Collective behaviour and driven-dissipative systems

Jonathan Keeling

University of St Andrews
1413-2013

CUNY, April 2015
Acknowledgements

GROUP (& ALUMNI):

COLLABORATORS: Fazio (Pisa & CQT), Schiro (CNRS), Tureci (Princeton), Eastham (TCD), Lovett (St Andrews).

FUNDING:
Collective behaviour and driven-dissipative systems

1. Nonequilibrium quantum matter

2. Collective behaviour in driven–dissipative systems
 - Transverse field Ising
 - Rabi-Hubbard model

3. Collective dissipation
 - Coupled qubit-cavity systems
 - Bath induced coherence
Nonequilibrium quantum matter

1. Nonequilibrium quantum matter

2. Collective behaviour in driven–dissipative systems
 - Transverse field Ising
 - Rabi-Hubbard model

3. Collective dissipation
 - Coupled qubit-cavity systems
 - Bath induced coherence
Driven systems

Open quantum system

\[\partial_t \rho = -i[\hat{H}, \rho] + \sum_i \kappa_i \mathcal{L}[X_i], \quad \mathcal{L}[X_i] = 2X_i \rho X_i^\dagger - X_i^\dagger X_i \rho - \rho X_i^\dagger X_i \]

Need drive to balance loss

\[\hat{H} \rightarrow \hat{H} + \hat{V} \cos(\Omega t) \]

External coherent drive:
Driven systems

Open quantum system

\[
\partial_t \rho = -i[\hat{H}, \rho] + \sum_i \kappa_i \mathcal{L}[X_i], \quad \mathcal{L}[X_i] = 2X_i\rho X_i^\dagger - X_i^\dagger X_i\rho - \rho X_i^\dagger X_i
\]

Need drive to balance loss

1. External coherent drive:

\[
\hat{H} \rightarrow \hat{H} + \hat{V} \cos(\Omega t)
\]

\[\hat{H} = e^{-i\Omega N} \hat{H} e^{i\Omega N} - \Omega \hat{N}\]

- Neglect fast \(e^{2i\Omega t}\) terms — fast
- Rotating frame — breaks detailed balance with bath.
Driven systems

Open quantum system

\[\frac{\partial_t \rho}{\partial t} = -i[\hat{H}, \rho] + \sum_i \kappa_i \mathcal{L}[X_i], \quad \mathcal{L}[X_i] = 2X_i \rho X_i^{\dagger} - X_i^{\dagger} X_i \rho - \rho X_i^{\dagger} X_i \]

Need drive to balance loss

1. External coherent drive:

\[\tilde{H} = \begin{pmatrix}
 h_0 & \nu_{01} \cos(\Omega t) & 0 & \ldots \\
 \nu_{01}^{\dagger} \cos(\Omega t) & h_1 & \nu_{12} \cos(\Omega t) & \ldots \\
 0 & \nu_{12}^{\dagger} \cos(\Omega t) & h_2 & \ldots \\
 \vdots & \vdots & \vdots & \ddots
\end{pmatrix} \]

\[\tilde{H} = e^{-i\Omega \hat{N}} \hat{H} e^{i\Omega \hat{N}} - \Omega \hat{N} \]

Neglect fast \(e^{2i\Omega t} \) terms — fast

Rotating frame — breaks detailed balance with bath.
Driven systems

Open quantum system

\[\partial_t \rho = -i[\hat{H}, \rho] + \sum_i \kappa_i \mathcal{L}[X_i], \quad \mathcal{L}[X_i] = 2X_i \rho X_i^\dagger - X_i^\dagger X_i \rho - \rho X_i^\dagger X_i \]

Need drive to balance loss

1. External coherent drive:

\[\tilde{\hat{H}} \approx \begin{pmatrix} h_0 & v_{01} & 0 & \cdots \\ v_{01}^\dagger & h_1 - \Omega & v_{12} & \cdots \\ 0 & v_{12}^\dagger & h_2 - 2\Omega & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \]

\[\tilde{\hat{H}} = e^{-i\Omega \hat{N} t} \hat{H} e^{i\Omega \hat{N} t} - \Omega \hat{N} \]

Neglect fast \(e^{2i\Omega t} \) terms — fast

Rotating frame — breaks detailed balance with bath.
Driven systems

Open quantum system

\[\partial_t \rho = -i[H, \rho] + \sum_i \kappa_i L[X_i], \quad L[X_i] = 2X_i \rho X_i^\dagger - X_i^\dagger X_i \rho - \rho X_i^\dagger X_i \]

Need drive to balance loss

1. External coherent drive:

\[\tilde{H} \approx \begin{pmatrix} h_0 & v_{01} & 0 & \ldots \\ v_{01}^\dagger & h_1 - \Omega & v_{12} & \ldots \\ 0 & v_{12}^\dagger & h_2 - 2\Omega & \ldots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \]

- \[\tilde{H} = e^{-i\Omega \hat{N} t} H e^{i\Omega \hat{N} t} - \Omega \hat{N} \]
- Neglect fast \(e^{2i\Omega t} \) terms — fast
- Rotating frame — breaks detailed balance with bath.
Non-equilibrium steady state

External **incoherent** drive:

\[
\partial_t \rho = -i[\hat{H}, \rho] + \sum_i \kappa_i \mathcal{L}[X_i] + \sum_i \gamma_i \mathcal{L}[X_i^\dagger]
\]

- Energy flow through system
- Not thermodynamics — attractors of dynamics
 - Stationary points — extrema of energy?
 - Nontrivial attractors
Non-equilibrium steady state

