Polariton condensation, beyond the weakly interacting Bose gas.

Jonathan Keeling1
N. G. Berloff1, P. R. Eastham1, P. B. Littlewood1, F. M. Marchetti2, M. H. Szymańska1

1University of Cambridge, 2University of Oxford

July 24th 2007
Polariton condensation, beyond the weakly interacting Bose gas.

Polariton condensation vs W.I.D.B.G

Non-interacting Bose gas

- Three dimensional
- Non-interacting bosons
- Structureless bosons
- Infinite lifetime
- Solved 80 years ago
Polariton condensation, beyond the weakly interacting Bose gas.

Polariton condensation vs W.I.D.B.G

<table>
<thead>
<tr>
<th>Non-interacting Bose gas</th>
<th>Polariton Condensate</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Three dimensional</td>
<td>• Two dimensions</td>
</tr>
<tr>
<td>• Non-interacting bosons</td>
<td></td>
</tr>
<tr>
<td>• Structureless bosons</td>
<td></td>
</tr>
<tr>
<td>• Infinite lifetime</td>
<td></td>
</tr>
<tr>
<td>• Solved 80 years ago</td>
<td></td>
</tr>
</tbody>
</table>
Polariton condensation, beyond the weakly interacting Bose gas.

Polariton condensation vs W.I.D.B.G

<table>
<thead>
<tr>
<th>Non-interacting Bose gas</th>
<th>Polariton Condensate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three dimensional</td>
<td>Two dimensions</td>
</tr>
<tr>
<td>Non-interacting bosons</td>
<td>Coulomb/saturation interactions</td>
</tr>
<tr>
<td>Structureless bosons</td>
<td></td>
</tr>
<tr>
<td>Infinite lifetime</td>
<td></td>
</tr>
<tr>
<td>Solved 80 years ago</td>
<td></td>
</tr>
</tbody>
</table>
Polariton condensation, beyond the weakly interacting Bose gas.

Polariton condensation vs W.I.D.B.G

<table>
<thead>
<tr>
<th>Non-interacting Bose gas</th>
<th>Polariton Condensate</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Three dimensional</td>
<td>- Two dimensions</td>
</tr>
<tr>
<td>- Non-interacting bosons</td>
<td>- Coulomb/saturation interactions</td>
</tr>
<tr>
<td>- Structureless bosons</td>
<td>- T_c comparable to Ω_R, Ry</td>
</tr>
<tr>
<td>- Infinite lifetime</td>
<td></td>
</tr>
<tr>
<td>- Solved 80 years ago</td>
<td></td>
</tr>
</tbody>
</table>
Polariton condensation, beyond the weakly interacting Bose gas.

Polariton condensation vs W.I.D.B.G

<table>
<thead>
<tr>
<th>Non-interacting Bose gas</th>
<th>Polariton Condensate</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Three dimensional</td>
<td>• Two dimensions</td>
</tr>
<tr>
<td>• Non-interacting bosons</td>
<td>• Coulomb/saturation interactions</td>
</tr>
<tr>
<td>• Structureless bosons</td>
<td>• T_c comparable to Ω_R, $\mathcal{R}y$</td>
</tr>
<tr>
<td>• Infinite lifetime</td>
<td>• Pumped, decaying</td>
</tr>
<tr>
<td>• Solved 80 years ago</td>
<td></td>
</tr>
</tbody>
</table>

J. Keeling, FOPS, July 2007
Polariton condensation, beyond the weakly interacting Bose gas.

Polariton condensation vs W.I.D.B.G

Non-interacting Bose gas
- Three dimensional
- Non-interacting bosons
- Structureless bosons
- Infinite lifetime
- Solved 80 years ago

Polariton Condensate
- Two dimensions
- Coulomb/saturation interactions
- T_c comparable to $\Omega_R, \mathcal{R}y$
- Pumped, decaying
- Open questions remain

J. Keeling, FOPS, July 2007
Polariton condensation, beyond the weakly interacting Bose gas.

Overview

• Polariton internal structure
Polariton condensation, beyond the weakly interacting Bose gas.

Overview

- Polariton internal structure
 - Polariton blueshift
Polariton condensation, beyond the weakly interacting Bose gas.

Overview

- Polariton internal structure
 - Polariton blueshift
 - Equilibrium phase diagram
Polariton condensation, beyond the weakly interacting Bose gas.

