Jonathan Keeling, P. R. Eastham, M. H. Szymanska, P. B. Littlewood Theory of Condensed Matter, Cambridge

October 19, 2005

J. Keeling, MIT CMT Informal Seminar, 2005

Overview

• Microcavity polariton condensation: review of experiments.

- Microcavity polariton condensation: review of experiments.
- Dicke model for polaritons.

- Microcavity polariton condensation: review of experiments.
- Dicke model for polaritons.
- Summary of results from mean field theory.

- Microcavity polariton condensation: review of experiments.
- Dicke model for polaritons.
- Summary of results from mean field theory.
- Diversion: Atomic gases near Feshbach resonance analogies

- Microcavity polariton condensation: review of experiments.
- Dicke model for polaritons.
- Summary of results from mean field theory.
- Diversion: Atomic gases near Feshbach resonance analogies
- Fluctuations in two dimensions; fluctuations with condensate

- Microcavity polariton condensation: review of experiments.
- Dicke model for polaritons.
- Summary of results from mean field theory.
- Diversion: Atomic gases near Feshbach resonance analogies
- Fluctuations in two dimensions; fluctuations with condensate
- Consider crossover between "B.E.C." and "B.C.S.-like" transition.

Exciton Polaritons

• Strong coupling of photons to excitons

Momentum

Exciton Polaritons

- Strong coupling of photons to excitons
- Anti-crossing form two new modes

Exciton Polaritons

- Strong coupling of photons to excitons
- Anti-crossing form two new modes
- No condensation can relax to photon mode.

[Pekar, JETP **6** 785 (1958)] [Hopfield, Phys. Rev. **112** 1555 (1958)]

Microcavity polaritons

Quantum well excitons coupled to photons confined in a microcavity.

Microcavity polaritons

Quantum well excitons coupled to photons confined in a microcavity.

Microcavity polaritons

Why polariton condensation

Why polariton condensation:

Why polariton condensation

Why polariton condensation:

• Polariton mass $10^{-4}m_{\text{electron}}$, high T_c .

Why polariton condensation

Why polariton condensation:

- Polariton mass $10^{-4}m_{\text{electron}}$, high T_c .
- Photon component Non-classical light.

Why polariton condensation

Why polariton condensation:

- Polariton mass $10^{-4}m_{\text{electron}}$, high T_c .
- Photon component Non-classical light.
- Greater control.

Why polariton condensation

Why polariton condensation:

- Polariton mass $10^{-4}m_{\text{electron}}$, high T_c .
- Photon component Non-classical light.
- Greater control.

Problems?

• Cavity lifetime is short (ps), hard to thermalise.

Polariton Experiments

Polariton Experiments

Polariton Experiments (2)

Second order coherence of photons. 1.8 P/P th = 1 1.6 2.0 g⁽²⁾ (0) 1.5 10 P/P th = 15 1.4 2.0 0! 1.5 0 400 800 1.0 Channel 1.2 🗚 number 0.5 0 400 800 1.0 20 10 Pump Intensity P/Pth [Deng et al. Science 298 199 (2002)]

Polariton Experiments (2)

Localised two level systems

[Marchetti et al. cond-mat/0509438].

J. Keeling, MIT CMT Informal Seminar, 2005

Contents 7

Localised two level systems

[Marchetti et al. cond-mat/0509438].

J. Keeling, MIT CMT Informal Seminar, 2005

Localised two level systems

• Effective hard-core exciton-exciton interaction exists.

[Marchetti et al. cond-mat/0509438].

Localised two level systems

- Effective hard-core exciton-exciton interaction exists.
- Energy difference between levels represents energy of bound exciton state.

[Marchetti et al. cond-mat/0509438].