External **incoherent** drive:
\[
\partial_t \rho = -i[\hat{H}, \rho] + \sum_i \kappa_i \mathcal{L}[X_i] + \sum_i \gamma_i \mathcal{L}[X_i^\dagger]
\]

- **Energy flow through system**

- **Not thermodynamics — attractors of dynamics**
 - Stationary points — extrema of energy?
 - Nontrivial attractors
Non-equilibrium steady state

External incoherent drive:
\[\partial_t \rho = -i[\hat{H}, \rho] + \sum_i \kappa_i \mathcal{L}[X_i] + \sum_i \gamma_i \mathcal{L}[X_i^\dagger] \]

Energy flow through system

Not thermodynamics — attractors of dynamics
- Stationary points — extrema of energy?
- Nontrivial attractors
Coupled cavity arrays

- Control photon dispersion — lattice

[Hartmann et al. Nat. Phys. ’06; Greentree et al. *ibid* 06; Angelakis et al. PRA ’07]

- X-Hubbard Model, $H = \sum_i H_{X, \text{site}} - J \sum_{\langle ij \rangle} \psi_i^\dagger \psi_j$

[X=Bose, Jaynes-Cummings, Rabi, ...]
Coupled cavity arrays

- Control photon dispersion — lattice

\[[\text{Hartmann et al. Nat. Phys. '06; Greentree et al. ibid 06; Angelakis et al. PRA '07}] \]

- X-Hubbard Model, \(H = \sum_i H_{X,\text{site}} - J \sum_{\langle ij \rangle} \psi_i^\dagger \psi_j \)

\[[\text{X=Bose, Jaynes-Cummings, Rabi, \ldots}] \]
Coupled cavity arrays

- Control photon dispersion — lattice

[Hartmann et al. Nat. Phys. ’06; Greentree et al. ibid 06; Angelakis et al. PRA ’07]

- X-Hubbard Model, \(H = \sum_i H_{X,\text{site}} - J \sum_{\langle ij \rangle} \psi_i^\dagger \psi_j \)

[X=Bose, Jaynes-Cummings, Rabi, ...]

[Underwood et al. PRA ’12; Nat. Phys ’12]

[Lepert et al. NJP ’11; APL ’13]
Collective behaviour in driven–dissipative systems

1. Nonequilibrium quantum matter

2. Collective behaviour in driven–dissipative systems
 - Transverse field Ising
 - Rabi-Hubbard model

3. Collective dissipation
 - Coupled qubit-cavity systems
 - Bath induced coherence
Parametrically pumped BHM

\[H = -\frac{J}{Z} \sum_{\langle ij \rangle} \psi_i^\dagger \psi_j + \sum_i \left[\omega_c \psi_i^\dagger \psi_i + U \psi_i^\dagger \psi_i^\dagger \psi_i \psi_i - \Omega \left(\psi_i^\dagger \psi_{i+1} e^{-2i\omega_p t} + \text{H.c.} \right) \right] \]

[Bardyn & Imamoglu, PRL '12]
Parametrically pumped BHM

\[
H = -\frac{J}{z} \sum_{<ij>} \psi_i^\dagger \psi_j + \sum_i \left[\omega_c \psi_i^\dagger \psi_i + U \psi_i^\dagger \psi_i^\dagger \psi_i \psi_i - \Omega \left(\psi_i^\dagger \psi_{i+1} e^{-2i\omega_p t} + \text{H.c.} \right) \right]
\]

Rotating frame, blockade approximation, rescale:

\[
H = -J \sum \left[\tau_i^+ \tau_{i+1}^- + \tau_{i+1}^+ \tau_i^- + g \tau_i^z + \Delta \left(\tau_i^+ \tau_{i+1}^+ + \tau_{i+1}^- \tau_i^- \right) \right]
\]

[Bardyn & Imamoglu, PRL ’12]
Parametrically pumped BHM

\[H = -\frac{J}{Z} \sum_{\langle ij \rangle} \psi_i^\dagger \psi_j + \sum_i \left[\omega_c \psi_i^\dagger \psi_i + U \psi_i^\dagger \psi_i \psi_i \psi_i - \Omega (\psi_i^\dagger \psi_{i+1} e^{-2i\omega_P t} + \text{H.c.}) \right] \]

Rotating frame, blockade approximation, rescale:

\[H = -J \sum \left[\tau_i^+ \tau_{i+1}^- + \tau_{i+1}^+ \tau_i^- + g \tau_i^z + \Delta \left(\tau_i^+ \tau_{i+1}^+ + \tau_{i+1}^- \tau_i^- \right) \right] \]

\[\partial_t \rho = -i[H, \rho] + \sum_i \kappa \mathcal{L}[\tau_i^-] \]

[Bardyn & Imamoglu, PRL ’12]
Parametric pumping – equilibrium

\[H = -J \sum \left[\tau_i^+ \tau_{i+1}^- + \tau_{i+1}^+ \tau_i^- + g \tau_i^Z + \Delta \left(\tau_i^+ \tau_{i+1}^+ + \tau_{i+1}^- \tau_i^- \right) \right] \]

- Equilibrium – transverse field Ising model
 - \(g \) – transverse field, \(g_{\text{crit}} = 1 \).
 - \(\Delta \) – anisotropy.
 \(\Delta = 0: \text{XY}, \ |\Delta| > 0: \text{Ising (X,Y)}. \)

[Bardyn & Imamoglu, PRL ’12]
Parametric pumping – equilibrium

Equilibrium – transverse field Ising model

- g – transverse field, $g_{\text{crit}} = 1$.
- Δ – anisotropy.

