From weak to ultra-strong matter-light coupling with organic materials

Jonathan Keeling

Snowbird, January 2015
Matter-Light coupling with organic molecules

What & why?

- Wide variety of systems: polymers, fluorenes, J-aggregates, molecular crystals.
- Often large polariton splitting, $g\sqrt{N} \sim 0.1 \text{ eV} \leftrightarrow 1000 \text{K}$

Theory questions/challenges

- Ultrastrong coupling
- Vibrational modes
- (Partial) thermalisation

[Kena Cohen and Forrest, Nat. Photon ’10; Plumhoff et al. Nat. Materials ’14, Daskalakis et al. ibid ’14] [Klaers et al. Nature ’10]
Matter-Light coupling with organic molecules

What & why?

- Wide variety of systems: polymers, fluorenes, J-aggregates, molecular crystals.
- Often large polariton splitting, $g\sqrt{N} \sim 0.1 \text{ eV} \leftrightarrow 1000 \text{K}$

Theory questions/challenges

- Ultrastrong coupling
- Vibrational modes
- (Partial) thermalisation

[Kena Cohen and Forrest, Nat. Photon ’10; Plumhoff et al. Nat. Materials ’14, Daskalakis et al. ibid ’14] [Klaers et al. Nature ’10]
Matter-Light coupling with organic molecules

- **What & why?**
 - Wide variety of systems: polymers, fluorenes, J-aggregates, molecular crystals.
 - Often large polariton splitting, $g\sqrt{N} \sim 0.1$ eV ↔ 1000K

- **Theory questions/challenges**
 - Ultrastrong coupling
 - Vibrational modes
 - (Partial) thermalisation

[Kena Cohen and Forrest, Nat. Photon ’10; Plumhoff *et al.* Nat. Materials ’14, Daskalakis *et al.* ibid ’14] [Klaers *et al.* Nature ’10]
Dicke Holstein Model

- Dicke model: 2LS ↔ photons
- Molecular vibrational mode
 - Phonon frequency Ω
 - Huang-Rhys parameter S — coupling strength

$$H_{\text{sys}} = \omega \psi^\dagger \psi + \sum_\alpha \left[\frac{\epsilon}{2} \sigma_\alpha^z + g \left(\psi + \psi^\dagger \right) \left(\sigma_\alpha^+ + \sigma_\alpha^- \right) \right]$$
Dicke Holstein Model

- Dicke model: 2LS ↔ photons
- Molecular vibrational mode
 - Phonon frequency Ω
 - Huang-Rhys parameter S — coupling strength

$$H_{sys} = \omega \psi^{\dagger} \psi + \sum_\alpha \left[\frac{\epsilon}{2} \sigma^z_\alpha + g \left(\psi + \psi^{\dagger} \right) \left(\sigma^+_\alpha + \sigma^-_\alpha \right) \right]$$

$$+ \sum_\alpha \Omega \left\{ b^{\dagger}_\alpha b_\alpha + \sqrt{S} \sigma^z_\alpha \left(b^{\dagger}_\alpha + b_\alpha \right) \right\}$$
Three stories

1. Weak coupling: photon condensation

2. Strong coupling: polaritons

3. Ultra strong coupling: vibrational reconfiguration
Modelling

\[H_{\text{sys}} = \sum_m \omega_m \psi_m^\dagger \psi_m + \sum_\alpha \left[\frac{\epsilon}{2} \sigma_\alpha^z + g \left(\psi_m \sigma_\alpha^+ + \text{H.c.} \right) \right] + \sum_\alpha \Omega \left\{ b_\alpha^\dagger b_\alpha + \sqrt{S} \sigma_\alpha^z \left(b_\alpha^\dagger + b_\alpha \right) \right\} \]

- **2D** harmonic oscillator
 \(\omega_m = \omega_{\text{cutoff}} + m \omega_{\text{H.O.}} \)
- Incoherent processes: excitation, decay, loss, vibrational thermalisation.
- Weak coupling, perturbative in \(g \)

Jonathan Keeling
Weak, strong, ultra-strong
Snowbird, January 2015
Modelling

\[H_{\text{sys}} = \sum_{m} \omega_{m} \psi_{m}^{\dagger} \psi_{m} + \sum_{\alpha} \left[\frac{\epsilon}{2} \sigma_{\alpha}^{z} + g \left(\psi_{m} \sigma_{\alpha}^{+} + \text{H.c.} \right) \right] + \sum_{\alpha} \Omega \left\{ b_{\alpha}^{\dagger} b_{\alpha} + \sqrt{S} \sigma_{\alpha}^{z} \left(b_{\alpha}^{\dagger} + b_{\alpha} \right) \right\} \]

- **2D** harmonic oscillator
 \[\omega_{m} = \omega_{\text{cutoff}} + m \omega_{\text{H.O.}}. \]

- Incoherent processes: excitation, decay, loss, vibrational thermalisation.