The Dicke Model Hamiltonian

$$H = \sum_{\alpha=1}^{\alpha=nA} \epsilon \left(b_{\alpha}^{\dagger} b_{\alpha} - a_{\alpha}^{\dagger} a_{\alpha} \right)$$

The Dicke Model Hamiltonian

$$H = \sum_{\alpha=1}^{\alpha=nA} \epsilon \left(b_{\alpha}^{\dagger} b_{\alpha} - a_{\alpha}^{\dagger} a_{\alpha} \right) + \sum_{k=l/\sqrt{A}} \hbar \omega_k \psi_k^{\dagger} \psi_k$$

The Dicke Model Hamiltonian

$$H = \sum_{\alpha=1}^{\alpha=nA} \epsilon \left(b_{\alpha}^{\dagger} b_{\alpha} - a_{\alpha}^{\dagger} a_{\alpha} \right) + \sum_{k=l/\sqrt{A}} \hbar \omega_{k} \psi_{k}^{\dagger} \psi_{k}$$
$$+ \frac{g}{\sqrt{A}} \sum_{\alpha,k} \left(e^{2\pi i \mathbf{k} \cdot \mathbf{r}_{n}} \psi_{k} b_{\alpha}^{\dagger} a_{\alpha} + e^{-2\pi i \mathbf{k} \cdot \mathbf{r}_{n}} \psi_{k}^{\dagger} a_{\alpha}^{\dagger} b_{\alpha} \right)$$

The Dicke Model Hamiltonian

$$H = \sum_{\alpha=1}^{\alpha=nA} \epsilon \left(b_{\alpha}^{\dagger} b_{\alpha} - a_{\alpha}^{\dagger} a_{\alpha} \right) + \sum_{k=l/\sqrt{A}} \hbar \omega_{k} \psi_{k}^{\dagger} \psi_{k}$$
$$+ \frac{g}{\sqrt{A}} \sum_{\alpha,k} \left(e^{2\pi i \mathbf{k} \cdot \mathbf{r}_{n}} \psi_{k} b_{\alpha}^{\dagger} a_{\alpha} + e^{-2\pi i \mathbf{k} \cdot \mathbf{r}_{n}} \psi_{k}^{\dagger} a_{\alpha}^{\dagger} b_{\alpha} \right)$$

• T.L.S. areal density n

The Dicke Model Hamiltonian

$$H = \sum_{\alpha=1}^{\alpha=nA} \epsilon \left(b_{\alpha}^{\dagger} b_{\alpha} - a_{\alpha}^{\dagger} a_{\alpha} \right) + \sum_{k=l/\sqrt{A}} \hbar \omega_{k} \psi_{k}^{\dagger} \psi_{k} + \frac{g}{\sqrt{A}} \sum_{\alpha,k} \left(e^{2\pi i \mathbf{k} \cdot \mathbf{r}_{n}} \psi_{k} b_{\alpha}^{\dagger} a_{\alpha} + e^{-2\pi i \mathbf{k} \cdot \mathbf{r}_{n}} \psi_{k}^{\dagger} a_{\alpha}^{\dagger} b_{\alpha} \right).$$

• T.L.S. areal density n

• Photon dispersion in cavity: $\omega_k = \sqrt{\omega_0^2 + c^2 k^2} \approx \omega_0 + \hbar k^2 / 2m$

The Dicke Model Hamiltonian

$$H = \sum_{\alpha=1}^{\alpha=nA} \epsilon \left(b_{\alpha}^{\dagger} b_{\alpha} - a_{\alpha}^{\dagger} a_{\alpha} \right) + \sum_{k=l/\sqrt{A}} \hbar \omega_{k} \psi_{k}^{\dagger} \psi_{k}$$
$$+ \frac{g}{\sqrt{A}} \sum_{\alpha,k} \left(e^{2\pi i \mathbf{k} \cdot \mathbf{r}_{n}} \psi_{k} b_{\alpha}^{\dagger} a_{\alpha} + e^{-2\pi i \mathbf{k} \cdot \mathbf{r}_{n}} \psi_{k}^{\dagger} a_{\alpha}^{\dagger} b_{\alpha} \right).$$