$\Delta = 0$: XY, $|\Delta| > 0$: Ising (X,Y).

[Bardyn & Imamoglu, PRL ’12]
Parametric pumping – open system

\[H = -J \sum \left[\tau_i^+ \tau_{i+1}^- + \tau_{i+1}^+ \tau_i^- + g\tau_i^z + \Delta \left(\tau_i^+ \tau_{i+1}^- + \tau_{i+1}^+ \tau_i^- \right) \right] \]

\[\partial_t \rho = -i[H, \rho] + \sum_i \kappa \mathcal{L}[\tau_i^-] \]

\[\text{Mean-field EOM: } \partial_t \langle \tau_i^\alpha \rangle = F_\alpha(\langle \tau_i^\beta \rangle, \langle \tau_i^\beta \rangle, \langle \tau_i^\beta \rangle) \]

\[\text{Dynamical attractors, linear stability:} \]
Parametric pumping – open system

\[H = -J \sum \left[\tau_{i+1}^+ \tau_i^- + \tau_{i+1}^+ \tau_i^- + g \tau_i^Z + \Delta \left(\tau_{i+1}^+ \tau_i^- + \tau_{i+1}^- \tau_i^- \right) \right] \]

\[\partial_t \rho = -i[H, \rho] + \sum_i \kappa L[\tau_i^-] \]

- Mean-field EOM: \(\partial_t \langle \tau_i^\alpha \rangle = F_\alpha(\langle \tau_{i-1}^\beta \rangle, \langle \tau_i^\beta \rangle, \langle \tau_{i+1}^\beta \rangle) \)
- Dynamical attractors, linear stability:
Why AFM/FM attractors

- Linear stability, fluctuation \(\sim \exp(-i\nu_k t + ikr) \) Linear stability

\[
\nu_k = -i\kappa \pm 2J \sqrt{g^2 + 2g \cos k + (1 - \Delta^2) \cos^2 k}
\]

- \(g \ll -1 \), Dissipation matches ground state
 - Most unstable mode, \(k = 0 \)
- \(g \gg +1 \), Dissipation matches max energy
 - Most unstable mode, \(k = \pi \)

[Joshi, Nissen, Keeling, PRA '13]
Why AFM/FM attractors

- Linear stability, fluctuation $\sim \exp(-i\nu_k t + ikr_i)$
 $$\nu_k = -i\kappa \pm 2J\sqrt{g^2 + 2g \cos k + (1 - \Delta^2) \cos^2 k}$$

- $g \ll -1$, Dissipation matches ground state
 - Most unstable mode, $k = 0$
- $g \gg +1$, Dissipation matches max energy
 - Most unstable mode, $k = \pi$

[Joshi, Nissen, Keeling, PRA ’13]
Why AFM/FM attractors

- Linear stability, fluctuation $\sim \exp(-i \nu_k t + i kr_i)$ Linear stability
 $$\nu_k = -i \kappa \pm 2J \sqrt{g^2 + 2g \cos k + (1 - \Delta^2) \cos^2 k}$$
- $g \ll -1$, Dissipation matches ground state
 - Most unstable mode, $k = 0$
- $g \gg +1$, Dissipation matches max energy
 - Most unstable mode, $k = \pi$

[Joshi, Nissen, Keeling, PRA '13]
Why AFM/FM attractors

- Linear stability, fluctuation $\sim \exp(-i\nu_k t + ikr_i)$ Linear stability

$$\nu_k = -i\kappa \pm 2J \sqrt{g^2 + 2g \cos k + (1 - \Delta^2) \cos^2 k}$$

- $g \ll -1$, Dissipation matches ground state
 - Most unstable mode, $k = 0$
- $g \gg +1$, Dissipation matches max energy
 - Most unstable mode, $k = \pi$

[Joshi, Nissen, Keeling, PRA ’13]
Beyond mean-field

- Matrix-product-operator representation of

\[
\rho = \sum_{\{i_1, i_2, \ldots, i_N\}} \left(\sum_{\{\alpha_j\}} \Gamma_{i_1, \alpha_1}^{[1]} \Lambda_{\alpha_1, \alpha_2}^{[1]} \Gamma_{\alpha_2, \alpha_N-1}^{[2]} \Lambda_{\alpha_N-1, 1}^{[N-1]} \right) \bigotimes_{j=1}^{N} \tau_{i_j}^{i_j}
\]

Vidal, White, Schollwöck, et al. Density matrices: [Zwolak & Vidal, PRL '04]

- No broken symmetry — correlators:

\[\Delta = 1, \kappa = 0.5J;\]
Beyond mean-field

- Matrix-product-operator representation of

\[
\rho = \sum_{\{i_1, i_2, \ldots, i_N\}} \left(\sum_{\{\alpha_j\}} \Gamma_{i_1, \alpha_1}^{[1]} \land \Gamma_{\alpha_1, \alpha_2}^{[1]} \ldots \Gamma_{\alpha_{N-2}, \alpha_{N-1}}^{[N-1]} \land \Gamma_{\alpha_{N-1}, \alpha_{N-1}, \ldots, \alpha_{N-1}, 1}^{[N]} \right) \bigotimes_{j=1}^{N} \tau_{ij}^{-}
\]