Overview

- Polariton internal structure
 - Polariton blueshift
 - Equilibrium phase diagram

- Pumping and decay
Polariton condensation, beyond the weakly interacting Bose gas.

Overview

• Polariton internal structure
 ○ Polariton blueshift
 ○ Equilibrium phase diagram

• Pumping and decay
 ○ Relevant energy scales
Polariton condensation, beyond the weakly interacting Bose gas.

Overview

- Polariton internal structure
 - Polariton blueshift
 - Equilibrium phase diagram

- Pumping and decay
 - Relevant energy scales
 - Lineshape, linewidth
Polariton condensation, beyond the weakly interacting Bose gas.

Overview

- Polariton internal structure
 - Polariton blueshift
 - Equilibrium phase diagram

- Pumping and decay
 - Relevant energy scales
 - Lineshape, linewidth
 - Density profile
Polariton condensation, beyond the weakly interacting Bose gas.

Excitons in a disordered Quantum well
Polariton condensation, beyond the weakly interacting Bose gas.

Excitons in a disordered Quantum well

Centre-of-mass wavefunction satisfies:

\[
- \frac{\nabla^2 R}{2m_X} + V(R) \right] \Phi_\alpha(R) = \epsilon_\alpha \Phi_\alpha(R)
\]
Polariton condensation, beyond the weakly interacting Bose gas.

Excitons in a disordered Quantum well

Centre-of-mass wavefunction satisfies:

\[
-\frac{\nabla^2 R}{2m_X} + V(R) \Phi_\alpha(R) = \epsilon_\alpha \Phi_\alpha(R)
\]

\(V(R)\) smoothed by exciton Bohr radius
Polariton condensation, beyond the weakly interacting Bose gas.

Excitons in a disordered Quantum well

Centre-of-mass wavefunction satisfies:

\[
- \frac{\nabla^2 R}{2m_X} + V(R) \Phi_\alpha(R) = \epsilon_\alpha \Phi_\alpha(R)
\]

\(V(R)\) smoothed by exciton Bohr radius

Want distribution of: Energies, \(\epsilon_\alpha\)
Polariton condensation, beyond the weakly interacting Bose gas.

Excitons in a disordered Quantum well

Centre-of-mass wavefunction satisfies:

\[
- \frac{\nabla^2 R}{2m_x} + V(R) \Phi_\alpha(R) = \epsilon_\alpha \Phi_\alpha(R)
\]

\(V(R)\) smoothed by exciton Bohr radius

Want distribution of: Energies,
Oscillator strengths:

\[\epsilon_\alpha, \quad g_{\alpha,p} \propto \psi_{1s}(0)\Phi_{\alpha,p}\]
Polariton condensation, beyond the weakly interacting Bose gas.

Exciton energies and oscillator strengths

\[|g^{2(\epsilon,0)}| \text{ [arb. units]} \]
\[\text{DoS}(\epsilon) \]

\[-3 -2 -1 0 1 2 \]
\[\epsilon - E_x [\text{meV}] \]

[FMM, JK, MHS, PBL cond-mat/0608096]
Polariton condensation, beyond the weakly interacting Bose gas.

Exciton energies and oscillator strengths

\[g^2(\epsilon,0) \]

\[|g_{\alpha p=0}|^2 \text{ [arb. units]} \]

\[\text{DoS}(\epsilon) \]

\[g^2(\epsilon,0) \]

\[\epsilon - E_x \text{ [meV]} \]

\[\theta \text{ [degrees]} \]

\[\epsilon = \frac{p^2}{2m} \]

\[g^2(\epsilon, p) \]

[FMM, JK, MHS, PBL cond-mat/0608096]

J. Keeling, FOPS, July 2007
Polariton condensation, beyond the weakly interacting Bose gas.

Polariton model

- Couple excitons to photons

Polariton condensation, beyond the weakly interacting Bose gas.

Polariton model

- Couple excitons to photons
- Consider exciton-exciton interactions

Polariton condensation, beyond the weakly interacting Bose gas.

Polariton model

- Couple excitons to photons
- Consider exciton-exciton interactions
 - WIDBG model: Average interaction

Polariton condensation, beyond the weakly interacting Bose gas.

Polariton model

- Couple excitons to photons
- Consider exciton-exciton interactions
 - WIDBG model: Average interaction
 - Our model:

Polariton condensation, beyond the weakly interacting Bose gas.