• T.L.S. areal density n

• Photon dispersion in cavity:

$$\omega_k = \sqrt{\omega_0^2 + c^2 k^2} \approx \omega_0 + \hbar k^2 / 2m$$

Assume thermal equilibrium with fixed number of excitations, $\tilde{H}=H-\mu N$

$$N = \sum_{\alpha=1}^{\alpha=nA} \frac{1}{2} \left(b_{\alpha}^{\dagger} b_{\alpha} - a_{\alpha}^{\dagger} a_{\alpha} + 1 \right) + \sum_{k=l/\sqrt{A}} \psi_{k}^{\dagger} \psi_{k}.$$

J. Keeling, MIT CMT Informal Seminar, 2005

Contents 8

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^{\dagger} + \sum_{\alpha} X_{\alpha} b_{\alpha}^{\dagger} a_{\alpha})} \prod_{\alpha} a_{\alpha}^{\dagger} |0\rangle$$

[Eastham & Littlewood. Phys. Rev. B 64 235101].

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^{\dagger} + \sum_{\alpha} X_{\alpha} b_{\alpha}^{\dagger} a_{\alpha})} \prod_{\alpha} a_{\alpha}^{\dagger} |0\rangle = e^{\lambda\psi_0^{\dagger}} \prod_{\alpha} \left(v_{\alpha} b_{\alpha}^{\dagger} + u_{\alpha} a_{\alpha}^{\dagger} \right) |0\rangle$$

[Eastham & Littlewood. Phys. Rev. B 64 235101].

J. Keeling, MIT CMT Informal Seminar, 2005

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^{\dagger} + \sum_{\alpha} X_{\alpha} b_{\alpha}^{\dagger} a_{\alpha})} \prod_{\alpha} a_{\alpha}^{\dagger} |0\rangle = e^{\lambda \psi_0^{\dagger}} \prod_{\alpha} \left(v_{\alpha} b_{\alpha}^{\dagger} + u_{\alpha} a_{\alpha}^{\dagger} \right) |0\rangle$$

At finite T, Integrate out TLS, and minimise w.r.t $\psi.$

[Eastham & Littlewood. Phys. Rev. B 64 235101].

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^{\dagger} + \sum_{\alpha} X_{\alpha} b_{\alpha}^{\dagger} a_{\alpha})} \prod_{\alpha} a_{\alpha}^{\dagger} |0\rangle = e^{\lambda \psi_0^{\dagger}} \prod_{\alpha} \left(v_{\alpha} b_{\alpha}^{\dagger} + u_{\alpha} a_{\alpha}^{\dagger} \right) |0\rangle$$

At finite T, Integrate out TLS, and minimise w.r.t $\psi.$ Gap equation:

$$\tilde{\omega}_0 \psi_0 = g^2 n \frac{\tanh(\beta E)}{E} \psi_0$$
$$E = \sqrt{\tilde{\epsilon}^2 + g^2 n |\psi_0|^2}$$

[Eastham & Littlewood. Phys. Rev. B 64 235101].

J. Keeling, MIT CMT Informal Seminar, 2005
Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^{\dagger} + \sum_{\alpha} X_{\alpha} b_{\alpha}^{\dagger} a_{\alpha})} \prod_{\alpha} a_{\alpha}^{\dagger} |0\rangle = e^{\lambda \psi_0^{\dagger}} \prod_{\alpha} \left(v_{\alpha} b_{\alpha}^{\dagger} + u_{\alpha} a_{\alpha}^{\dagger} \right) |0\rangle$$

At finite T, Integrate out TLS, and minimise w.r.t $\psi.$ Gap equation:

$$\tilde{\omega}_{0}\psi_{0} = g^{2}n\frac{\tanh(\beta E)}{E}\psi_{0} \qquad \text{Excitation density:}$$

$$E = \sqrt{\tilde{\epsilon}^{2} + g^{2}n |\psi_{0}|^{2}} \qquad \frac{\rho_{ex}}{n} = -\frac{\tilde{\epsilon}}{2E} \tanh(\beta E) + |\psi_{0}|^{2}$$

[Eastham & Littlewood. Phys. Rev. B 64 235101].