- Weak coupling, perturbative in \(g \)
Modelling

\[H_{\text{sys}} = \sum_m \omega_m \psi_m^\dagger \psi_m + \sum_\alpha \left[\frac{\epsilon}{2} \sigma^z_\alpha + g (\psi_m \sigma^+_\alpha + \text{H.c.}) \right] + \sum_\alpha \Omega \left\{ b^\dagger_\alpha b_\alpha + \sqrt{S} \sigma^z_\alpha (b^\dagger_\alpha + b_\alpha) \right\} \]

- **2D** harmonic oscillator
 \[\omega_m = \omega_{\text{cutoff}} + m \omega_{\text{H.O.}}. \]
- Incoherent processes: excitation, decay, loss, vibrational thermalisation.
- Weak coupling, perturbative in \(g \)
Modelling

Master equation

\[
\dot{\rho} = -i[H_0, \rho] - \sum_m \frac{\kappa}{2} \mathcal{L}[\psi_m] - \sum_\alpha \left[\frac{\Gamma^{\uparrow}}{2} \mathcal{L}[\sigma^{\uparrow}_\alpha] + \frac{\Gamma^{\downarrow}}{2} \mathcal{L}[\sigma^{\downarrow}_\alpha] \right] - \sum_{m,\alpha} \left[\Gamma(\delta_m = \omega_m - \epsilon) \frac{1}{2} \mathcal{L}[\sigma^{\uparrow}_\alpha \psi_m] + \Gamma(-\delta_m = \epsilon - \omega_m) \frac{1}{2} \mathcal{L}[\sigma^{\downarrow}_\alpha \psi_m^\dagger] \right]
\]

\begin{center}
\includegraphics[width=0.4\textwidth]{graph.png}
\end{center}

- Kennard-Stepanov: \(\Gamma(\delta) \approx \Gamma(-\delta) e^{\beta \delta}\)
- Expt: \(\omega_0 < \epsilon\)
- \(\Gamma \to 0\) at large \(\delta\)

[Marthaler et al PRL ’11, Kirton & JK PRL ’13]
Modelling

Master equation

\[\dot{\rho} = -i[H_0, \rho] - \sum_m \frac{\kappa}{2} \mathcal{L}[\psi_m] - \sum_\alpha \left[\frac{\Gamma}{2} \mathcal{L}[\sigma_\alpha^+] + \frac{\Gamma}{2} \mathcal{L}[\sigma_\alpha^-] \right] - \sum_{m,\alpha} \left[\frac{\Gamma(\delta_m = \omega_m - \epsilon)}{2} \mathcal{L}[\sigma_\alpha^+ \psi_m] + \frac{\Gamma(-\delta_m = \epsilon - \omega_m)}{2} \mathcal{L}[\sigma_\alpha^- \psi_m] \right] \]

- Kennard-Stepanov
 \[\Gamma(+\delta) \simeq \Gamma(-\delta)e^{\beta\delta} \]
- Expt: \(\omega_0 < \epsilon \)
- \(\Gamma \rightarrow 0 \) at large \(\delta \)

[Marthaler et al PRL ’11, Kirton & JK PRL ’13]
Distribution $g_m n_m$

- Master equation \rightarrow Rate equation

$$\partial_t n_m = -\kappa n_m + N \left[\Gamma(-\delta_m)(n_m + 1)\langle \sigma^{ee} \rangle - \Gamma(\delta_m)n_M\langle \sigma^{gg} \rangle \right]$$

- Bose-Einstein distribution without losses

Low loss: Thermal

[Kirton & JK PRL ’13]
Distribution $g_m n_m$

- Master equation \rightarrow Rate equation

\[
\frac{\partial}{\partial t} n_m = -\kappa n_m + N \left[\Gamma(-\delta_m)(n_m + 1)\langle \sigma_{ee} \rangle - \Gamma(\delta_m) n_M \langle \sigma_{gg} \rangle \right]
\]

- Bose-Einstein distribution without losses

Low loss: Thermal \rightarrow Laser

[Kirton & JK PRL '13]
Time evolution

- Initial state: excited molecules
- Initial emission, follows gain peak
- Thermalisation by repeated absorption