- No broken symmetry — correlators:

\[
\Delta = 1, \ \kappa = 0.5J:
\]
Beyond mean-field

- Matrix-product-operator representation of

\[\rho = \sum_{\{i_1,i_2,\ldots,i_N\}} \left(\sum_{\{\alpha_j\}} \Gamma_1^{[1]} i_1 \land \Gamma_2^{[2]} i_2 \ldots \Gamma_{N-1}^{[N-1]} i_{N-1} \land \Gamma_N^{[N]} i_N \right) \otimes \tau_j^{i_j} \]

- No broken symmetry — correlators:
 \[\Delta = 1, \kappa = 0.5J: \]
Correlations

- **AFM vs FM from sign of \(g (\Delta = 1) \)**

\[h \hat{b}^\dagger \frac{n}{2} \hat{b} \frac{n}{2} + i i = (Z \leftrightarrow)^i_1 \]

\[h \hat{b}^\dagger \frac{n}{2} \hat{b} \frac{n}{2} + i i = |h \hat{b}^\dagger \frac{n}{2} \hat{b} \frac{n}{2} + i i| \]

- \(\Delta \to 0 \), Analytic spin-wave,

\[\langle \sigma_{lN}^x \sigma_{lN+1}^x \rangle \propto \exp(-\xi_{cl}) \]
Correlations

- **AFM vs FM from sign of** g ($\Delta = 1$)

- $\Delta \to 0$, Analytic spin-wave,

\[
\left| \langle \tau_i^- \tau_{i+1}^\pm \rangle \right| \propto \exp(-\xi_c l)
\]
Correlations

- AFM vs FM from sign of g ($\Delta = 1$)

- $\Delta \rightarrow 0$, Analytic spin-wave,

 \[\left| \langle \tau_i^+ \tau_{i+1}^- \rangle \right| \propto \exp(-\xi_c l) \]

\[\begin{array}{c}
\text{(a)} \\
\xi_c
\end{array} \]
Rabi Hubbard model

\[H = -J \sum_{\langle ij \rangle} a_i^\dagger a_j + \sum_i h_i^{\text{Rabi}} \]

\[h_i^{\text{Rabi}} = \omega a_i^\dagger a + \frac{\omega_0}{2} \sigma^z + \left[a_i^\dagger (g\sigma^- + g'\sigma^+) + \text{H.c.} \right] \]

\[\omega = \omega_{\text{cavity}} - \omega_{\text{pump}} \]

- \(g, g' \) separately tunable
Rabi Hubbard model

\[H = -J \sum_{\langle ij \rangle} a_i^\dagger a_j + \sum_i h_i^{\text{Rabi}} \]

\[h_i^{\text{Rabi}} = \omega a_i^\dagger a + \frac{\omega_0}{2} \sigma^z + \left[a_i^\dagger (g\sigma^- + g'\sigma^+) + \text{H.c.} \right] \]

\[\omega = \omega_{\text{cavity}} - \omega_{\text{pump}} \]

\[g, g' \text{ separately tunable} \]
Rabi Hubbard model

\[H = -J \sum_{\langle ij \rangle} a_i^\dagger a_j + \sum_i h_i^{\text{Rabi}} \]

\[h_i^{\text{Rabi}} = \omega a_i^\dagger a + \frac{\omega_0}{2} \sigma^z + \left[a_i^\dagger (g_\sigma^- + g'_\sigma^+) + \text{H.c.} \right] \]

- \(\omega = \omega_{\text{cavity}} - \omega_{\text{pump}} \)
- \(g, g' \) separately tunable
Rabi Hubbard model

\[H = -J \sum_{\langle ij \rangle} a_i^\dagger a_j + \sum_i h_i^{\text{Rabi}} \]

\[h_i^{\text{Rabi}} = \omega a_i^\dagger a_i + \frac{\omega_0}{2} \sigma_z + \left[a_i^\dagger (g \sigma^- + g' \sigma^+) + \text{H.c.} \right] \]

- \(\omega = \omega_{\text{cavity}} - \omega_{\text{pump}} \)
- \(g, g' \) separately tunable

\[\dot{\rho} = -i[H, \rho] + \sum_i \kappa L[a_i] + \gamma L[\sigma_i^-] \]
Rabi Hubbard model – equilibrium

Discrete \mathbb{Z}_2 symmetry

Parity Mott lobes

$g = g'$, never degenerate — never superfluid

[Schiró et al. PRL ’12]
Rabi Hubbard model – equilibrium

- Discrete \mathbb{Z}_2 symmetry
 - Parity Mott lobes

$g' / g = 0.5$

$g = g'$, never degenerate — never superfluid

[Schiró et al. PRL ’12]
Rabi Hubbard model – equilibrium

- Discrete \mathbb{Z}_2 symmetry
 - Parity Mott lobes

$g = g'$, never degenerate — never superfluid

[Schiró et al. PRL ’12]
Rabi Hubbard model – equilibrium

- Discrete \mathbb{Z}_2 symmetry
 - Parity Mott lobes

- $g = g'$, never degenerate — never superfluid

[Schiró et al. PRL ’12]
Driven-dissipative system — linear stability

Mean field theory — still large Hilbert space.

- Normal state + fluctuations: \(\rho = \otimes_n (\rho_{ss} + \sum_k \delta \rho_k e^{ik\cdot n - i\nu_k t} + \text{H.c.}) \)
- \(\nu_k \) Eigenvalues of \(M = M_0 - t_k M_1 \), \(t_k = -2J \cos(k) \)
- Unstable if \(\Im[\nu_k] > 0 \)

- Given \(J \), \(|t_k| < 2J \)
- First instability \(k = 0, \pi \)
- \(k \rightarrow \pi/2 \) at large \(J \)
Driven-dissipative system — linear stability

Mean field theory — still large Hilbert space.

