From Lasers to Bose-Einstein condensates
How superfluids, superconductors, polaritons and lasers fit together

Jonathan Keeling

Stokes Society, November 2008
The two-slit experiment
The two-slit experiment
The two-slit experiment
The two-slit experiment
Why no such interference for macroscopic objects?

- Wavelength would be very small $\lambda \sim 1/\sqrt{m}$
- Internal degrees of freedom remember "which way"
- Different initial conditions wash out path.
Macroscopic objects

Why no such interference for macroscopic objects?

- Wavelength would be very small $\lambda \sim 1/\sqrt{m}$
- Internal degrees of freedom remember "which way".
- Different initial conditions wash out path.
Macroscopic objects

Why no such interference for macroscopic objects?

- Wavelength would be very small $\lambda \sim 1/\sqrt{m}$
- Internal degrees of freedom remember “which way”.
- Different initial conditions wash out path.
Macroscopic objects

Why no such interference for macroscopic objects?
- Wavelength would be very small $\lambda \sim 1/\sqrt{m}$
- Internal degrees of freedom remember “which way”.
- Different initial conditions wash out path.
The two-slit experiment with condensates
The two-slit experiment with condensates

All atoms in single quantum state — like a classical wave.
All atoms in single quantum state — like a classical wave.
Overview

1. Particles and waves
 - The two-slit experiment with atoms
 - History of quantum condensates

2. Signatures of macroscopic occupation
 - Superfluidity
 - Superconductivity

3. Why low temperature

4. What about Lasers

5. Polaritons
 - What are excitons, polaritons,
 - What do they do
 - Why (else) are they interesting
Overview

1. Particles and waves
 - The two-slit experiment with atoms
 - History of quantum condensates

2. Signatures of macroscopic occupation
 - Superfluidity
 - Superconductivity

3. Why low temperature

4. What about Lasers

5. Polaritons
 - What are excitons, polaritons,
 - What do they do
 - Why (else) are they interesting
What is superfluidity

\[\text{Pressure} \quad \text{Super-fluid} \quad \text{Solid} \quad \text{Liquid} \quad \text{Gas} \quad \text{Temperature} \quad 1 \text{atm} \quad 3 \text{K} \]
What is superfluidity

\[\frac{dH}{dt} \]

Viscous

Superfluid
Solid
Liquid
Gas

Temperature
1 atm
3 K

Jonathan Keeling
From Lasers to Bose-Einstein condensates
Stokes Society 8 / 28
What is superfluidity

Superfluid
Viscous

Pressure
Superfluid
Solid
Liquid
Gas

Temperature
1 atm
3 K

Jonathan Keeling
From Lasers to Bose-Einstein condensates
Stokes Society 8 / 28
Why Superfluidity

Why superfluidity:
1. Macroscopic occupation of single wavefunction
Why Superfluidity

Why superfluidity:

1. Macroscopic occupation of single wavefunction
2. Change of spectrum — prevents disruption.
Why Superfluidity

Why superfluidity:
1. Macroscopic occupation of single wavefunction
2. Change of spectrum — prevents disruption.

Rotation: \(\vec{v} = \vec{\Omega} \times \vec{r} \)
Why Superfluidity

Why superfluidity:
1. Macroscopic occupation of single wavefunction
2. Change of spectrum — prevents disruption.

Rotation: \(\vec{v} = \vec{\Omega} \times \vec{r} \)

\textbf{But:} single wavefunction \(\Psi \)
\[\rho \vec{v} = \Psi^\dagger i\hbar \nabla \Psi = |\Psi|^2 \nabla \phi \]
Why Superfluidity

Why superfluidity:

1. Macroscopic occupation of single wavefunction
2. Change of spectrum — prevents disruption.

Rotation: \(\vec{v} = \vec{\Omega} \times \vec{r} \)

But: single wavefunction \(\Psi \)
\[
\rho \vec{v} = \Psi^\dagger i\hbar \nabla \Psi = |\Psi|^2 \nabla \phi
\]
Why Superfluidity

Why superfluidity:
1. Macroscopic occupation of single wavefunction
2. Change of spectrum — prevents disruption.