Polariton model

- Couple excitons to photons
- Consider exciton-exciton interactions
 - WIDBG model: Average interaction
 - Our model:
 - Strong on-site interaction

Polariton condensation, beyond the weakly interacting Bose gas.

Polariton model

- Couple excitons to photons

- Consider exciton-exciton interactions
 - WIDBG model: Average interaction
 - Our model:
 - Strong on-site interaction
 - Weak inter-site (neglect)

Polariton condensation, beyond the weakly interacting Bose gas.

Polariton model

- Couple excitons to photons
- Consider exciton-exciton interactions
 - WIDBG model: Average interaction
 - Our model:
 - Strong on-site interaction
 - Weak inter-site (neglect)

Polariton condensation, beyond the weakly interacting Bose gas.

Polariton model

- Couple excitons to photons
- Consider exciton-exciton interactions
 - WIDBG model: Average interaction
 - Our model:
 * Strong on-site interaction
 * Weak inter-site (neglect)

Polariton condensation, beyond the weakly interacting Bose gas.

Polariton model

- Couple excitons to photons

- Consider exciton-exciton interactions
 - WIDBG model: Average interaction
 - Our model:
 - Strong on-site interaction
 - Weak inter-site (neglect)

Polariton condensation, beyond the weakly interacting Bose gas.

Polariton model

- Couple excitons to photons
- Consider exciton-exciton interactions
 - WIDBG model: Average interaction
 - Our model:
 - Strong on-site interaction
 - Weak inter-site (neglect)

Polariton condensation, beyond the weakly interacting Bose gas.

Polariton model

- Couple excitons to photons
- Consider exciton-exciton interactions
 - WIDBG model: Average interaction
 - Our model:
 - Strong on-site interaction
 - Weak inter-site (neglect)

Represent sites as two-level systems (spins):

Polariton condensation, beyond the weakly interacting Bose gas.

Polariton model

- Couple excitons to photons
- Consider exciton-exciton interactions
 - WIDBG model: Average interaction
 - Our model:
 - Strong on-site interaction
 - Weak inter-site (neglect)

Represent sites as two-level systems (spins):

\[
H = \sum_k \omega_k \psi_k^\dagger \psi_k
\]

Polariton condensation, beyond the weakly interacting Bose gas.

Polariton model

- Couple excitons to photons
- Consider exciton-exciton interactions
 - WIDBG model: Average interaction
 - Our model:
 - * Strong on-site interaction
 - * Weak inter-site (neglect)

Represent sites as two-level systems (spins):

\[
H = \sum_{k} \omega_{k} \psi_{k}^{\dagger} \psi_{k} + \sum_{\alpha} \left[\epsilon_{\alpha} S_{\alpha}^{z} \right]
\]

Polariton condensation, beyond the weakly interacting Bose gas.

Polariton model

- Couple excitons to photons
- Consider exciton-exciton interactions
 - WIDBG model: Average interaction
 - Our model:
 - * Strong on-site interaction
 - * Weak inter-site (neglect)

Represent sites as two-level systems (spins):

\[
H = \sum_k \omega_k \psi_k^\dagger \psi_k + \sum_\alpha \left[\epsilon_\alpha S^z_\alpha + \frac{1}{\sqrt{\text{Area}}} \sum_k g_{\alpha,k} \psi_k S^+_\alpha + \text{H.c.} \right]
\]

Polariton condensation, beyond the weakly interacting Bose gas.

Blueshift

\[\delta = 5.3 \text{meV}, \ k_B T_{\text{eff}} = 17 \text{K} \]

mean-field threshold

J. Keeling, FOPS, July 2007
Polariton condensation, beyond the weakly interacting Bose gas.

Blueshift

\[\delta E_{LP} \approx \mathcal{R} y_X a_X^2 n + \Omega_R a_X^2 n \]

Clean limit:

\[\delta = 5.3 \text{meV}, k_B T_{\text{eff}} = 17 \text{K} \]
Polariton condensation, beyond the weakly interacting Bose gas.

Blueshift

Clean limit:

\[\delta E_{\text{LP}} \approx R y_X a_X^2 n + \Omega_R a_X^2 n \]

Here:

\[\Omega_R a_X^2 \rightarrow \Omega_R \xi^2 \]
Polariton condensation, beyond the weakly interacting Bose gas.