- Normal state + fluctuations: \(\rho = \otimes_n (\rho_{ss} + \sum_k \delta \rho_k e^{i k \cdot n - i \nu_k t} + \text{H.c.}) \)
- \(\nu_k \) Eigenvalues of \(M = M_0 - t_k M_1, t_k = -2J \cos(k) \)
- Unstable if \(\Im[\nu_k] > 0 \)

Follow [Boité et al. , PRA 2014]

- Given \(J \), \(|t_k| < 2J \)
- First instability \(k = 0, \pi \)
- \(k \to \pi/2 \) at large \(J \)
Driven-dissipative system — linear stability

Mean field theory — still large Hilbert space.

- Normal state + fluctuations: \[\rho = \bigotimes_n (\rho_{ss} + \sum_k \delta \rho_k e^{i k \cdot n - i \nu_k t} + \text{H.c.}) \]
- \(\nu_k \) Eigenvalues of \(M = M_0 - t_k M_1 \), \(t_k = -2J \cos(k) \)
- Unstable if \(\Im[\nu_k] > 0 \)

Follow [Boité et al., PRA 2014]

- Given \(J \), \(|t_k| < 2J \)
- First instability \(k = 0, \pi \)
- \(k \rightarrow \pi/2 \) at large \(J \)
Driven-dissipative system — linear stability

Mean field theory — still large Hilbert space.

- Normal state + fluctuations: \(\rho = \otimes_n (\rho_{ss} + \sum_k \delta \rho_k e^{i k \cdot n - i \nu_k t} + \text{H.c.}) \)
- \(\nu_k \) Eigenvalues of \(M = M_0 - t_k M_1, t_k = -2J \cos(k) \)
- Unstable if \(\Im[\nu_k] > 0 \)

Follow [Boité et al., PRA 2014]

- Given \(J \), \(|t_k| < 2J \)
- First instability \(k = 0, \pi \)
- \(k \to \pi/2 \) at large \(J \)
Driven-dissipative system — linear stability

Mean field theory — still large Hilbert space.

- Normal state + fluctuations: \(\rho = \bigotimes_n (\rho_{ss} + \sum_k \delta \rho_k e^{i k \cdot n - i \nu_k t} + \text{H.c.}) \)
- \(\nu_k \) Eigenvalues of \(M = M_0 - t_k M_1 \), \(t_k = -2J \cos(k) \)
- Unstable if \(\Im[\nu_k] > 0 \)

Follow [Boité et al., PRA 2014]

Given \(J \), \(|t_k| < 2J \)
- First instability \(k = 0, \pi \)
- \(k \to \pi/2 \) at large \(J \)
Driven-dissipative system — linear stability

Mean field theory — still large Hilbert space.

- Normal state + fluctuations: \(\rho = \bigotimes_n (\rho_{ss} + \sum_k \delta \rho_k e^{i k \cdot n - i \nu_k t} + \text{H.c.}) \)
- \(\nu_k \) Eigenvalues of \(M = M_0 - t_k M_1 \), \(t_k = -2J \cos(k) \)
- Unstable if \(\Im[\nu_k] > 0 \)

Follow [Boité et al., PRA 2014]

\[\text{Max}[\Im(\nu_k)] = \frac{2J}{g = g' = 1} \]

Given \(J, |t_k| < 2J \)
- First instability \(k = 0, \pi \)
- \(k \to \pi/2 \) at large \(J \)
Driven-dissipative system — linear stability

Mean field theory — still large Hilbert space.

- Normal state + fluctuations: \(\rho = \bigotimes_n (\rho_{ss} + \sum_k \delta \rho_k e^{i k \cdot n - i \nu_k t} + \text{H.c.}) \)
- \(\nu_k \) Eigenvalues of \(M = M_0 - t_k M_1, \) \(t_k = -2J \cos(k) \)
- Unstable if \(\Im[\nu_k] > 0 \)

Follow [Boité et al., PRA 2014]

- Given \(J, |t_k| < 2J \)
- First instability \(k = 0, \pi \)
- \(k \to \pi/2 \) at large \(J \)
Rabi-Hubbard model — linear stability

Stability phase diagram:

Rabi-Hubbard model — linear stability

Stability phase diagram:

Steady state correlations:

Rabi-Hubbard model — linear stability

Stability phase diagram:

Steady state correlations:

\[\langle \sigma^x_{n\sigma_{n+1}} \rangle \]

\[J=0.4 \]

\[g=1.5 \]

\[\text{Separation, } l \]

\[|i - j| = \uparrow \downarrow \]
Rabi-Hubbard model — linear stability

Stability phase diagram:

\[\text{Most unstable } k \]

\[\begin{array}{cccccc}
0 & 0.25 & 0.5 & 0.75 & 1 \\
0 & 0.25 & 0.5 & 0.75 & 1
\end{array} \]

\[g = g' \]

\[J \]

\[\frac{\pi}{2} \]

\[\pi \]

\[-2 \]

\[0 \]

\[2 \]

\[-2 \]

\[0 \]

\[2 \]

\[\langle \sigma_x^n \sigma_x^{n+1} \rangle \]

\[\langle \sigma_x^n \sigma_x^{n+1} \rangle \]

\[g = 1.5 \]

\[J = 0.4 \]

\[J = 0.6 \]

\[\text{vs } |i - j| = \updownarrow \]

\[\langle \sigma_x^n \sigma_x^{n+1} \rangle \]

\[\text{Separation, } l \]

\[0 \]

\[4 \]

\[8 \]

\[12 \]

\[16 \]

\[-0.2 \]

\[0 \]

\[0.2 \]

\[0.4 \]

\[0.6 \]

\[-0.2 \]

\[0 \]

\[0.2 \]

\[0.4 \]

\[0.6 \]

\[0 \]

\[4 \]

\[8 \]

\[12 \]

\[16 \]

\[-0.2 \]

\[0 \]

\[0.2 \]

\[0.4 \]

\[0.6 \]

\[-0.2 \]

\[0 \]

\[0.2 \]

\[0.4 \]

\[0.6 \]

\[0 \]

\[4 \]

\[8 \]

\[12 \]

\[16 \]