Rotation: \(\vec{v} = \vec{\Omega} \times \vec{r} \)

But: single wavefunction \(\Psi \)

\(\rho \vec{v} = \Psi^\dagger i\hbar \nabla \Psi = |\Psi|^2 \nabla \phi \)
Why Superfluidity

Why superfluidity:
1. Macroscopic occupation of single wavefunction
2. Change of spectrum — prevents disruption.

Rotation: \(\vec{v} = \vec{\Omega} \times \vec{r} \)

But: single wavefunction \(\Psi \)
\[
\rho \vec{v} = \Psi^\dagger i \hbar \nabla \Psi = |\Psi|^2 \nabla \phi
\]
Why Superfluidity

Why superfluidity:

1. Macroscopic occupation of single wavefunction
2. Change of spectrum — prevents disruption.

Rotation: \(\vec{v} = \vec{\Omega} \times \vec{r} \)

But: single wavefunction \(\Psi \)
\(\rho \vec{v} = \Psi^\dagger i\hbar \nabla \Psi = |\Psi|^2 \nabla \phi \)
Why Superfluidity

Why superfluidity:

1. Macroscopic occupation of single wavefunction
2. Change of spectrum — prevents disruption
Why Superfluidity

Why superfluidity:

1. Macroscopic occupation of single wavefunction
2. Change of spectrum — prevents disruption

In moving frame, \(E(\vec{p}) \rightarrow E(\vec{p}) + \vec{p} \cdot \vec{v} + \frac{1}{2} Mv^2 \)
Why Superfluidity

Why superfluidity:
1. Macroscopic occupation of single wavefunction
2. Change of spectrum — prevents disruption

In moving frame, $E(\vec{p}) \rightarrow E(\vec{p}) + \vec{p} \cdot \vec{v} + \frac{1}{2} M v^2$

Normal state:
Why Superfluidity

Why superfluidity:

1. Macroscopic occupation of single wavefunction
2. Change of spectrum — prevents disruption

In moving frame, \(E(\vec{p}) \rightarrow E(\vec{p}) + \vec{p} \cdot \vec{v} + \frac{1}{2} Mv^2 \)

Normal state:

Energy vs. Momentum diagram
Why Superfluidity

Why superfluidity:
1. Macroscopic occupation of single wavefunction
2. Change of spectrum — prevents disruption

In moving frame, \(E(\vec{p}) \rightarrow E(\vec{p}) + \vec{p} \cdot \vec{v} + \frac{1}{2}Mv^2 \)

Normal state:

![Energy vs. Momentum Graph]
Why Superfluidity

Why superfluidity:

1. Macroscopic occupation of single wavefunction
2. Change of spectrum — prevents disruption

In moving frame, \(E(\vec{p}) \rightarrow E(\vec{p}) + \vec{p} \cdot \vec{v} + \frac{1}{2} Mv^2 \)

Normal state:

Superfluid:
Why Superfluidity

Why superfluidity:
1. Macroscopic occupation of single wavefunction
2. Change of spectrum — prevents disruption

In moving frame, \(E(\vec{p}) \rightarrow E(\vec{p}) + \vec{p} \cdot \vec{v} + \frac{1}{2}Mv^2 \)

Normal state:

Superfluid:

Jonathan Keeling
From Lasers to Bose-Einstein condensates
Stokes Society
Superconductor

Why superconductivity:
- Fermions and macroscopic occupation

- Probabilities: $\psi \rightarrow P = |\psi|^2$

- $\psi(r_1, r_2) = \pm \psi(r_2, r_1)$

- + Bosons (Helium, Polaritons, Photons)
- - Fermions (Electrons)
- Cannot occupy same state
Superconductor

Why superconductivity:
- Fermions and macroscopic occupation
- How does this change conductivity

- Probabilities: $\Psi \rightarrow P = |\Psi|^2$

$$\Psi(r_1, r_2) = \pm \Psi(r_2, r_1)$$

- Bosons (Helium, Polaritons, Photons)
- Fermions (Electrons)
- Cannot occupy same state
Superconductor

Why superconductivity:
- Fermions and macroscopic occupation
- How does this change conductivity

Probabilities: $\Psi \rightarrow P = |\Psi|^2$

- $\Psi(r_1, r_2) = \pm \Psi(r_2, r_1)$

- Bosons (Helium, Polaritons, Photons)
- Fermions (Electrons)
- Cannot occupy same state
Superconductor