Time evolution

- Initial state: excited molecules
- Initial emission, follows gain peak
- Thermalisation by repeated absorption

Time evolution

- Initial state: excited molecules
- Initial emission, follows gain peak
- Thermalisation by repeated absorption

Strong coupling: polaritons

1. Weak coupling: photon condensation

2. Strong coupling: polaritons

3. Ultra strong coupling: vibrational reconfiguration
Strong coupling phase diagram — mean field

- Mean field — single photon mode

\[H = \omega \psi^\dagger \psi + \sum_\alpha \left[\epsilon S^z_\alpha + g (\psi S^+_\alpha + \psi^\dagger S^-_\alpha) + \Omega \left\{ b^\dagger_\alpha b_\alpha + \sqrt{S} (b^\dagger_\alpha + b_\alpha) S^z_\alpha \right\} \right] \]

- \(\epsilon = \omega - \Delta \), Mott lobes if \(\epsilon < \omega - 2g \)
- \(S \) reduces \(g_{\text{eff}} \)

- Reentrant behaviour — \(\text{Min } \mu \text{ at } k_B T \sim 0.1 \Omega \)
Strong coupling phase diagram — mean field

- Mean field — single photon mode

\[H = \omega \psi^\dagger \psi + \sum_{\alpha} \left[\epsilon S_{\alpha}^z + g (\psi S_{\alpha}^+ + \psi^\dagger S_{\alpha}^-) \right] + \Omega \left\{ b_{\alpha}^\dagger b_{\alpha} + \sqrt{S} \left(b_{\alpha}^\dagger + b_{\alpha} \right) S_{\alpha}^z \right\} \]

- \[\epsilon = \omega - \Delta, \]
- Mott lobes if \(\epsilon < \omega - 2g \)
- \(S \) reduces \(g_{\text{eff}} \)

- Reentrant behaviour — Min \(\mu \) at \(k_B T \sim 0.1 \Omega \)
Strong coupling phase diagram — mean field

- Mean field — single photon mode

\[H = \omega \psi^{\dagger} \psi + \sum_{\alpha} \left[\epsilon S_{z,\alpha}^{\alpha} + g \left(\psi S_{+}^{\alpha} + \psi^{\dagger} S_{-}^{\alpha} \right) \right] + \Omega \left\{ b_{\alpha}^{\dagger} b_{\alpha} + \sqrt{S} \left(b_{\alpha}^{\dagger} + b_{\alpha} \right) S_{z,\alpha}^{\alpha} \right\} \]

- \(\epsilon = \omega - \Delta \),
 Mott lobes if \(\epsilon < \omega - 2g \)

- \(S \) reduces \(g_{\text{eff}} \)

- Reentrant behaviour — Min \(\mu \) at \(k_{B} T \sim 0.1 \Omega \)
Polariton spectrum: photon weight

Saturating 2LS: $g_{\text{eff}}^2 \sim g^2 (1 - 2\rho)$

Cwik et al. EPL ’14
Polariton spectrum: photon weight

Saturating 2LS: $g_{\text{eff}}^2 \sim g^2 (1 - 2\rho)$

What is nature of polariton mode?

$G_R(t) = -i \langle \psi^\dagger(t) \psi(0) \rangle, \quad G_R(\nu) = \sum_n \frac{Z_n}{\nu - \omega_n}$

[Cwik et al. EPL '14]
Polariton spectrum: photon weight

![Graph showing polariton spectrum with photon weight values and energy density.](image)

- Saturating 2LS: $g_{\text{eff}}^2 \sim g^2 (1 - 2\rho)$
- What is the nature of the polariton mode?

$$G^R(t) = -i \langle \psi^\dagger(t) \psi(0) \rangle, \quad G^R(\nu) = \sum_n \frac{Z_n}{\nu - \omega_n}$$

[Cwik et al. EPL '14]
Ultra strong coupling: vibrational reconfiguration

1. Weak coupling: photon condensation

2. Strong coupling: polaritons

3. Ultra strong coupling: vibrational reconfiguration
Ultra-strong coupling, changing configuration

- **Ultra-strong coupling:** $\omega, \epsilon \sim g\sqrt{N} \propto \sqrt{\text{concentration}}$
- **Normal state:** configuration of molecules

[Canaguier-Durand *et al.* Angew. Chem. ’13]

[Diagram showing cavity resonance, molecular transition, and hybrid states.