J. Keeling, MIT CMT Informal Seminar, 2005

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^{\dagger} + \sum_{\alpha} X_{\alpha} b_{\alpha}^{\dagger} a_{\alpha})} \prod_{\alpha} a_{\alpha}^{\dagger} |0\rangle = e^{\lambda \psi_0^{\dagger}} \prod_{\alpha} \left(v_{\alpha} b_{\alpha}^{\dagger} + u_{\alpha} a_{\alpha}^{\dagger} \right) |0\rangle$$

At finite T, Integrate out TLS, and minimise w.r.t $\psi.$ Gap equation:

$$\tilde{\omega}_{0}\psi_{0} = g^{2}n\frac{\tanh(\beta E)}{E}\psi_{0} \qquad \text{Excitation density:}$$

$$E = \sqrt{\tilde{\epsilon}^{2} + g^{2}n |\psi_{0}|^{2}} \qquad \frac{\rho_{ex}}{n} = -\frac{\tilde{\epsilon}}{2E} \tanh(\beta E) + |\psi_{0}|^{2}$$

[Eastham & Littlewood. Phys. Rev. B 64 235101].

J. Keeling, MIT CMT Informal Seminar, 2005

Fluctuation spectrum

Consider fluctuations about mean field — Poles of greens function for photon response.

Fluctuation spectrum

Consider fluctuations about mean field — Poles of greens function for photon response.

Fluctuation spectrum

Consider fluctuations about mean field — Poles of greens function for photon response.

Diversion: Feshbach resonance

Condensation in system of bosons coupled to fermion pairs — analogies to Feshbach resonance.

Diversion: Feshbach resonance

Condensation in system of bosons coupled to fermion pairs — analogies to Feshbach resonance.

Interaction between fermions depends on spin states.

Diversion: Feshbach resonance

Condensation in system of bosons coupled to fermion pairs — analogies to Feshbach resonance.

- Interaction between fermions depends on spin states.
- At resonance, "strong-coupling" of atoms and molecule:

Diversion: Feshbach resonance

Condensation in system of bosons coupled to fermion pairs — analogies to Feshbach resonance.

- Interaction between fermions depends on spin states.
- At resonance, "strong-coupling" of atoms and molecule:
- Detuning gives crossover from BCS of atoms to BEC of molecules.

Diversion: Analogies and differences

Comparison of physical systems:

Feshbach resonance

 \iff

Diversion: Analogies and differences

Comparison of physical systems:

Feshbach resonance \iff Closed channel molecules \iff

Microcavity Polaritons Microcavity Photons

Diversion: Analogies and differences

Comparison of physical systems:

Feshbach resonance	\iff
Closed channel molecules	\iff
Atoms	\iff

Microcavity Polaritons Microcavity Photons Electron/Holes

Diversion: Analogies and differences

Comparison of physical systems:

Feshbach resonance	\iff
losed channel molecules	\iff
Atoms	\iff
Inter-channel coupling	\iff

Microcavity Polaritons

Microcavity Photons

- $\mathsf{Electron}/\mathsf{Holes}$
- Electric dipole interaction

Diversion: Analogies and differences

Comparison of physical systems:

Feshbach resonance	\iff
Closed channel molecules	\iff
Atoms	\iff
Inter-channel coupling	\iff
Background potential	\iff

- Microcavity Photons
- Electron/Holes
- Electric dipole interaction
- Coulomb attraction

Diversion: Analogies and differences

Comparison of physical systems:

Feshbach resonance \longleftrightarrow Closed channel molecules \Longleftrightarrow Atoms \Longleftrightarrow Inter-channel coupling \Longleftrightarrow Background potential \Longleftrightarrow

Important differences

• Polaritons: Measure only emitted photons.