Why superconductivity:
- Fermions and macroscopic occupation
- How does this change conductivity

- Probabilities: \(\Psi \rightarrow P = |\Psi|^2 \)
- \(\Psi(r_1, r_2) = \pm \Psi(r_2, r_1) \)
- + Bosons (Helium, Polaritons, Photons)
- → Fermions (Electrons)
- Cannot occupy same state
Superconductor

Why superconductivity:
- Fermions and macroscopic occupation
- How does this change conductivity

- Probabilities: \(\Psi \rightarrow P = |\Psi|^2 \)
- \(\Psi(r_1, r_2) = \pm \Psi(r_2, r_1) \)
- + Bosons (Helium, Polaritons, Photons)
- - Fermions (Electrons)
- Cannot occupy same state
Superconductor

Why superconductivity:
- Fermions and macroscopic occupation
- How does this change conductivity

But consider

- Probabilities: $\Psi \rightarrow P = |\Psi|^2$
- $\Psi(r_1, r_2) = \pm \Psi(r_2, r_1)$
- $\Psi_0 \left(\frac{r_1 + r_2}{2} \right) \Phi (r_1 - r_2)$
- Bosons (Helium, Polaritons, Photons)
- Fermions (Electrons)
- Cannot occupy same state
Superconductor

Why superconductivity:
- Fermions and macroscopic occupation
- How does this change conductivity

But consider

\[\psi_0 \left(\frac{r_1 + r_2}{2} \right) \Phi (r_1 - r_2) \]

Macroscopically occupy pair state:

\[\prod_{i \neq j} \Phi (r_i - r_j) \]
Scattering and conductivity

Normally conductivity disrupted by disorder:

Disorder

\[\text{Disorder} \]

\[k_1 \]

\[k_2 \]

\[k_1 \]

\[k_2 \]

\[k_y \]

\[k_x \]

\[\text{Normal:} \]

Energy

Momentum

DOS

\[\text{Superconducting:} \]

Energy

Momentum

DOS

Jonathan Keeling

From Lasers to Bose-Einstein condensates

Stokes Society
Scattering and conductivity

Normally conductivity disrupted by disorder:

Normal:
Scattering and conductivity

Normally conductivity disrupted by disorder:

Normal:

Jonathan Keeling
From Lasers to Bose-Einstein condensates
Stokes Society
Scattering and conductivity

Normally conductivity disrupted by disorder:

Disorder

Normal:

Superconducting:

Jonathan Keeling
From Lasers to Bose-Einstein condensates
Stokes Society
Scattering and conductivity

Normally conductivity disrupted by disorder:

Normal:

Superconducting:
Overview

1. Particles and waves
 - The two-slit experiment with atoms
 - History of quantum condensates

2. Signatures of macroscopic occupation
 - Superfluidity
 - Superconductivity

3. Why low temperature

4. What about Lasers

5. Polaritons
 - What are excitons, polaritons,
 - What do they do
 - Why (else) are they interesting
Why only at low temperatures

Temperature populates excitations – Depletes condensate

- Superconductors — electron pairs break apart
 - Mercury (first experiment) 4K.
 - Record (at $P = 1$ atm) 138K.

- Helium, cold atoms — populate low momentum excitations

- Chemical potential at bottom of band:

$$k_B T_c = \frac{\hbar^2}{2m} \left(\frac{n}{2.612} \right)^{2/3}$$

Jonathan Keeling

From Lasers to Bose-Einstein condensates

Stokes Society
Why only at low temperatures

Temperature populates excitations – Depletes condensate

- Superconductors — electron pairs break apart
 - Mercury (first experiment) 4K.
 - Record (at $P = 1$ atm) 138K.

- Helium, cold atoms — populate low momentum excitations

- Chemical potential at bottom of band:

\[k_B T_c = \frac{\hbar^2}{2m} \left(\frac{n}{2.612} \right)^{2/3} \]
Why only at low temperatures

Temperature populates excitations – Depletes condensate

- Superconductors — electron pairs break apart
 - Mercury (first experiment) 4K.
 - Record (at $P = 1$ atm) 138K.