Questions:
- Polariton vs. molecular spectral weight – chemical eqbm
- Temperature dependent

Jonathan Keeling
Weak, strong, ultra-strong
Snowbird, January 2015
Ultra-strong coupling, changing configuration

- Ultra-strong coupling: $\omega, \epsilon \sim g\sqrt{N} \propto \sqrt{\text{concentration}}$

- Normal state: configuration of molecules

- Polariton vs molecular spectral weight – chemical eqbm
- Temperature dependent

Questions:
Ultra-strong coupling, changing configuration

- Ultra-strong coupling: \(\omega, \epsilon \sim g\sqrt{N} \propto \sqrt{\text{concentration}} \)
- Normal state: configuration of molecules

- Polariton vs molecular spectral weight – chemical eqbm
- Temperature dependent

Questions:

- Vibrationally dressed spectrum + disorder
- Microscopic theory – changing configuration
Disordered molecules — spectrum

- Calculate Green’s function $G^R(\nu)$:

\[
T(\nu) \propto |G^R(\nu)|^2, \quad A(\nu) \propto -\Im[G^R(\nu)] + \text{(interference)}
\]

- Ultra-strong coupling — renormalised photon

- Central peak:

\[
G^R(\nu) = \frac{1}{\nu + i\kappa/2 - \omega_k - g^2 G^R_{\text{Exc.}}(\nu)}
\]

- Temperature independent (for $k_B T \ll g\sqrt{N}$)

Spectral weight

\[
g\sqrt{N} = 0.3 \text{ eV}
\]

\[
\text{Spectral weight}
\]

\[
\omega [\text{eV}]
\]

\[
g\sqrt{N} = 0.3 \text{ eV}
\]
Disordered molecules — spectrum

- Calculate Green’s function $G^R(\nu)$:

$$ T(\nu) \propto |G^R(\nu)|^2, \quad A(\nu) \propto -\Im[G^R(\nu)] + \text{(interference)} $$

- Ultra-strong coupling — renormalised photon

- Central peak:

$$ G^R(\nu) = \frac{1}{\nu + i\kappa/2 - \omega} G^R_{\text{Exc.}}(\nu) $$

- Temperature independent (for $k_B T \ll g\sqrt{N}$)

\[g\sqrt{N}=0.3 \text{ eV} \]
\[g\sqrt{N}=0.5 \text{ eV} \]
Disordered molecules — spectrum

- Calculate Green’s function $G^R(\nu)$:

 $$T(\nu) \propto |G^R(\nu)|^2, \quad A(\nu) \propto -\Im[G^R(\nu)] + \text{(interference)}$$

- Ultra-strong coupling — renormalised photon

- Temperature independent (for $k_B T \ll g\sqrt{N}$)
Disordered molecules — spectrum

- Calculate Green’s function $G^R(\nu)$:

 $$T(\nu) \propto |G^R(\nu)|^2, \quad A(\nu) \propto -\Im[G^R(\nu)] + \text{(interference)}$$

- Ultra-strong coupling — renormalised photon

Central peak:

$$G^R(\nu) = \frac{1}{\nu + i\kappa/2 - \omega - g^2 G^R_{\text{Exc.}}(\nu)}$$

Temperature independent (for $k_B T \ll g\sqrt{N}$)

Jonathan Keeling

Weak, strong, ultra-strong

Snowbird, January 2015
Disordered molecules — spectrum

- Calculate Green’s function $G^R(\nu)$:

$$T(\nu) \propto |G^R(\nu)|^2, \quad A(\nu) \propto -\Im[G^R(\nu)] + \text{(interference)}$$

- Ultra-strong coupling — renormalised photon

Temperature independent (for $k_B T \ll g\sqrt{N}$)
Disordered molecules — spectrum

- Calculate Green’s function $G^R(\nu)$:

$$T(\nu) \propto |G^R(\nu)|^2, \quad A(\nu) \propto -\Im[G^R(\nu)] + \text{(interference)}$$

- Ultra-strong coupling — renormalised photon

Central peak:

$$G^R(\nu) = \frac{1}{\nu + i\kappa/2 - \omega_k - g^2 G^R_{\text{Exc.}}(\nu)}$$

$$A(\nu) \sim \left(\frac{\kappa}{2} - \Im[G^R_{\text{Exc.}}]\right) |G^R(\nu)|^2$$

[Houdré et al., PRA ’96]

- Temperature independent (for $k_B T \ll g\sqrt{N}$)
Disordered molecules — spectrum

- Calculate Green’s function $G^R(\nu)$:

$$T(\nu) \propto |G^R(\nu)|^2, \quad A(\nu) \propto -\Im[G^R(\nu)] + \text{(interference)}$$