Rabi-Hubbard model — linear stability

Stability phase diagram:

Steady state correlations:

\[\langle \sigma_x^n \sigma_x^{n+1} \rangle \]

\[\langle \sigma^x_n \sigma^x_{n+1} \rangle \]

\[J=0.4 \]
\[J=0.6 \]
\[J=0.8 \]

\[\text{Separation, } l \]

\[0 4 8 12 16 \]

\[0 0.2 0.4 0.6 \]

\[0 0.2 0.4 0.6 \]

\[g=1.5 \]
\[0 \]
\[\pi /2 \]
\[\pi \]

\[\pi \]

\[g=g' \]

\[J \]

\[\text{Most unstable } k \]

\[\ldots \text{ vs } |i - j| = \updownarrow \]
Linear stability – limit cycles

If \(\nu_k = \pm \nu'_k + i \nu''_k \) at instability \(\rightarrow \) Limit Cycle

[Lee et al. PRA ’11, Jin et al. PRL ’13, Ludwig & Marquard PRL ’13, Chan et al. arXiV:1501.00979]

Linear stability – limit cycles

- If $\nu_k = \pm \nu'_k + i \nu''_k$ at instability \rightarrow Limit Cycle

 [Lee et al. PRA '11, Jin et al. PRL '13, Ludwig & Marquard PRL '13, Chan et al. arXiV:1501.00979]

Phase-boundary Effective model

- Compare phase boundaries

Ground state:

\[g/\omega_0 \]

\[J/\omega_0 \]

\[\text{Normal} \]

\[\text{Ordered} \]

\[0 \hspace{1cm} 0.2 \hspace{1cm} 0.4 \hspace{1cm} 0.6 \hspace{1cm} 0.8 \hspace{1cm} 1 \]

\[J/\omega \]

\[0 \]

\[g/\omega_0 \]

\[0 \hspace{1cm} 1 \hspace{1cm} 2 \]

\[\text{Normal} \]

\[\text{Ordered} \]

- Ground state, \(J_{\text{crit}} \sim e^{-2g^2/\omega^2} \) at \(g \gg \omega \)

- Dissipation means \(J_{\text{crit}} > J_{\text{min}} \)

Jonathan Keeling
Collective dissipative behaviour
CUNY, April 2015
Phase-boundary Effective model

- Compare phase boundaries

Ground state:

- Driven dissipative:

Ground state, $J_{\text{crit}} \sim e^{-2g^2/\omega^2}$ at $g \gg \omega$

- Dissipation means $J_{\text{crit}} > J_{\text{min}}$
Phase-boundary Effective model

- Compare phase boundaries

Ground state:

- Ground state, $J_{\text{crit}} \sim e^{-2g^2/\omega^2}$ at $g \gg \omega$
- Dissipation means $J_{\text{crit}} > J_{\text{min}}$

Driven dissipative:

Jonathan Keeling

Collective dissipative behaviour

CUNY, April 2015
Consider effective spinor model

\[H = \sum_i \frac{\Delta}{2} \tau_i^2 - \sum_{\langle ij \rangle} \tilde{J}_x \tau_i^x \tau_i^x + \tilde{J}_y \tau_i^y \tau_i^y, \quad \dot{\rho} = -i[H, \rho] + \ldots \]

Level populations:

If \(\Delta \sim \omega_0 e^{-2g^2/\omega^2} \ll 1 \)

\[J_{\text{crit}} \approx \frac{\kappa^2 g^2}{\omega^3} + \frac{\omega^3}{16g^2} \]
Phase-boundary Effective model

- Consider effective spinor model

\[H = \sum_i \frac{\Delta}{2} \tau_i^z - \sum_{\langle ij \rangle} \tilde{J}_x \tau_i^x \tau_j^x + \tilde{J}_y \tau_i^y \tau_j^y, \quad \dot{\rho} = -i[H, \rho] + \ldots \]

- Level populations:

\begin{align*}
\dot{\rho} &= -i[H, \rho] + \ldots \\
\text{if } \Delta &\sim \omega_0 e^{-2g^2/\omega^2} < 1 \\
J_{\text{crit}} &\approx \frac{\kappa^2 g^2}{\omega^3} + \frac{\omega^3}{16g^2}
\end{align*}
Phase-boundary Effective model

- Consider effective spinor model

\[
H = \sum_i \frac{\Delta}{2} \tau_i^z - \sum_{\langle ij \rangle} \tilde{J}_x \tau_i^x \tau_j^x + \tilde{J}_y \tau_i^y \tau_j^y, \quad \dot{\rho} = -i[H, \rho] + \ldots
\]

- Level populations:

![Level populations graph]

