200 400 600 800
A=2(0,-0,) Time
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Toy problem: Secularisation

@ Secularisation (in eigenbasis of H): Ll* — Lj*6; — Fap =0
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Toy problem: Secularisation

@ Secularisation (in eigenbasis of H): Ll* — Lj*6; — Fap =0

@ Secularisation often invoked to cure negative eigenvalues of L}’i.

— Non-positivity of density matrix,
— Unstable (unbounded growth).

@ Check stability: consider f = (Faa, Fop, R[Fab], S[Fan)])

oif = —Mf + 1y
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Toy problem: Secularisation

@ Secularisation (in eigenbasis of H): L,Tj’i — L;’ié,-j — Fap=0

@ Secularisation often invoked to cure negative eigenvalues of L}’i.

— Non-positivity of density matrix,
— Unstable (unbounded growth).

@ Check stability: consider f = (Faa, Fop, R[Fan], S[Fan))

8tf = —Mf + fo

0.02

@ Eigenvalues of M exist in closed form:

Z 001
z

» Unstable (negative only if dJ(v)/dv > 1
— Markov breakdown)

0
0 02 04 06 08 1 12 14
v
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Toy problem: Secularisation

@ Secularisation (in eigenbasis of H): L,Tj’i — L;’ié,-j — Fap=0

@ Secularisation often invoked to cure negative eigenvalues of L}’i.

— Non-positivity of density matrix,
— Unstable (unbounded growth).

@ Check stability: consider f = (Faa, Fop, R[Fan], S[Fan))

8tf = —Mf + fo
0.02
@ Eigenvalues of M exist in closed form: \
» Unstable (negative only if dJ(v)/dv >1 2 °"
— Markov breakdown)
00 6.2 6.4 6.6 08 1 12 14

v
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Beyond Redfield: Schrodinger picture Bloch Redfield

@ Is BR the best (time-local) theory we can find?
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@ Is BR the best (time-local) theory we can find?

@ Hints it is not:

» Eigenvalues of M vs exact sol'n near A = 0.
» Sum rule [Salmilehto et al. PRA '12; Hell et al. PRB '14]:

“For X s.t. [X, Hsystem-batn] = 0, then :(X) should match closed system.”
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Beyond Redfield: Schrodinger picture Bloch Redfield

@ Is BR the best (time-local) theory we can find?
@ Hints it is not:
» Eigenvalues of M vs exact sol'n near A = 0.
» Sum rule [Salmilehto et al. PRA ’12; Hell et al. PRB '14]:

“For X s.t. [X, Hsystem-batn] = 0, then :(X) should match closed system.”

» Here, (X) = ©2Faa + ©3Fbb — 2p0appF.,. Fails
@ Alternate approach: 2107
» BR assumes j(t) is “slow” in
interaction picture
» Asymptotically p(t) is steady in
Schrédinger picture 202
» Assume instead p(t) is slow in o2
Schrédinger picture 0
-0.4 -0.2 0 0.2 0.4

@ “Schrédinger picture Bloch Redfield.” A=2A(0yy-,)

» Correct A2 expansion
» Satisfies sum rule
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Modelling spatial oscillations

© Modeliing spatial oscillations

@ Oscillation results

o = = = = 9aQ
Jonathan Keeling Spatial dynamics & thermalization



Modelling

@ Following toy model, use Redfield theory:

Z wmamamv

+ K(— 6m)[amo— Py 8y ]) + H.c. + (pumping, decay . . .),

atp =—i

Y ¢m/(r,)( (5B 3 5. 357 ]

m,m’ i

@ K(¢) analytic continuation of I'(¢).
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Modelling

@ Following toy model, use Redfield theory:

Op =—i

3 U)o () (KOO a9, 2

m,m’ i

> Wmalmam, p
m

+ K(—&m)[éi,,a—fﬁ, émﬁf]) + H.c. 4+ (pumping, decay . . .),

@ K(¢) analytic continuation of I'(¢).
@ Not secular approximation

» Must have emission into m, m’ superposition
» Must have K = K(d) (Kennard-Stepanov)
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Modelling

@ Following toy model, use Redfield theory:

Op =—i

3 U)o () (KOO a9, 2

m,m’ i

> Wmalmam, p
m

+ K(—&m)[éi,,a—fﬁ, émﬁf]) + H.c. 4+ (pumping, decay . . .),

@ K(¢) analytic continuation of I'(¢).
@ Not secular approximation

» Must have emission into m, m’ superposition
» Must have K = K(d) (Kennard-Stepanov)