Blueshift

![Graph showing energy versus particle density with the equation \(\delta E_{LP} \approx \mathcal{R} y X a_X^2 n + \Omega_R a_X^2 n \) and the condition \(\Omega_R a_X^2 \rightarrow \Omega_R \xi^2 \) for CdTe, \(\times 100 \) larger.]

Clean limit:

\[\delta E_{LP} \approx \mathcal{R} y X a_X^2 n + \Omega_R a_X^2 n \]

Here:

\[\Omega_R a_X^2 \rightarrow \Omega_R \xi^2 \]

For CdTe, \(\times 100 \) larger

J. Keeling, FOPS, July 2007
Polariton condensation, beyond the weakly interacting Bose gas.

Blueshift

Clean limit:

\[\delta E_{LP} \simeq \mathcal{R} y_X a_X^2 n + \Omega_R a_X^2 n \]

Here:

\[\Omega_R a_X^2 \rightarrow \Omega_R \xi^2 \]

For CdTe, \(\times 100 \) larger

Upper polariton:

\[\delta E_{UP} \simeq \mathcal{R} y_X a_X^2 n - \Omega_R a_X^2 n \]
Polariton condensation, beyond the weakly interacting Bose gas.

Phase diagram

\[n \text{ [cm}^{-2} \text{]} \]

\[k_B T \]

\[n \text{ [cm}^{-2} \text{]} \]

\[1 \times 10^9 \]

\[2 \times 10^9 \]

Polariton condensation, beyond the weakly interacting Bose gas.

Phase diagram

![Diagram showing phase transitions and energy levels](image)

Polariton condensation, beyond the weakly interacting Bose gas.

Phase diagram

![Phase diagram](image)

[J. Keeling, FOPS, July 2007]

Polariton condensation, beyond the weakly interacting Bose gas.

Pumping and decay; energy scales

<table>
<thead>
<tr>
<th></th>
<th>Lifetime</th>
<th>Thermalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polaritons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atoms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Polariton condensation, beyond the weakly interacting Bose gas.

Pumping and decay; energy scales

<table>
<thead>
<tr>
<th></th>
<th>Lifetime</th>
<th>Thermalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polaritons</td>
<td>5ps</td>
<td>0.5ps</td>
</tr>
<tr>
<td>Atoms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Polariton condensation, beyond the weakly interacting Bose gas.

Pumping and decay; energy scales

<table>
<thead>
<tr>
<th></th>
<th>Lifetime</th>
<th>Thermalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polaritons</td>
<td>5ps</td>
<td>0.5ps</td>
</tr>
<tr>
<td>Atoms</td>
<td>10s</td>
<td>10ms</td>
</tr>
</tbody>
</table>
Polariton condensation, beyond the weakly interacting Bose gas.

Pumping and decay; energy scales

<table>
<thead>
<tr>
<th></th>
<th>Lifetime</th>
<th>Thermalisation</th>
<th>Linewidth</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polaritons</td>
<td>5ps</td>
<td>0.5ps</td>
<td>0.5meV</td>
<td></td>
</tr>
<tr>
<td>Atoms</td>
<td>10s</td>
<td>10ms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Polariton condensation, beyond the weakly interacting Bose gas.

Pumping and decay; energy scales

<table>
<thead>
<tr>
<th></th>
<th>Lifetime</th>
<th>Thermalisation</th>
<th>Linewidth</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polaritons</td>
<td>5ps</td>
<td>0.5ps</td>
<td>0.5meV</td>
<td>20K</td>
</tr>
<tr>
<td>Atoms</td>
<td>10s</td>
<td>10ms</td>
<td>2meV</td>
<td></td>
</tr>
</tbody>
</table>
Polariton condensation, beyond the weakly interacting Bose gas.

Pumping and decay; energy scales

<table>
<thead>
<tr>
<th></th>
<th>Lifetime</th>
<th>Thermalisation</th>
<th>Linewidth</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polaritons</td>
<td>5ps</td>
<td>0.5ps</td>
<td>0.5meV</td>
<td>20K</td>
</tr>
<tr>
<td>Atoms</td>
<td>10s</td>
<td>10ms</td>
<td>2.5×10^{-13} meV</td>
<td>2meV</td>
</tr>
</tbody>
</table>
Polariton condensation, beyond the weakly interacting Bose gas.