- Ultra-strong coupling — renormalised photon

Central peak:

$$G^R(\nu) = \frac{1}{\nu + i\kappa/2 - \omega_k - g^2 G^R_{\text{Exc.}}(\nu)}$$

$$A(\nu) \sim \left(\frac{\kappa}{2} - \Im[G^R_{\text{Exc.}}]\right) \left|G^R(\nu)\right|^2$$

[Houdré et al., PRA ’96]

- Temperature independent (for $k_B T \ll g\sqrt{N}$)
Disordered molecules — vibrational mode

- With vibrational sidebands, $S = 0.02$

![Graph showing spectral weight vs. energy with vibrational sidebands for different $g\sqrt{N}$ values.](image)
Disordered molecules — vibrational mode

- With vibrational sidebands, $S = 0.02$

![Graph showing spectral weight against energy (ω [eV]) for different values of $g\sqrt{N}$: g$\sqrt{N}=0.3$ eV, g$\sqrt{N}=0.5$ eV, g$\sqrt{N}=0.7$ eV. The graph includes a zoom-in on the bare molecule region.](image)
Disordered molecules + vibrations – vs temperature

- vs vs temperature

- Stronger disorder &
 \[S = 0.5, \sigma = 0.025 \text{eV} \]
Disordered molecules + vibrations – vs temperature

- vs vs temperature

Stronger disorder &

\[S = 0.5, \sigma = 0.025 \text{eV} \]

Jonathan Keeling

Weak, strong, ultra-strong

Snowbird, January 2015
Disordered molecules + vibrations – vs temperature

- vs vs temperature

S = 0.02, σ = 0.01 eV

Stronger disorder &
S = 0.5, σ = 0.025 eV

Jonathan Keeling
Weak, strong, ultra-strong
Snowbird, January 2015
Disordered molecules + vibrations – vs temperature

- vs vs temperature

Stronger disorder &
$S = 0.5, \sigma = 0.025\text{eV}$
Disordered molecules + vibrations – vs temperature

vs vs temperature

$S = 0.02, \sigma = 0.01\text{eV}$

Stronger disorder &

$S = 0.5, \sigma = 0.025\text{eV}$
Acknowledgements

GROUP:

COLLABORATORS: Reja (MPI-PKS), Littlewood (ANL & Chicago), De Liberato (Southhampton)

FUNDING:

[EPSRC logo]

[Topnes logo]
Summary

- Photon condensation and thermalisation

- Reentrance, phonon assisted transition, 1st order at $S \gg 1$

 ![Graphs and diagrams related to photon condensation and thermalisation]

- Vibrational configuration

 [Cwik et al. EPL ’14]

- [Cwik et al. in preparation]
Extra Slides

4. Dye laser
5. Photon BEC threshold
6. Photon BEC with spatial profile
7. Ultra-strong phonon coupling?
8. Anticrossing vs ρ
9. Polariton spectrum nature
10. Vibrational reconfiguration
Dicke-Holstein model: dye laser

4 Level Dye Laser

- Multiple photon modes
- Condensate mode is not maximum gain
- Gain/Absorption in balance
- Thermalisation
- (Ultra)strong matter-light coupling

- No strong coupling
- No electronic inversion — vibrational inversion.
Dicke-Holstein model: dye laser

4 Level Dye Laser

Typical operation
- No strong coupling
- No electronic inversion — vibrational inversion.

In this talk:
- Multiple photon modes
- Condensate mode is not maximum gain
- Gain/Absorption in balance
- Thermalisation
- (Ultra)strong matter-light coupling
Dicke-Holstein model: dye laser

4 Level Dye Laser

In this talk:
- Multiple photon modes
- Condensate mode is not maximum gain
- Gain/Absorption in balance
- Thermalisation

Typical operation
- No strong coupling
- No electronic inversion — vibrational inversion.
Dicke-Holstein model: dye laser

4 Level Dye Laser

Typical operation
- No strong coupling
- No electronic inversion — vibrational inversion.