@ Semiclassical equations for ng, v = (aﬁnam,> and f(r).
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Dynamics from model

Longer cavity Shorter cavity

Y proton intensity I(r)

3x10°

2x10°

AERERRARARE
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Dynamics from model
Longer cavity

Y proton intensity I(r)

3x10°
2x10°

SV

0

0 50 100 150 0 50 100
@ Origin of thermalisation — reabsorption, see (%)
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0
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Dynamics from model
Longer cavity Shorter cavity

10 Photon intensity 1(r) 10 Photon intensity I(r)

vadt 4x10°
o 2x10¢ °
<3 I
) ‘ il i B 2x10°
‘ARARRRALALE
10 -10
0 50 100 150 0 0 50 100 0
@ Origin of thermalisation — reabsorption, see (%)
10 Dye excitation f(r) 10 Dye excitation f(r)
0.01 0.01
£ E:
- 0.005 h 0.005
10 -10
100 50  © 50 100 50  ©
tlpg tlpg
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Thermalisation at late times
@ Reabsorption “fills-in” excited molecules

Dye excitation f(r)

0.005
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Thermalisation at late times

@ Reabsorption “fills-in” excited molecules
@ Reach thermal equilibrium, f = [e=#% + 1]~1

Dye excitation f(r) t=5ps ——
— =50 ps ——
001 g 0027 =150 ps —
e =600 ps ——
2 Eqbm
8
% 001
0.005 o
>
[a] J
o STy 5 0 3 10
100 1/,
t[ps| “HO
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Thermalisation at late times

@ Reabsorption “fills-in” excited molecules
@ Reach thermal equilibrium, f = [e=#% + 1]~1

Dye excitation f(r) t=5ps ——
- =50 ps ——
001 £ 0021 =150ps —
g t=600 ps ——
2 Eqbm
:.3
% 001
0.005 s
[a] J
o RS TOR 0 3 10
1 150 /0
t[ps| tHo
@ Photon occupation thermalises later
t=5ps x
t=50ps ®©
= % t=150ps
= x =600ps =
§ Y, % BEfitT) ——
2 10
g Ll
& 10
10°
lO—l 5 —
3250 3260 3270 3280 3290 3300
Mode frequency: o, (21 x THz)
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Summary

@ Photon condensanon_and thermalisation

R P G O

[Kirton & JK, PRL 13, PRA '15]
° Photon condensatlon pattern formatlon phy3|cs

[JK & Kirton, PRA *16]
° Modellmg mcoherent emission into non-degenerate modes

'/\

[Eastham, Kirton, Cammack Lovett, JK arxiv:1508.04744]
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Extra Slides

° Approach to steady state
© Threshold vs temperature
e Beyond semiclassics

ﬂ Toy problem

© More oscillations

@ Polariton spectral weight
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Time evolution

@ Initial state: excited molecules

107 .
N

LN =
S )
S =
£

=

200 1 1000 10°
t(fs)

[Kirton & JK PRA ’15]
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Time evolution

@ Initial state: excited molecules
@ Initial emission, follows gain peak

3

§ =
£

=

[Kirton & JK PRA ’15]

02

066 =100 0100200
& [THz]

1 1000 10°
t(fs)
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Time evolution

@ Initial state: excited molecules
@ Initial emission, follows gain peak

@ Thermalisation by repeated absorption N

107y

)

§ =
S

=

[Kirton & JK PRA ’15]

066 =100 0100200
& [THz]

1 1000 10°
t(fs)
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Threshold condition
Use: max[nm] = 1/(Be) — kgTe = /6/m2eVN.

o = = = = DAl
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Threshold condition
—  kgT. = +/6/m2eV/N.

Use: max[nm] = 1/(Be)

[=—— K=10MHz —=— K=05GHz === K=5GHz |
600 - ",' E
I
500 - " b
Py / Compare threshold:
400 - '
=< i @ Pump rate (Laser)
& 300 - )-’ . @ Critical density
: (condensate)
200 - b
/
ul ! l)A 1 1
345 6 7

1 d ./ ul 1
107°107%107°107%2107" 2
FT/Pi A% Ntot

@ Thermal at low x/high temperature

Spatial dynamics & thermalization Chichley, January 2016
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Threshold condition

Use: max[nm] = 1/(Be) —  kgTs = +/6/m2eV/N.