- Microcavity Photons
- Electron/Holes
- Electric dipole interaction
- Coulomb attraction

Diversion: Analogies and differences

Comparison of physical systems:

Feshbach resonance \iff Closed channel molecules \iff Atoms \iff Inter-channel coupling \iff Background potential \iff

Important differences

- Polaritons: Measure only emitted photons.
- Cannot dynamically change exciton-photon detuning.

- Microcavity Photons
- Electron/Holes
- Electric dipole interaction
- Coulomb attraction

Diversion: Holland-Timmermans model

Diversion: Holland-Timmermans model

$$H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma}$$

Diversion: Holland-Timmermans model

$$H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_k^{\dagger} b_k$$

Diversion: Holland-Timmermans model

$$H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_k^{\dagger} b_k$$
$$+ g \sum_{k,q} \left(b_q^{\dagger} c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow} + c_{k+q/2,\uparrow}^{\dagger} c_{-k+q/2,\downarrow}^{\dagger} b_q \right)$$

Diversion: Holland-Timmermans model

$$H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_k^{\dagger} b_k$$

+
$$g \sum_{k,q} \left(b_q^{\dagger} c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow} + c_{k+q/2,\uparrow}^{\dagger} c_{-k+q/2,\downarrow}^{\dagger} b_q \right)$$

-
$$\frac{U}{2} \sum_{k,k',q} c_{k+q,\uparrow}^{\dagger} c_{k'-q,\downarrow}^{\dagger} c_{k,\downarrow} c_{k',\uparrow}.$$

Diversion: Holland-Timmermans model

$$\begin{aligned} H - \mu N &= \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_k^{\dagger} b_k \\ &+ g \sum_{k,q} \left(b_q^{\dagger} c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow} + c_{k+q/2,\uparrow}^{\dagger} c_{-k+q/2,\downarrow}^{\dagger} b_q \right) \\ &- \frac{U}{2} \sum_{k,k',q} c_{k+q,\uparrow}^{\dagger} c_{k'-q,\downarrow}^{\dagger} c_{k,\downarrow} c_{k',\uparrow}. \end{aligned}$$

Diversion: Holland-Timmermans model

One model of Feshbach resonance, very similar to Dicke model:

$$\begin{aligned} H - \mu N &= \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_k^{\dagger} b_k \\ &+ g \sum_{k,q} \left(b_q^{\dagger} c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow} + c_{k+q/2,\uparrow}^{\dagger} c_{-k+q/2,\downarrow}^{\dagger} b_q \right) \\ &- \frac{U}{2} \sum_{k,k',q} c_{k+q,\uparrow}^{\dagger} c_{k'-q,\downarrow}^{\dagger} c_{k,\downarrow} c_{k',\uparrow}. \end{aligned}$$

Gives energy dependant fermion-fermion scattering.

Diversion: Holland-Timmermans model

One model of Feshbach resonance, very similar to Dicke model:

$$\begin{aligned} H - \mu N &= \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_k^{\dagger} b_k \\ &+ g \sum_{k,q} \left(b_q^{\dagger} c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow} + c_{k+q/2,\uparrow}^{\dagger} c_{-k+q/2,\downarrow}^{\dagger} b_q \right) \\ &- \frac{U}{2} \sum_{k,k',q} c_{k+q,\uparrow}^{\dagger} c_{k'-q,\downarrow}^{\dagger} c_{k,\downarrow} c_{k',\uparrow}. \end{aligned}$$

Gives energy dependant fermion-fermion scattering. Unnecessary for current experiments. e.g. [Simonucci et al. Europhys. Lett. **69** 713 (2005)]

Comparing mean field theories

General form

$$\frac{1}{U_{\text{eff}}} = \int \nu_s(\epsilon) \frac{\tanh(\beta(\epsilon - \mu))}{\epsilon - \mu} d\epsilon$$

BCS superconductor Holland-Timmermans

Dicke model

Fluctuation corrections

• Consider crossover to BEC with changing density.