In this talk:
- Multiple photon modes
 - Condensate mode is not maximum gain
 - Gain/Absorption in balance
 - Thermalisation
- (Ultra)strong matter-light coupling
Threshold condition

Compare threshold:
- Pump rate (Laser)
- Critical density (condensate)

[Kirton & JK PRL '13]

Jonathan Keeling
Weak, strong, ultra-strong
Snowbird, January 2015
Spatially varying pump intensity

\[
\partial_t \rho_\uparrow = -\tilde{\Gamma}_\downarrow(r)\rho_\uparrow + \tilde{\Gamma}_\uparrow(r)(\rho_m - \rho_\uparrow)
\]

\[
\partial_t n_m = \Gamma(\delta_m) \int d\vec{r} \rho_\uparrow |\psi_m(r)|^2 (n_m + 1) - \left(\kappa + \Gamma(\delta_m) \int d\vec{r} (\rho_m - \rho_\uparrow) |\psi_m(r)|^2 \right) n_m
\]
Spatially varying pump intensity

\[\partial_t \rho_\uparrow = -\tilde{\Gamma}_\downarrow(r) \rho_\uparrow + \tilde{\Gamma}_\uparrow(r) (\rho_m - \rho_\uparrow) \]

\[\partial_t n_m = \Gamma(\delta_m) \int d\vec{r} \rho_\uparrow |\psi_m(r)|^2 (n_m + 1) \]

\[- \left(\kappa + \Gamma(\delta_m) \int d\vec{r} (\rho_m - \rho_\uparrow) |\psi_m(r)|^2 \right) n_m \]
Critical coupling with increasing S

- Re-orient phase diagram
- g vs μ, T
- Colors \rightarrow Jump of $\langle \psi \rangle$

\[\sqrt{N} g_c = 4, \quad \Omega = 1 \]
\[S = 0 \]
\[\mu - \omega, T \]

\[\sqrt{N} g_c = 4, \quad \Omega = 1 \]
\[S = 6 \]
\[\mu - \omega, T \]
Critical coupling with increasing S

- Re-orient phase diagram
- g vs μ, T
- Colors \rightarrow Jump of $\langle \psi \rangle$
Explanation: Polaron formation

- Unitary transform

\[H_\alpha \rightarrow \tilde{H}_\alpha = e^{K_\alpha} H_\alpha e^{-K_\alpha} \quad K = \sqrt{S} S^z_\alpha (b^\dagger_\alpha - b_\alpha) \]

- Coupling moves to \(S^+ \)

\[H_\alpha = \text{const.} + \epsilon S^z_\alpha + \Omega b^\dagger_\alpha b_\alpha + g \left[\psi S^+_\alpha e^{\sqrt{S}(b^\dagger_\alpha - b_\alpha)} + \text{H.c.} \right] \]

- Optimal phonon displacements, \(\sim \sqrt{S} \)

- Reduced \(g_{\text{eff}} \sim g \times \exp(-S/2) \)

- For \(\psi \neq 0 \), competition

Variational MFT \(|\psi\rangle_\alpha \sim \exp(-\eta K_\alpha - \zeta b^\dagger_\alpha) |0, S\rangle_\alpha \)
Explanation: Polaron formation

- **Unitary transform**

 \[H_\alpha \rightarrow \tilde{H}_\alpha = e^{K_\alpha} H_\alpha e^{-K_\alpha} \quad K = \sqrt{S} S^z_\alpha (b^\dagger_\alpha - b_\alpha) \]

- **Coupling moves to** \(S^\pm \)

 \[\tilde{H}_\alpha = \text{const.} + \epsilon S^z_\alpha + \Omega b^\dagger_\alpha b_\alpha + g \left[\psi S^+_\alpha e^{\sqrt{S}(b^\dagger_\alpha - b_\alpha)} + \text{H.c.} \right] \]

- **Optimal phonon displacements,** \(\sim \sqrt{S} \)

- **Reduced** \(g_{\text{eff}} \sim g \times \exp(-S/2) \)

- **For** \(\psi \neq 0, \) **competition**

 Variational MFT \(|\psi\rangle_\alpha \sim \exp(-\eta K_\alpha - \zeta b^\dagger_\alpha) |0, S\rangle_\alpha \)
Explanation: Polaron formation

- Unitary transform
 \[H_\alpha \rightarrow \tilde{H}_\alpha = e^{K_\alpha} H_\alpha e^{-K_\alpha} \quad K = \sqrt{S} S_\alpha^z (b_\alpha^\dagger - b_\alpha) \]

- Coupling moves to \(S^\pm \)
 \[\tilde{H}_\alpha = \text{const.} + \epsilon S_\alpha^z + \Omega b_\alpha^\dagger b_\alpha + g \left[\psi S_\alpha^+ e^{\sqrt{S}(b_\alpha^\dagger - b_\alpha)} + \text{H.c.} \right] \]

- Optimal phonon displacements, \(\sim \sqrt{S} \)

- Reduced \(g_{\text{eff}} \sim g \times \exp(-S/2) \)
- For \(\psi \neq 0, \) competition
 Variational MFT \(|\psi\rangle_\alpha \sim \exp(-\eta K_\alpha - \zeta b_\alpha^\dagger)|0, S\rangle_\alpha \)
Explanation: Polaron formation