[=—— K=10MHz —=— K=05GHz === K=5GHz |

600

500

~~
M 400

N—r

B‘ 300

200

Ly/Ty

@ Thermal at low x/high temperature
@ High loss, k competes with '(+dp)

Compare threshold:
@ Pump rate (Laser)

@ Critical density
(condensate)

%00 100 _0 100 20
8 [THz]
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Threshold condition

Use: max[nm] = 1/(Be) —  kgTs = +/6/m2eV/N.

K=10 MHz === K=0.5GHz ==== K=5GHz |

600

500

~~
M 400

N—r

& 300

200

Ly/Ty

@ Thermal at low x/high temperature
@ High loss, k competes with '(+dp)
@ Low temperature, I'(+dp) shrinks

Compare threshold:
@ Pump rate (Laser)

@ Critical density
(condensate)

%00 100 _0 100 20
8 [THz]
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Quantum model, linewidth
Full Master equation:

p=—ilHo. pl = 5L[V] - Z [%E["(ﬂ * %‘C[‘T‘;@

M Ll A |
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Quantum model, linewidth
Full Master equation:

= —ilHo. o] - 5L[V] - Z [%EW] * %‘C[";]}
_ Z |: )[’[ +w] %ﬁ[(f@ﬂ/}”]

@ Factorise p(t) > ppn(t) &); pm,i(t)
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Quantum model, linewidth
Full Master equation:

pz—mmm—“qw—EjU%wm+2£mﬂ

-—EZ[ M= oo+ M = o)

@ Factorise p(t) ~ ppn(t) &; pm,i(t)
@ Quantum regression theorm — linewidth
10°

10° L~_ Schawlow-Townes approx.

£10007 - ]
1 :

0 0.5 1 1.5 2
FT/Fthresh
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Beyond Redfield: Schrodinger picture Bloch Redfield

@ Is BR the best (time-local) theory we can find?
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Beyond Redfield: Schrodinger picture Bloch Redfield

@ Is BR the best (time-local) theory we can find?

@ Hints it is not:

» Eigenvalues of M vs exact sol'n near A = 0.
» Sum rule [Salmilehto et al. PRA '12; Hell et al. PRB '14]:

“For X s.t. [X, Hsystem-batn] = 0, then :(X) should match closed system.”
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Beyond Redfield: Schrodinger picture Bloch Redfield

@ Is BR the best (time-local) theory we can find?
@ Hints it is not:
» Eigenvalues of M vs exact sol'n near A = 0.
» Sum rule [Salmilehto et al. PRA ’12; Hell et al. PRB ’14]:

“For X s.t. [X, Hsystem-batn] = 0, then :(X) should match closed system.”

» Here, (X) = ©2Faa + ©3Fbb — 2p0appF.,. Fails
@ Alternate approach: 2107
» BR assumes j(t) is “slow” in
interaction picture
» Asymptotically p(t) is steady in
Schrédinger picture 202
» Assume instead p(t) is slow in o2
Schrédinger picture 0
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@ “Schrédinger picture Bloch Redfield.” A=2A(0yy-,)

» Correct A2 expansion
» Satisfies sum rule
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Thermalisation of spectrum:
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Thermalisation of spectrum:

@ Thermalisation of spectrum:

Jonathan Keeling Spatial dynamics & thermalization Chichley, January 2016 39



Thermalisation of spectrum:

@ Thermalisation of spectrum:

1x10°
8x10°
E 3 6x10°
=] o
= 2 s
= 4x10°
2x10°
IS .
3260 3280 3300 0 50 100 150
Mode, m Time [ps]
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Polariton spectrum: photon weight

Energy
N
=N

[Cwik et al. EPL '14]

T

| T=0.4, =2, A=4, Q=0.1, g=2 |

0.1 0.2
Density p

Jonathan Keeling

Spatial dynamics & thermalization

& o
Photon weight, Z,

S
o

S
[98)
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Polariton spectrum: photon weight

; : 0.3
44t T=0.4, S=2, A=4, Q=0.1, g=2 - |
0.2
{=}
45T 0.1
g -4.6 1 0 =
= g
47 + 0.1¢g
[aW
-0.2
48 |
¥ M 03
0 0.1 0.2

Density p

@ What is nature of polariton mode?

GA(t) = —iwI(w(0)),  G(w)=) - fnwn

[Cwik et al. EPL '14]
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