Fluctuation corrections

- Consider crossover to BEC with changing density.
- Treatment similar to [Nozières & Schmitt-Rink J.L.T.P 59 195 (1985)]

Fluctuation corrections

- Consider crossover to BEC with changing density.
- Treatment similar to [Nozières & Schmitt-Rink J.L. T.P **59** 195 (1985)]
- However:
 - Two dimensional system consider Kosterlitz-Thouless

Fluctuation corrections

- Consider crossover to BEC with changing density.
- Treatment similar to [Nozières & Schmitt-Rink J.L. T.P **59** 195 (1985)]
- However:
 - Two dimensional system consider Kosterlitz-Thouless
 - Boson field dynamic, with chemical potential similar to Holland-Timmermans model, e.g. [*Ohashi & Griffin*, *PRA*. **67** 063612 (2003)]

Fluctuations in 2d

Fluctuations in 2d

Fluctuations in 2d

Fluctuations in 2d

Need $\rho_{sf} = \rho_{total} - \rho_{normal}$. ρ_{normal} found by current response: $J_i(\mathbf{q}) = \chi_{ij}(\mathbf{q})F_j(\mathbf{q})$.

Fluctuations in 2d

Fluctuations in 2d

Thus, need to find: ρ_{total} in presence of condensate.

J. Keeling, MIT CMT Informal Seminar, 2005

Fluctuations in presence of condensate

Density is total derivative of free energy:

$$\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0}$$

Fluctuations in presence of condensate

Density is total derivative of free energy:

$$\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0}$$

Write $F = F_{m.f.} + F_{fluct.}$

Fluctuations in presence of condensate

Schematically,

Density is total derivative of free energy:

$$F_{\rm fluct} = -k_B T \ln \left\langle e^{-\beta (H_{\rm fluct}[\psi_0] - \mu \rho_{\rm uncondensed})} \right\rangle$$

$$\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0}$$

Write $F = F_{m.f.} + F_{fluct.}$

Fluctuations in presence of condensate

Schematically,

Density is total derivative of free energy:

$$F_{\rm fluct} = -k_B T \ln \left\langle e^{-\beta (H_{\rm fluct}[\psi_0] - \mu \rho_{\rm uncondensed})} \right\rangle$$

$$\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0}$$

By definition, $\partial F_{\rm m.f.}/\partial \psi_0 = 0$, so:

Write $F = F_{m.f.} + F_{fluct.}$

Fluctuations in presence of condensate

Schematically,

Density is total derivative of free energy:

 $\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0}$

$$F_{\rm fluct} = -k_B T \ln \left\langle e^{-\beta (H_{\rm fluct}[\psi_0] - \mu \rho_{\rm uncondensed})} \right\rangle$$

By definition,
$$\partial F_{\rm m.f.}/\partial \psi_0 = 0$$
, so:

Write $F = F_{m.f.} + F_{fluct}$.

$$\rho = \left(\rho_{\rm m.f.} - \frac{d\psi_0}{d\mu} \frac{\partial F_{\rm fluct}}{\partial \psi_0}\right) - \frac{\partial F_{\rm fluct}}{\partial \mu}$$

Fluctuations in presence of condensate

Schematically,

Density is total derivative of free energy:

$$F_{\rm fluct} = -k_B T \ln \left\langle e^{-\beta (H_{\rm fluct}[\psi_0] - \mu \rho_{\rm uncondensed})} \right\rangle$$

$$\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0} \qquad \qquad \text{By definition, } \partial F_{\text{m.f.}} / \partial \psi_0 = 0, \text{ so:}$$

$$\begin{pmatrix} & d\psi_0 \partial F_{\text{fluct}} \end{pmatrix} \quad \partial F_{\text{fluct}} \end{pmatrix}$$

Write $F = F_{m.f.} + F_{fluct}$.

$$\rho = \left(\rho_{\rm m.f.} - \frac{d\psi_0}{d\mu} \frac{\partial F_{\rm fluct}}{\partial \psi_0}\right) - \frac{\partial F_{\rm fluct}}{\partial \mu}$$

Condensate depletion changes critical chemical potential.