- If \(\Delta \sim \omega_0 e^{-2g^2/\omega^2} \ll 1 \)

\[
J_{\text{crit}} \approx \frac{\kappa^2 g^2}{\omega^3} + \frac{\omega^3}{16g^2}
\]

Jonathan Keeling
$g' \neq g$, Level crossings

- For $g' \neq g$, Δ can swap sign

If levels/populations in wrong order, FM/AFM switch.
$g' \neq g$, Level crossings

- For $g' \neq g$, Δ can swap sign ... and loss can invert population

If levels/populations in wrong order, FM/AFM switch.
$g' \neq g$, Level crossings

- For $g' \neq g$, Δ can swap sign ... and loss can invert population

- If levels/populations in wrong order, FM/AFM switch.
$g' \neq g$, Level crossings

- For $g' \neq g$, Δ can swap sign ... and loss can invert population

- If levels/populations in wrong order, FM/AFM switch.

Jonathan Keeling

Collective dissipative behaviour

CUNY, April 2015
Collective dissipation

1. Nonequilibrium quantum matter

2. Collective behaviour in driven–dissipative systems
 - Transverse field Ising
 - Rabi-Hubbard model

3. Collective dissipation
 - Coupled qubit-cavity systems
 - Bath induced coherence
Collective dephasing

- Real environment is not Markovian
 - [Carmichael & Walls JPA ’73] Requirements for correct equilibrium
 - [Ciuti & Carusotto PRA ’09] Dicke SR and emission

- Cannot assume fixed κ, γ

- Phase transition \rightarrow soft modes

Dicke model linewidth:

$$H = \omega \psi \dagger \psi + N \sum_{i=1}^{\sigma} \epsilon_i \sigma_z^i + g (\sigma_+^i \psi + h. c.) + \sum_{i} \sigma_z^i \sum_{q} \gamma_q (b_{q}^\dagger + b_{q}) + \sum_{q} \beta_q b_{q}^\dagger b_{q}.$$
Collective dephasing

- Real environment is not Markovian
 - [Carmichael & Walls JPA ’73] Requirements for correct equilibrium
 - [Ciuti & Carusotto PRA ’09] Dicke SR and emission
- Cannot assume fixed κ, γ
- Phase transition \rightarrow soft modes
Collective dephasing

- Real environment is not Markovian
 - [Carmichael & Walls JPA ’73] Requirements for correct equilibrium
 - [Ciuti & Carusotto PRA ’09] Dicke SR and emission
- Cannot assume fixed κ, γ
- Phase transition \rightarrow soft modes
Collective dephasing

- Real environment is not Markovian
 - [Carmichael & Walls JPA '73] Requirements for correct equilibrium
 - [Ciuti & Carusotto PRA '09] Dicke SR and emission
- Cannot assume fixed κ, γ
- Phase transition \rightarrow soft modes
Collective dephasing

- Real environment is not Markovian
 - [Carmichael & Walls JPA ’73] Requirements for correct equilibrium
 - [Ciuti & Carusotto PRA ’09] Dicke SR and emission
- Cannot assume fixed κ, γ
- Phase transition \rightarrow soft modes

Dicke model linewidth:

\[
H = \omega \psi^\dagger \psi + \sum_{i=1}^{N} \frac{\epsilon_i}{2} \sigma_i^z + g \left(\sigma_i^+ \psi + \text{h.c.} \right) \\
+ \sum_i \sigma_i^z \sum_q \gamma_q \left(b_q^\dagger + b_q \right) + \sum_q \beta_q b_{iq}^\dagger b_q.
\]

[Nissen, Fink et al. PRL ’13]
Collective dephasing

- Real environment is not Markovian
 - [Carmichael & Walls JPA ’73] Requirements for correct equilibrium
 - [Ciuti & Carusotto PRA ’09] Dicke SR and emission
- Cannot assume fixed κ, γ
- Phase transition \rightarrow soft modes

Dicke model linewidth:

$$H = \omega \psi^\dagger \psi + \sum_{i=1}^{N} \frac{\epsilon_i}{2} \sigma_i^z + g \left(\sigma_i^+ \psi + \text{h.c.} \right)$$

$$+ \sum_i \sigma_i^z \sum_q \gamma_q \left(b_q^\dagger + b_q \right) + \sum_q \beta_q b_{iq}^\dagger b_q.$$

[Nissen, Fink et al. PRL ’13]
Collective dephasing & weak lasing

- Toy problem:

\[
\hat{H} = \omega_a a^\dagger a + \omega_b b^\dagger b + (a^\dagger + b^\dagger) \sum_i \xi_i c_i + \text{H.c} + H_{\text{Bath}}
\]

- Standard picture:

\[
\dot{\rho} = -i[H_0, \rho] + \left\{ \gamma_\uparrow \mathcal{L}[a^\dagger + b^\dagger] + \gamma_\downarrow \mathcal{L}[a + b] + \text{degenerate} \right\} + \left\{ \gamma_\uparrow a \mathcal{L}[a^\dagger] + \gamma_\downarrow b \mathcal{L}[b^\dagger] + \text{secularised} \right\}
\]

- Exactly solvable problem — which is correct? Consider \(\langle a^\dagger b \rangle \)
Collective dephasing & weak lasing

- Toy problem:

\[
\hat{H} = \omega_a a^\dagger a + \omega_b b^\dagger b + (a^\dagger + b^\dagger) \sum_i \xi_i c_i + H.c + H_{\text{Bath}}
\]