- Unitary transform
 \[H_\alpha \rightarrow \tilde{H}_\alpha = e^{K_\alpha} H_\alpha e^{-K_\alpha} \]
 \[K = \sqrt{S} S^z_\alpha (b_\alpha^\dagger - b_\alpha) \]

- Coupling moves to \(S^\pm \)
 \[\tilde{H}_\alpha = \text{const.} + \epsilon S^z_\alpha + \Omega b_\alpha^\dagger b_\alpha + g \left[\psi S^+_\alpha e^{\sqrt{S}(b^\dagger_\alpha - b_\alpha)} + \text{H.c.} \right] \]

- Optimal phonon displacements, \(\sim \sqrt{S} \)

- Reduced \(g_{\text{eff}} \sim g \times \exp(-S/2) \)

- For \(\psi \neq 0 \), competition
 Variational MFT \(|\psi\rangle_\alpha \sim \exp(-\eta K_\alpha - \zeta b_\alpha^\dagger)|0, S\rangle_\alpha \)
Explanation: Polaron formation

- Unitary transform
 \[H_\alpha \rightarrow \tilde{H}_\alpha = e^{K_\alpha} H_\alpha e^{-K_\alpha} \quad K = \sqrt{S} S^z_\alpha (b_\alpha^\dagger - b_\alpha) \]

- Coupling moves to \(S^\pm \)
 \[\tilde{H}_\alpha = \text{const.} + \epsilon S^z_\alpha + \Omega b_\alpha^\dagger b_\alpha + g \left[\psi S^+_\alpha e^{\sqrt{S} (b_\alpha^\dagger - b_\alpha)} + H.c. \right] \]

- Optimal phonon displacements, \(\sim \sqrt{S} \)

- Reduced \(g_{\text{eff}} \sim g \times \exp(-S/2) \)

- For \(\psi \neq 0 \), competition
 Variational MFT \(|\psi\rangle_\alpha \sim \exp(-\eta K_\alpha - \zeta b_\alpha^\dagger)|0, S\rangle_\alpha \)
Collective polaron formation

- Compares well at $S \gg 1$
- Coherent bosonic state

Feedback: Large/small $g_{\text{eff}} \leftrightarrow \lambda = \langle \psi \rangle$

Variational free energy

$$F = (\omega_c - \mu) \chi^2 + N \left\{ \Omega \left[\zeta^2 - S \eta \left(\frac{2 - \eta}{4} \right) \right] - T \ln \left[2 \cosh \left(\frac{\xi}{T} \right) \right] \right\}$$

Effective 2LS energy in field:

$$\zeta^2 = \left(\frac{\epsilon - \mu}{2} + \Omega \sqrt{S(1 - \eta) \chi} \right)^2 + g^2 \chi^2 e^{-S \zeta^2}$$

[Cwik et al. EPL ’14]
Collective polaron formation

- Compares well at $S \gg 1$
- Coherent bosonic state

Feedback: Large/small $g_{\text{eff}} \leftrightarrow \lambda = \langle \psi \rangle$

Variational free energy

$F = (\omega_c - \mu) \chi^2 + N \left\{ \Omega \left[\zeta^2 - S \frac{\eta(2 - \eta)}{4} \right] - T \ln \left[2 \cosh \left(\frac{\zeta}{T} \right) \right] \right\}$

Effective 2LS energy in field:

$\zeta^2 = \left(\frac{\epsilon - \mu}{2} + \Omega \sqrt{S(1 - \eta)} \zeta \right)^2 + g^2 \chi^2 e^{-S \zeta^2}$

[Cwik et al. EPL '14]
Collective polaron formation

- Compares well at $S \gg 1$
- Coherent bosonic state

- Feedback: Large/small $g_{\text{eff}} \leftrightarrow \lambda = \langle \psi \rangle$
- Variational free energy

$$F = (\omega_c - \mu) \lambda^2 + N \left\{ \Omega \left[\zeta^2 - S \eta \frac{(2 - \eta)}{4} \right] - T \ln \left[2 \cosh \left(\frac{\xi}{T} \right) \right] \right\}$$

Effective 2LS energy in field:

$$\xi^2 = \left(\frac{\epsilon - \mu}{2} + \Omega \sqrt{S(1 - \eta)} \zeta \right)^2 + g^2 \lambda^2 e^{-S \eta^2}$$

[Cwik et al. EPL ’14]
Polariton spectrum — coupled oscillators
Polariton spectrum — coupled oscillators