Simple example: Weakly interacting Bose gas

$$H - \mu N = \sum_{k} (\epsilon_{k} - \mu) a_{k}^{\dagger} a_{k} + \frac{g}{2} \sum_{k,k',q} a_{k+q}^{\dagger} a_{k'-q}^{\dagger} a_{k} a_{k'}$$

Simple example: Weakly interacting Bose gas

$$H - \mu N = \sum_{k} (\epsilon_{k} - \mu) a_{k}^{\dagger} a_{k} + \frac{g}{2} \sum_{k,k',q} a_{k+q}^{\dagger} a_{k'-q}^{\dagger} a_{k} a_{k'}$$

J. Keeling, MIT CMT Informal Seminar, 2005

Simple example: Weakly interacting Bose gas

$$H - \mu N = \sum_{k} (\epsilon_{k} - \mu) a_{k}^{\dagger} a_{k} + \frac{g}{2} \sum_{k,k',q} a_{k+q}^{\dagger} a_{k'-q}^{\dagger} a_{k} a_{k'}$$

J. Keeling, MIT CMT Informal Seminar, 2005

Simple example: Weakly interacting Bose gas

$$H - \mu N = \sum_{k} (\epsilon_{k} - \mu) a_{k}^{\dagger} a_{k} + \frac{g}{2} \sum_{k,k',q} a_{k+q}^{\dagger} a_{k'-q}^{\dagger} a_{k} a_{k'}$$

Normal state exists for $\mu > 0$: Need self energy.

Conclusions

• Including fluctuations, B.E.C. transition at low density, internal structure matters at higher densities.

[Keeling et al., Phys. Rev. Lett. **93** 226403 (2004)] [Keeling et al., Phys. Rev. B **72** 115320 (2005)]

J. Keeling, MIT CMT Informal Seminar, 2005

Contents 20

Conclusions

• Including fluctuations, B.E.C. transition at low density, internal structure matters at higher densities.

• Fluctuations in 2D require considering fluctuations in condensate

[Keeling et al., Phys. Rev. Lett. **93** 226403 (2004)] [Keeling et al., Phys. Rev. B **72** 115320 (2005)]

J. Keeling, MIT CMT Informal Seminar, 2005

Conclusions

• Including fluctuations, B.E.C. transition at low density, internal structure matters at higher densities.

- Fluctuations in 2D require considering fluctuations in condensate
- Fluctuations in condensate deplete order parameter.

[Keeling et al., Phys. Rev. Lett. **93** 226403 (2004)] [Keeling et al., Phys. Rev. B **72** 115320 (2005)]

Conclusions

- Including fluctuations, B.E.C. transition at low density, internal structure matters at higher densities.
- Fluctuations in 2D require considering fluctuations in condensate
- Fluctuations in condensate deplete order parameter.
- Density crossover set by wavelength, so experiments in B.C.S. regime.

[Keeling et al., Phys. Rev. Lett. **93** 226403 (2004)] [Keeling et al., Phys. Rev. B **72** 115320 (2005)]

Conclusions

- Including fluctuations, B.E.C. transition at low density, internal structure matters at higher densities.
- Fluctuations in 2D require considering fluctuations in condensate
- Fluctuations in condensate deplete order parameter.
- Density crossover set by wavelength, so experiments in B.C.S. regime.