- Standard picture:

\[
\dot{\rho} = -i[H_0, \rho] + \left\{ \begin{align*}
\gamma_1 \mathcal{L}[a^\dagger + b^\dagger] + \gamma_1 \mathcal{L}[a + b] + \text{degenerate} \\
\gamma_1 a \mathcal{L}[a^\dagger] + \gamma_1 b \mathcal{L}[b^\dagger] + \text{secularised}
\end{align*} \right.
\]

- Exactly solvable problem — which is correct? Consider \((a^\dagger b)\)
Collective dephasing & weak lasing

- Toy problem:

\[
\hat{H} = \omega_a a^\dagger a + \omega_b b^\dagger b + (a^\dagger + b^\dagger) \sum \xi_i c_i + H.c + H_{\text{Bath}}
\]

- Standard picture:

\[
\dot{\rho} = -i[H_0, \rho] + \left\{ \gamma_{\uparrow} \mathcal{L}[a^\dagger + b^\dagger] + \gamma_{\downarrow} \mathcal{L}[a + b] + \right. \\
\left. \gamma_{\uparrow, a} \mathcal{L}[a^\dagger] + \gamma_{\uparrow, b} \mathcal{L}[b^\dagger] + \ldots \right. \text{ degenerate} \\
\left. \right. \text{ secularised}
\]

- Exactly solvable problem — which is correct? Consider \((a^\dagger b)\)
Collective dephasing & weak lasing

- Toy problem:

\[\hat{H} = \omega_a a^\dagger a + \omega_b b^\dagger b + (a^\dagger + b^\dagger) \sum_i \xi_i c_i + H.c + H_{\text{Bath}} \]

- Standard picture:

\[\dot{\rho} = -i[H_0, \rho] + \begin{cases}
\gamma_{\uparrow} \mathcal{L}[a^\dagger + b^\dagger] + \gamma_{\downarrow} \mathcal{L}[a + b] + & \text{degenerate} \\
\gamma_{\uparrow, a} \mathcal{L}[a^\dagger] + \gamma_{\uparrow, b} \mathcal{L}[b^\dagger] + & \text{secularised}
\end{cases} \]

- Exactly solvable problem – which is correct? Consider \(\langle a^\dagger b \rangle \)
Bath induced coherence

- **Steady state:**
 - If $\omega_a = \omega_b$, then $\langle a^\dagger b \rangle = \langle a^\dagger a \rangle = \langle b^\dagger b \rangle$
 - If $\omega_a \neq \omega_b$ then $\langle a^\dagger b \rangle \ll \langle a^\dagger a \rangle, \langle b^\dagger b \rangle$

- $\mathcal{L}[a + b]$ wrong if $\omega_a \neq \omega_b$

- Residual coherence – non-flat DoS

- Requires non-secular master eqn.

- Approaching steady state:
Bath induced coherence

- Steady state:
 - If $\omega_a = \omega_b$, then $\langle a^\dagger b \rangle = \langle a^\dagger a \rangle = \langle b^\dagger b \rangle$
 - If $\omega_a \neq \omega_b$ then $\langle a^\dagger b \rangle \ll \langle a^\dagger a \rangle, \langle b^\dagger b \rangle$
 - $\mathcal{L}[a + b]$ wrong if $\omega_a \neq \omega_b$
 - Residual coherence – non-flat DoS
 - Requires non-secular master eqn.

- Approaching steady state:
Bath induced coherence

- **Steady state:**
 - If $\omega_a = \omega_b$, then $\langle a^{\dagger} b \rangle = \langle a^{\dagger} a \rangle = \langle b^{\dagger} b \rangle$
 - If $\omega_a \neq \omega_b$ then $\langle a^{\dagger} b \rangle \ll \langle a^{\dagger} a \rangle, \langle b^{\dagger} b \rangle$
 - $\mathcal{L}[a + b]$ wrong if $\omega_a \neq \omega_b$
 - Residual coherence – non-flat DoS
 - Requires non-secular master eqn.

- Approaching steady state:
Bath induced coherence

- **Steady state:**
 - If $\omega_a = \omega_b$, then $\langle a^\dagger b \rangle = \langle a^\dagger a \rangle = \langle b^\dagger b \rangle$
 - If $\omega_a \neq \omega_b$ then $\langle a^\dagger b \rangle \ll \langle a^\dagger a \rangle, \langle b^\dagger b \rangle$
 - $\mathcal{L}[a + b]$ wrong if $\omega_a \neq \omega_b$
 - Residual coherence – non-flat DoS
 - Requires non-secular master eqn.

- **Approaching steady state:**

![Graph showing coherence变化](image)
Bath induced coherence

Steady state:
- If $\omega_a = \omega_b$, then $\langle a\dagger b \rangle = \langle a\dagger a \rangle = \langle b\dagger b \rangle$
- If $\omega_a \neq \omega_b$ then $\langle a\dagger b \rangle \ll \langle a\dagger a \rangle, \langle b\dagger b \rangle$
- $\mathcal{L}[a + b]$ wrong if $\omega_a \neq \omega_b$
- Residual coherence – non-flat DoS
- Requires non-secular master eqn.

Approaching steady state:

$$\langle a\dagger b \rangle \simeq \exp \left[-C(\omega_a - \omega_b)^2 t \right] + \langle a\dagger b \rangle \bigg|_{t \to \infty}$$
Summary

- Parametric pumping — non-equilibrium “phases” of transverse field Ising model

Joshi et al. PRA ’13

- Rabi Hubbard model — exotic attractors.

Schiró et al. arXiv:1503.04456

- Collective effects in dephasing

Nissen et al. PRL ’13