-3
-2
-1
0
1
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
Energy
Coupling, g
LP
UP
Photon
Exciton
Exciton-Ω

Jonathan Keeling
Weak, strong, ultra-strong
Snowbird, January 2015 26
Polariton spectrum — coupled oscillators

Jonathan Keeling

Weak, strong, ultra-strong

Snowbird, January 2015
Polariton spectrum — coupled oscillators

Jonathan Keeling

Weak, strong, ultra-strong

Snowbird, January 2015
Polariton spectrum: what condensed

- Repeat weight for n-phonon channel
- Eigenvector that is macroscopically occupied
- Optimal $T \sim 2\Omega$

[Cwik et al. EPL '14]
Polariton spectrum: what condensed

- Repeat weight for n-phonon channel
- Eigenvector that is macroscopically occupied

Optimal $T \sim 2\Omega$

[Cwik et al. EPL '14]
Polariton spectrum: what condensed

- Repeat weight for \(n \)-phonon channel
- Eigenvector that is macroscopically occupied

\[S=2, \Delta=4, \Omega=0.1, \ g=2 \]

Optimal \(T \sim 2\Omega \)

\[\langle \psi \rangle \]

[Cwik et al. EPL ’14]
Polariton spectrum: what condensed

- Repeat weight for n-phonon channel
- Eigenvector that is macroscopically occupied

Optimal $T \sim 2\Omega$

[Cwik et al. EPL ’14]
Polariton spectrum: what condensed

- Repeat weight for n-phonon channel
- Eigenvector that is macroscopically occupied

Optimal $T \sim 2\Omega$

[Cwik et al. EPL ’14]
Vibrational reconfiguration

- \(H = H_0 + H_1, \ H_1 = \sum_{n,k} g_{n,k} (\psi_k^\dagger \sigma_n^+ + \text{H.c.}) \)
- Schrieffer-Wolff: admixture of excited state

\[
H_{\text{eff, vacuum}} = H_0 - \frac{g^2 N}{2(\epsilon + \omega)} \left\{ 1 - \frac{\Omega \sqrt{S} (b + b^\dagger)}{\epsilon + \omega} + \mathcal{O} \left[\left(\frac{\Omega}{\epsilon} \right)^2, \frac{g \sqrt{N}}{\epsilon} \right] \right\}
\]

Reduced vibrational offset

- \(\sqrt{S} \rightarrow \sqrt{S}(1 - g^2 N/(\epsilon + \omega)) \)

Increased effective coupling:

- \(g_{\text{eff}}^2 = g^2 \exp(-S) \)

- Numerically tiny effect, \(\Omega \ll \epsilon \)
Vibrational reconfiguration

- $H = H_0 + H_1$, $H_1 = \sum_{n,k} g_{n,k} (\psi_k^{\dagger} \sigma_n^+ + \text{H.c.})$
- Schrieffer-Wolff: admixture of excited state

$$H_{\text{eff, vacuum}} = H_0 - \frac{g^2 N}{2(\epsilon + \omega)} \left\{ 1 - \frac{\Omega \sqrt{S}(b + b^{\dagger})}{\epsilon + \omega} + \mathcal{O} \left[\left(\frac{\Omega}{\epsilon} \right)^2, \frac{g \sqrt{N}}{\epsilon} \right] \right\}$$

Reduced vibrational offset

- $\sqrt{S} \rightarrow \sqrt{S}(1 - g^2 N / (\epsilon + \omega))$

Increased effective coupling:

$$g_{\text{eff}}^2 = g^2 \exp(-S)$$
Vibrational reconfiguration

- $H = H_0 + H_1, H_1 = \sum_{n,k} g_{n,k}(\psi_k^\dagger \sigma_n^+ + \text{H.c.})$
- Schrieffer-Wolff: admixture of excited state

$$H_{\text{eff,vacuum}} = H_0 - \frac{g^2 N}{2(\epsilon + \omega)} \left\{ 1 - \frac{\Omega \sqrt{S}(b + b^\dagger)}{\epsilon + \omega} + \mathcal{O} \left[\left(\frac{\Omega}{\epsilon} \right)^2, \frac{g\sqrt{N}}{\epsilon} \right] \right\}$$

Reduced vibrational offset

- $\sqrt{S} \rightarrow \sqrt{S}(1 - g^2 N / (\epsilon + \omega))$

Increased effective coupling:

$$g_{\text{eff}}^2 = g^2 \exp(-S)$$

Numerically tiny effect, $\Omega \ll \epsilon$