Pumping and decay; energy scales

<table>
<thead>
<tr>
<th></th>
<th>Lifetime</th>
<th>Thermalisation</th>
<th>Linewidth</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polaritons</td>
<td>5ps</td>
<td>0.5ps</td>
<td>0.5meV</td>
<td>20K</td>
</tr>
<tr>
<td>Atoms</td>
<td>10s</td>
<td>10ms</td>
<td>2.5×10^{-13}meV</td>
<td>10^{-8}K</td>
</tr>
</tbody>
</table>
Polariton condensation, beyond the weakly interacting Bose gas.

Pumping and decay; energy scales

<table>
<thead>
<tr>
<th></th>
<th>Lifetime</th>
<th>Thermalisation</th>
<th>Linewidth</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polaritons</td>
<td>5ps</td>
<td>0.5ps</td>
<td>0.5meV</td>
<td>20K</td>
</tr>
<tr>
<td>Atoms</td>
<td>10s</td>
<td>10ms</td>
<td>2.5×10^{-13}meV</td>
<td>10^{-8}K 10^{-9}meV</td>
</tr>
</tbody>
</table>

\[
g \quad \text{Pumping Bath} \\
\gamma = \pi \Gamma N_p \\
\kappa = \pi \zeta N^\kappa
\]

\[
\text{System} \\
\text{Excitons} \\
\text{Cavity mode} \\
\text{Bulk photon modes}
\]
Polariton condensation, beyond the weakly interacting Bose gas.

Linewidth on approaching transition

Approaching transition, susceptibility diverges

Polariton condensation, beyond the weakly interacting Bose gas.

Linewidth on approaching transition

Approaching transition, susceptibility diverges

Gap equation/Ginzburg-Landau:

\[0 = \mathcal{G}^{-1}(\omega, k) \]

Polariton condensation, beyond the weakly interacting Bose gas.

Linewidth on approaching transition

Approaching transition, susceptibility diverges

Gap equation/Ginzburg-Landau:

\[0 = \mathcal{G}^{-1}(\omega, k) \sim (\omega - \omega_k^*) \]

Polariton condensation, beyond the weakly interacting Bose gas.

Linewidth on approaching transition

Approaching transition, susceptibility diverges

Gap equation/Ginzburg-Landau:

\[0 = G^{-1}(\omega, k) \simeq (\omega - \omega^*_k) - i\alpha \]

Polariton condensation, beyond the weakly interacting Bose gas.

Linewidth on approaching transition

Approaching transition, susceptibility diverges
Gap equation/Ginzburg-Landau:

\[0 = \mathcal{G}^{-1}(\omega, k) \simeq (\omega - \omega_k^*) - i\alpha(\mu_{\text{eff}} - \omega) \]

Polariton condensation, beyond the weakly interacting Bose gas.

Linewidth on approaching transition

Approaching transition, susceptibility diverges

Gap equation/Ginzburg-Landau:

\[
0 = G^{-1}(\omega, k) \simeq (\omega - \omega_k^*) - i\alpha(\mu_{\text{eff}} - \omega)
\]

Linewidth vanishes at transition

Polariton condensation, beyond the weakly interacting Bose gas.

Linewidth on approaching transition

Approaching transition, susceptibility diverges

Gap equation/Ginzburg-Landau:

\[0 = \mathcal{G}^{-1}(\omega, k) \simeq (\omega - \omega_k^*) - i\alpha(\mu_{\text{eff}} - \omega) \]

Linewidth vanishes at transition

![Graph showing linewidth vs. bath chemical potential](image)

Polariton condensation, beyond the weakly interacting Bose gas.

Linewidth on approaching transition

Approaching transition, susceptibility diverges

Gap equation/Ginzburg-Landau:

\[0 = G^{-1}(\omega, k) \simeq (\omega - \omega_k^*) - i\alpha(\mu_{\text{eff}} - \omega) \]

Linewidth vanishes at transition

[MHS, JK, PBL *Phys. Rev. B* 75 195331 (2007)]
Polariton condensation, beyond the weakly interacting Bose gas.

Excitations of decaying condensate; power spectrum

When condensed, poles become:

\[\omega = c|k| \]
Polariton condensation, beyond the weakly interacting Bose gas.

Excitations of decaying condensate; power spectrum

When condensed, poles become:

$$\omega = -ix \pm \sqrt{c^2k^2 - x^2}$$
Polariton condensation, beyond the weakly interacting Bose gas.