- Helium, cold atoms — populate low momentum excitations

\[k_B T_c = \frac{\hbar^2}{2m} \left(\frac{\hbar}{2.612} \right)^{2/3} \]
Why only at low temperatures

Temperature populates excitations – Depletes condensate

- Superconductors — electron pairs break apart
 - Mercury (first experiment) 4K.
 - Record (at $P = 1\text{ atm}$) 138K.

- Helium, cold atoms — populate low momentum excitations

- Chemical potential at bottom of band:

$$k_B T_c = \frac{\hbar^2}{2m} \left(\frac{n}{2.612} \right)^{2/3}$$

- Atoms: $n = 10^{10}\text{ cm}^{-3}$ (this room, $\sim 10^{20}\text{ cm}^{-3}$) $T_c \approx 10^{-6}\text{ K}$
- Helium 2.17K — liquid, so density unchangable.
Why only at low temperatures

Temperature populates excitations – Depletes condensate

- Superconductors — electron pairs break apart
 - Mercury (first experiment) 4K.
 - Record (at $P = 1$ atm) 138K.

- Helium, cold atoms — populate low momentum excitations

- Chemical potential at bottom of band:

\[
\frac{k_B T_c}{\frac{\hbar^2}{2m}} = \left(\frac{n}{2.612}\right)^{2/3}
\]

- Atoms: $n = 10^{10}$ cm$^{-3}$ (this room, $\sim 10^{20}$ cm$^{-3}$) $T_c \approx 10^{-6}$ K
- Helium 2.17K — liquid, so density unchangable.
Why only at low temperatures

Temperature populates excitations – Depletes condensate

- Superconductors — electron pairs break apart
 - Mercury (first experiment) 4K.
 - Record (at $P = 1\text{atm}$) 138K.

- Helium, cold atoms — populate low momentum excitations

- Chemical potential at bottom of band:
 \[
 k_B T_c = \frac{\hbar^2}{2m} \left(\frac{n}{2.612} \right)^{2/3}
 \]

 - Atoms: $n = 10^{10}\text{cm}^{-3}$ (this room, $\sim 10^{20}\text{cm}^{-3}$) $T_c \approx 10^{-6} \text{ K}$
 - Helium 2.17K — liquid, so density unchangable.
Overview

1. Particles and waves
 - The two-slit experiment with atoms
 - History of quantum condensates

2. Signatures of macroscopic occupation
 - Superfluidity
 - Superconductivity

3. Why low temperature

4. What about Lasers

5. Polaritons
 - What are excitons, polaritons,
 - What do they do
 - Why (else) are they interesting
What about Lasers

- Other condensates show:
 - Particle-like \rightarrow wave-like
- Light is normally wave-like.

- But Thermal radiation \rightarrow many frequencies; fringe patterns wash out.
- Laser provides light at single frequency
- Macroscopic occupation of mode.
What about Lasers

- Other condensates show:
 Particle-like \rightarrow wave-like
- Light is normally wave-like.

- **But** Thermal radiation — many frequencies; fringe patterns wash out.

- Laser provides light at single frequency
- Macroscopic occupation of mode.
What about Lasers

- Other condensates show:
 Particle-like \rightarrow wave-like
- Light is normally wave-like.

- **But** Thermal radiation — many frequencies; fringe patterns wash out.
- Laser provides light at single frequency
- Macroscopic occupation of mode.
Origin of coherence

\[\frac{\partial}{\partial t} \langle n \rangle = 2r g^2 \gamma^2 - \kappa \langle n \rangle + 2r g^2 \gamma^2 - 8r (g^2 \gamma^2) \langle (n+1)^2 \rangle. \]
Origin of coherence

\[\frac{\partial}{\partial t} \langle n \rangle = 2r g^2 \gamma^2 - \kappa \langle n \rangle + 2r g^2 \gamma^2 - 8r (g^2 \gamma^2)^2 \langle n + 1 \rangle^2. \]
Origin of coherence

Balance of gain and loss:
\[\partial_t \langle n \rangle = \left[2r g - \kappa \right] \langle n \rangle + 2r g - \frac{8r (g^2 \gamma^2)}{2 \langle (n+1)^2 \rangle} . \]
Origin of coherence