[Keeling et al., Phys. Rev. Lett. **93** 226403 (2004)] [Keeling et al., Phys. Rev. B **72** 115320 (2005)]

Supplementary material

Experimental signatures: N(k)

From spectrum find:

$$N(k) = \left\langle \psi_k^{\dagger}(\tau + \eta) \psi_k(\tau) \right\rangle$$

Experimental signatures: N(k)

From spectrum find:

$$N(k) = \left\langle \psi_k^{\dagger}(\tau + \eta) \psi_k(\tau) \right\rangle$$

Can calculate if:

- Uncondensed,
- or low T, phase fluctuations.

Experimental signatures: N(k)

From spectrum find:

$$N(k) = \left\langle \psi_k^{\dagger}(\tau + \eta) \psi_k(\tau) \right\rangle$$

Can calculate if:

- Uncondensed,
- or low T, phase fluctuations.

Universal form:

$$N(p) \propto \rho_0 \frac{\xi_T^{\eta}}{p^{2-\eta}}, \qquad \eta = \frac{m}{2\pi\beta\rho_0\hbar^2}$$

Inhomogeneous broadening — spectral weight

With inhomogeneous broadening of exciton energies, lines become broadened.

Can plot $\Im \mathcal{G}(i\omega = z + i\eta)$, absorption coefficient.

Inhomogeneous broadening — spectral weight

With inhomogeneous broadening of exciton energies, lines become broadened.

Can plot $\Im \mathcal{G}(i\omega = z + i\eta)$, absorption coefficient. Figures for broadening, $0.3g\sqrt{n}$ other parameters as previously.

Inhomogeneous broadening — spectral weight

With inhomogeneous broadening of exciton energies, lines become broadened.

Can plot $\Im \mathcal{G}(i\omega = z + i\eta)$, absorption coefficient. Figures for broadening, $0.3g\sqrt{n}$ other parameters as previously.

Note Goldstone mode is not broadened.

Inhomogeneous broadening: What the spectrum means

Absorption probability is:

$$P_{\text{absorb}}(x) = \sum_{n,m} \left| \langle m \left| \psi^{\dagger} \right| n \rangle \right|^2 e^{\beta (F - E_n)} \delta(x - E_{mn}) = (1 + n_{\text{B}}(x)) \rho_{\text{L}}(x).$$

Inhomogeneous broadening: What the spectrum means

Absorption probability is:

$$P_{\text{absorb}}(x) = \sum_{n,m} \left| \langle m \left| \psi^{\dagger} \right| n \rangle \right|^2 e^{\beta (F - E_n)} \delta(x - E_{mn}) = (1 + n_{\text{B}}(x)) \rho_{\text{L}}(x).$$

Emission probability is:

$$P_{\rm emit}(x) = \sum_{n,m} |\langle m | \psi | n \rangle|^2 e^{\beta (F - E_n)} \delta(x + E_{mn}) = n_{\rm B}(x) \rho_{\rm L}(x).$$

Inhomogeneous broadening: What the spectrum means

Absorption probability is:

$$P_{\text{absorb}}(x) = \sum_{n,m} \left| \langle m \left| \psi^{\dagger} \right| n \rangle \right|^2 e^{\beta (F - E_n)} \delta(x - E_{mn}) = (1 + n_{\text{B}}(x)) \rho_{\text{L}}(x).$$

Emission probability is:

$$P_{\rm emit}(x) = \sum_{n,m} |\langle m | \psi | n \rangle|^2 e^{\beta (F - E_n)} \delta(x + E_{mn}) = n_{\rm B}(x) \rho_{\rm L}(x).$$

Where $\rho_{\rm L}$, the difference is given by:

$$\rho_{\rm L}(x) = \lim_{\eta \to 0} \Im \mathcal{G}(i\omega = x + i\eta) = P_{\rm absorb}(x) - P_{\rm emit}(x).$$

J. Keeling, MIT CMT Informal Seminar, 2005

Contents 24
BCS-BEC crossover in a system of microcavity polaritons

Inhomogeneous broadening — Emission probability

Alternative plots: P_{emit} Figures for broadening, $0.1g\sqrt{n}$ other parameters as previously.