Excitations of decaying condensate; power spectrum

When condensed, poles become:

\[
\omega = -ix \pm \sqrt{c^2k^2 - x^2}
\]
Polariton condensation, beyond the weakly interacting Bose gas.

Excitations of decaying condensate; power spectrum

When condensed, poles become:

\[\omega = -ix \pm \sqrt{c^2k^2 - x^2} \]

\[
\langle \psi^\dagger(r, t) \psi(0, 0) \rangle \simeq \rho_0 \exp \left[- \right]
\]

J. Keeling, FOPS, July 2007
Polariton condensation, beyond the weakly interacting Bose gas.

Excitations of decaying condensate; power spectrum

When condensed, poles become:

$$\omega = -ix \pm \sqrt{c^2 k^2 - x^2}$$

$\langle \psi^\dagger(r, t) \psi(0, 0) \rangle \simeq \rho_0 \exp \left[- \left\{ \eta \ln(r/\xi) \right\} \right]$, $r \to \infty, t \simeq 0$
Polariton condensation, beyond the weakly interacting Bose gas.

Excitations of decaying condensate; power spectrum

When condensed, poles become:

\[\omega = -ix \pm \sqrt{c^2k^2 - x^2} \]

\[
\langle \psi^\dagger(r, t)\psi(0, 0) \rangle \simeq \rho_0 \exp \left[- \begin{cases}
\eta \ln(r/\xi) & r \to \infty, t \simeq 0 \\
\frac{n}{2} \ln(c^2t/x\xi^2) & r \simeq 0, t \to \infty
\end{cases} \right]
\]

J. Keeling, FOPS, July 2007
Polariton condensation, beyond the weakly interacting Bose gas.

Phase boundary; effect of dephasing

Mean-field theory of pumped decaying system; self-consistent distribution:

Polariton condensation, beyond the weakly interacting Bose gas.

Phase boundary; effect of dephasing

Mean-field theory of pumped decaying system; self-consistent distribution:

![Graph showing the phase boundary and effect of dephasing]

Polariton condensation, beyond the weakly interacting Bose gas.

Phase boundary; effect of dephasing

Mean-field theory of pumped decaying system; self-consistent distribution:

![Graph showing phase boundary and effect of dephasing](image)

Polariton condensation, beyond the weakly interacting Bose gas.

Effect of pumping on density profile

Gross-Pitaevskii equation:

[JK, NGB arXiv:0706.3686v1 [cond-mat.other]]
Polariton condensation, beyond the weakly interacting Bose gas.

Effect of pumping on density profile

Gross-Pitaevskii equation:

\[i\hbar \partial_t \psi = \left[-\frac{\hbar^2 \nabla^2}{2m} + V(r) + U|\psi|^2 \right] \psi \]

[JK, NGB arXiv:0706.3686v1 [cond-mat.other]]
Polariton condensation, beyond the weakly interacting Bose gas.

Effect of pumping on density profile

Gross-Pitaevskii equation:

\[
i\hbar \partial_t \psi = \left[-\frac{\hbar^2 \nabla^2}{2m} + V(r) + U|\psi|^2 + i(\gamma - \Gamma|\psi|^2) \right] \psi
\]

[JK, NGB arXiv:0706.3686v1 [cond-mat.other]]
Polariton condensation, beyond the weakly interacting Bose gas.

Effect of pumping on density profile

Gross-Pitaevskii equation:

\[
i\hbar \partial_t \psi = \left[-\frac{\hbar^2 \nabla^2}{2m} + V(r) + U|\psi|^2 + i(\gamma - \Gamma|\psi|^2 - \kappa) \right] \psi
\]

[JK, NGB arXiv:0706.3686v1 [cond-mat.other]]
Polariton condensation, beyond the weakly interacting Bose gas.

Effect of pumping on density profile

Gross-Pitaevskii equation:

\[
i\hbar \partial_t \psi = \left[-\frac{\hbar^2 \nabla^2}{2m} + V(r) + U|\psi|^2 + i(\gamma - \Gamma|\psi|^2 - \kappa) \right] \psi = \mu_{\text{eff}} \psi
\]

[J. Keeling, FOPS, July 2007]
Polariton condensation, beyond the weakly interacting Bose gas.