Balance of gain and loss:
\[\partial_t \langle n \rangle = 2r g^2 \gamma^2 - \kappa \langle n \rangle + 2r g^2 \gamma^2 - 8r \left(\frac{g^2 \gamma^2}{2} \right) \left(\langle n \rangle + 1 \right)^2. \]
Origin of coherence

Balance of gain and loss:

\[
\frac{\partial}{\partial t} \langle n \rangle = \left[2rg^2\gamma^2 - \kappa \right] \langle n \rangle + 2rg^2\gamma^2 - 8r(g^2\gamma^2)\langle (n+1)^2 \rangle.
\]
Balance of gain and loss:

\[\frac{\partial}{\partial t} \langle n \rangle = \left[2r \frac{g^2}{\gamma^2} - \kappa \right] \langle n \rangle + 2r \frac{g^2}{\gamma^2} - 8r \left(\frac{g^2}{\gamma^2} \right)^2 \langle (n + 1)^2 \rangle. \]
Laser spectrum

- Modes defined by cavity
- At threshold, all emission → single mode.
- Linewidth and threshold controlled by gain/loss.
- Weak nonlinearity — spectrum unchanged.

Cavity modes

Atomic emission (gain)

\(\omega \)
Laser spectrum

- Modes defined by cavity
- At threshold, all emission \rightarrow single mode.
- Linewidth and threshold controlled by gain/loss.
- Weak nonlinearity \rightarrow spectrum unchanged.

Below threshold
Spontaneous emission
Laser spectrum

Above threshold
Lasing

Cavity modes

Atomic emission (gain)

- Modes defined by cavity
- At threshold, all emission → single mode.
- Linewidth and threshold controlled by gain/loss
- Weak nonlinearity — spectrum unchanged
Laser spectrum

- Modes defined by cavity
- At threshold, all emission \rightarrow single mode.
- Linewidth and threshold controlled by gain/loss

Weak nonlinearity \rightarrow spectrum unchanged

Cavity modes

Atomic emission (gain)

Above threshold
Lasing
Laser spectrum

- Modes defined by cavity
- At threshold, all emission \rightarrow single mode.
- Linewidth and threshold controlled by gain/loss
- Weak nonlinearity — spectrum unchanged
Overview

1. Particles and waves
 - The two-slit experiment with atoms
 - History of quantum condensates

2. Signatures of macroscopic occupation
 - Superfluidity
 - Superconductivity

3. Why low temperature

4. What about Lasers

5. Polaritons
 - What are excitons, polaritons,
 - What do they do
 - Why (else) are they interesting
Excitons: quasiparticles in semiconductors
Excitons: quasiparticles in semiconductors

Electrostatic attraction:
- Bound state.
Excitons: quasiparticles in semiconductors

Electrostatic attraction: Bound state.

Semiconductor 1
Semiconductor 2

From Lasers to Bose-Einstein condensates
Stokes Society 20 / 28
Excitons: quasiparticles in semiconductors

Electrostatic attraction: Bound state.

Extra holes:
Filled states
Empty states
Extra electrons:
Height

Semiconductor 1
Semiconductor 2

Jonathan Keeling
From Lasers to Bose-Einstein condensates
Stokes Society
Excitons: quasiparticles in semiconductors

Energy

Momentum

Holes

Electrostatic attraction:
Bound state.

Jonathan Keeling

From Lasers to Bose-Einstein condensates

Stokes Society 20 / 28
Excitons: quasiparticles in semiconductors

Electrostatic attraction: Bound state.

Energy
Momentum
Holes

Semiconductor 1
Semiconductor 2
Semiconductor 1

Filled states
Empty states

Height
Energy

(extra holes)
(extra electrons)
Microcavity Polaritons

![Diagram of Microcavity Polaritons]

Ph \quad Ex

Quantum Wells - Cavity

Cavity photons:

\[\omega_k = \sqrt{\omega_0^2 + c^2 k^2} \approx \omega_0 + \frac{k^2}{2m^*} \sim 10^{-4} m_e \]

Energy - Momentum

\(n = 1 \)
\(n = 2 \)
\(n = 3 \)
\(n = 4 \)

Bulk Energy - Momentum
Microcavity Polaritons

Cavity photons: \[\omega_{k} = \sqrt{\omega_{0}^2 + c^2 k^2} \approx \omega_{0} + \frac{k^2}{2m^*} \sim 10^{-4} m e \]

Energy
Momentum

n=1
n=2
n=3
n=4

Bulk
Cavity photons:

\[\omega_k = \sqrt{\omega_0^2 + c^2 k^2} \]
\[\simeq \omega_0 + k^2 / 2m^* \]
\[m^* \sim 10^{-4} m_e \]
Microcavity Polaritons

Cavity photons:

\[\omega_k = \sqrt{\omega_0^2 + c^2 k^2} \]

\[\simeq \omega_0 + k^2 / 2m^* \]

\[m^* \sim 10^{-4} m_e \]
Why polaritons

\[n \text{ [cm}^{-2}\text{]} \]

\[k_B T \]

Cavity

\[\theta \]

\[\Phi \]

\[\text{Ex} \]

Jonathan Keeling
From Lasers to Bose-Einstein condensates
Stokes Society 22 / 28
Why polaritons

![Graph showing condensed and non-condensed states of polaritons]

$n \text{ [cm}^{-2}\text{]}$ vs. $k_B T$

Cavity

Jonathan Keeling

From Lasers to Bose-Einstein condensates

Stokes Society 22 / 28
Why polaritons

![Graph showing condensed and non-condensed states with respective plots of n vs. $k_B T$.]
Polariton experiments: Momentum/Energy distribution

![Graphs and images illustrating momentum and energy distribution of polaritons.](image-url)

- **Graph a**: Temperature dependence of polariton emission at 5 K.
- **Graph b**: Occupancy distribution with varying energy levels and in-plane wavevector.

Equations and Notations:
- $T = 5\, \text{K}$
- θ: Emission angle (degree)
- Energy (meV) and Occupancy
- In-plane wavevector ($10^4\, \text{cm}^{-1}$)

Legend:
- P/P_{thr} with various values indicating different experimental conditions.

Jonathan Keeling
From Lasers to Bose-Einstein condensates
Stokes Society
23 / 28
Polariton experiments: Coherence

Basic idea:

- Tunable Splitter
- Beam Splitter
- CCD
- Retroreflector
- Sample
- Tunable Delay

Coherence map:

![Graph showing normalized signal vs. phase (Rad)]

Jonathan Keeling
From Lasers to Bose-Einstein condensates
Stokes Society 24 / 28
Polariton experiments: Coherence

Basic idea:

Coherence map:
Non-equilibrium condensation

- Condensate ↔ Laser.

- What kinds of coherence out of equilibrium?
- What happens to superfluidity?
Non-equilibrium condensation

- Condensate ↔ Laser.

- What kinds of coherence out of equilibrium?
- What happens to superfluidity?
Non-equilibrium condensation

- Condensate ↔ Laser.

- What kinds of coherence out of equilibrium.
- What happens to superfluidity?
Non-equilibrium condensation

- Condensate ↔ Laser.
- What kinds of coherence out of equilibrium.
- What happens to superfluidity?
Non-equilibrium condensate in a trap

\[\frac{3\gamma_{\text{net}}}{2\Gamma} \]
Non-equilibrium condensate in a trap

\[\frac{3 \gamma_{\text{net}}}{2 \Gamma} \]

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \quad \text{Radius} \]

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad \text{Density} \]
Non-equilibrium condensate in a trap

\[\frac{3\gamma_{\text{net}}}{2\Gamma} \]

Unstable growth

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \] Radius

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \] Density

Jonathan Keeling
From Lasers to Bose-Einstein condensates
Stokes Society
Non-equilibrium condensate in a trap

\[\frac{3\gamma_{\text{net}}}{2\Gamma} \]

Stabilised

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \quad \text{Radius} \]

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad \text{Density} \]
Non-equilibrium condensate in a trap

\[\frac{3\gamma_{\text{net}}}{2\Gamma} \]

Density

Radius

Jonathan Keeling

From Lasers to Bose-Einstein condensates

Stokes Society
Time evolution:
Why change of excitations?