Effect of pumping on density profile

Gross-Pitaevskii equation:

\[i\hbar \partial_t \psi = \left[-\frac{\hbar^2 \nabla^2}{2m} + V(r) + U|\psi|^2 + i(\gamma - \Gamma|\psi|^2 - \kappa) \right] \psi = \mu_{\text{eff}} \psi \]

Consider \(V(r) = m\omega^2 r^2/2 \)

[JK, NGB arXiv:0706.3686v1 [cond-mat.other]]
Polariton condensation, beyond the weakly interacting Bose gas.

Effect of pumping on density profile

Gross-Pitaevskii equation:

\[
i\hbar \partial_t \psi = \left[-\frac{\hbar^2 \nabla^2}{2m} + V(r) + U|\psi|^2 + i(\gamma - \Gamma|\psi|^2 - \kappa) \right] \psi = \mu_{\text{eff}} \psi
\]

Consider \(V(r) = m\omega^2 r^2 / 2 \)

\[\frac{\gamma - \kappa}{\hbar \omega} = 2.2\]

\[\frac{\gamma - \kappa}{\hbar \omega} = 0.7\]

[JK, NGB arXiv:0706.3686v1 [cond-mat.other]]

J. Keeling, FOPS, July 2007
Summary

Differences between polariton condensate and non-interacting Bose gas allow investigation of **interesting physics**

- Internal structure/disorder
 - Critical temperature comparable to ΩR, $\mathcal{R}y$
 - Exciton disorder affects effective interactions

- Non-equilibrium
 - Diffusive spectrum / Lineshape
 - Phase boundary
 - Persistent supercurrents and density profile
Polariton condensation, beyond the weakly interacting Bose gas.

Supplementary Slides
Polariton condensation, beyond the weakly interacting Bose gas.

Density scales/exciton localisation

\[n \text{ [cm}^{-2}\text{]} \]

\[k_B T \]

\[1 \times 10^9 \text{ } \text{to} \text{ } 2 \times 10^9 \]

\[\varepsilon = \frac{p^2}{2m} g^2(\varepsilon, p) \]

\[\text{DoS}(\varepsilon) \]

\[p = 6.3 \times 10^5 \text{ cm}^{-1} \]

J. Keeling, FOPS, July 2007
Polariton condensation, beyond the weakly interacting Bose gas.

Limit of validity

Model neglects:

- Inter-site Coulomb
- (High energy) multiple occupancy

Limits to low density: How low?
Limited to states below band-edge

![Graph showing occupation and density of states](image-url)
Polariton condensation, beyond the weakly interacting Bose gas.

Lineshape in the normal state

![Diagram showing lineshape in the normal state with various plotted curves for different parameters such as luminescence, absorption, spectral weight, and distribution, F_S.](image-url)
Polariton condensation, beyond the weakly interacting Bose gas.

Finite size, condensate linewidth

Correlations, $\langle \psi^\dagger(t, r) \psi(0, r) \rangle \propto \exp(-f(t, r, r))$, with:

$$f(t, r, r) = -\sum_n^{n_{\text{max}}} \int \frac{d\omega}{2\pi} \frac{C|\varphi_n(r)|^2(1 - e^{i\omega t})}{[\omega^2 - (n\Delta)^2]^2 + 4\omega^2x^2},$$

$$\Delta \ll \sqrt{x/t} \ll E_{\text{max}} \quad f(t, r, r) \sim 1 + \ln(E_{\text{max}}\sqrt{t/x})$$

$$\sqrt{x/t} \ll \Delta \ll E_{\text{max}} \quad f(t, r, r) \sim (\frac{\pi C}{2x})(\frac{t}{2x})$$

$$\sqrt{x/t} \ll E_{\text{max}} \ll \Delta \quad f(t, r, r) \sim 1$$

J. Keeling, FOPS, July 2007
Polariton condensation, beyond the weakly interacting Bose gas.

Pumped, Decaying GPE

Rescaling:

\[
\tilde{\mu}\psi = \left[-\nabla^2 + r^2 + |\psi|^2 + i(\alpha - \sigma|\psi|^2)\right]\psi
\]

Then, writing:

\[
\psi = \sqrt{\rho}e^{i\phi}
\]

\[
\nabla \cdot [\rho \nabla \phi] = (\alpha - \sigma \rho)
\]

\[
\mu = |\nabla \phi|^2 + r^2 + \rho - \frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}}
\]

J. Keeling, FOPS, July 2007