Macroscopic occupation of Ψ:

\[\{N \text{ in } \Psi\} \rightarrow \{(N - 2) \text{ in } \Psi, +\vec{k}, -\vec{k}\} \]

![Energy vs. Momentum Diagram]
Why change of excitations?

Macroscopic occupation of Ψ:

$\{N \text{ in } \Psi\} \rightarrow \{(N - 2) \text{ in } \psi, +\vec{k}, -\vec{k}\}$

Number of excitations not fixed
Why change of excitations?

Macroscopic occupation of Ψ:

\[\{N \text{ in } \Psi\} \rightarrow \{(N - 2) \text{ in } \Psi, +\vec{k}, -\vec{k}\} \]

Number of **excitations** not fixed
Non-equilibrium theory; fluctuations

Approach transition, Gap Equation/Hugenholtz-Pines relation:

\[
\mu_s + i\kappa = \chi(\psi_0 = 0, \mu_s) \Leftrightarrow G^{-1}(\omega = \mu_S, k = 0) = 0
\]
Non-equilibrium theory; fluctuations

Approach transition, Gap Equation/Hugenholtz-Pines relation:

\[
\mu_s + i\kappa = \chi(\psi_0 = 0, \mu_s) \Leftrightarrow G^{-1}(\omega = \mu_S, k = 0) = 0
\]

Before transition:

\[
G^{-1}(\omega, k) = (\omega - \omega_k^*) + i\alpha
\]

[Szymańska et al., PRL ’06; PRB ’07]
Non-equilibrium theory; fluctuations

Approach transition, Gap Equation/Hugenholtz-Pines relation:

$$\mu_s + i\kappa = \chi(\psi_0 = 0, \mu_s) \Leftrightarrow G^{-1}(\omega = \mu_S, k = 0) = 0$$

Before transition:

$$G^{-1}(\omega, k) = (\omega - \omega_k^*) + i\alpha(\omega - \mu_{\text{eff}})$$

[Szymańska et al., PRL '06; PRB '07]
Non-equilibrium theory; fluctuations

Approach transition, Gap Equation/Hugenholtz-Pines relation:

\[\mu_s + i\kappa = \chi(\psi_0 = 0, \mu_s) \iff G^{-1}(\omega = \mu_s, k = 0) = 0 \]

Before transition:

\[G^{-1}(\omega, k) = (\omega - \omega_k^*) + i\alpha(\omega - \mu_{\text{eff}}) \]

[Szymańska et al., PRL ’06; PRB ’07]
Non-equilibrium theory; fluctuations

Approach transition, Gap Equation/Hugenholtz-Pines relation:

\[\mu_s + i\kappa = \chi(\psi_0 = 0, \mu_s) \Leftrightarrow G^{-1}(\omega = \mu_S, k = 0) = 0 \]

Before transition:

\[G^{-1}(\omega, k) = (\omega - \omega_k^*) + i\alpha(\omega - \mu_{\text{eff}}) \]

[Szymańska et al., PRL ’06; PRB ’07]
Fluctuations above transition

When condensed

\[G^{-1}(\omega, k) = \omega^2 - c^2 k^2 \]

Poles:

\[\omega^* = c |k| \]

[Szymańska et al., PRL ’06; PRB ’07]
Fluctuations above transition

When condensed

\[G^{-1}(\omega, k) = (\omega + i\lambda)^2 + \chi^2 - c^2 k^2 \]

Poles:

\[\omega^* = -i\lambda \pm \sqrt{c^2 k^2 - \chi^2} \]

[Szymańska et al., PRL '06; PRB '07]
Fluctuations above transition

When condensed

\[G^{-1}(\omega, k) = (\omega + ix)^2 + x^2 - c^2 k^2 \]

Poles:

\[\omega^* = -ix \pm \sqrt{c^2 k^2 - x^2} \]

Correlations (in 2D):

\[\langle \psi^\dagger(r, t)\psi(0, 0) \rangle \simeq |\psi_0|^2 \exp \left[-\eta \begin{cases} \ln(r/\xi) & r \to \infty, t \simeq 0 \\ \frac{1}{2} \ln(c^2 t/x\xi^2) & r \simeq, t \to \infty \end{cases} \right] \]

[Szymańska et al., PRL '06; PRB '07]