BCS-BEC crossover in a system of microcavity polaritons

Jonathan Keeling, P. R. Eastham, M. H. Szymanska, P. B. Littlewood
Theory of Condensed Matter, Cambridge

October 19, 2005

J. Keeling, MIT CMT Informal Seminar, 2005
Overview

- Microcavity polariton condensation: review of experiments.
Overview

- Microcavity polariton condensation: review of experiments.
- Dicke model for polaritons.
Overview

- Microcavity polariton condensation: review of experiments.
- Dicke model for polaritons.
- Summary of results from mean field theory.
Overview

• Microcavity polariton condensation: review of experiments.
• Dicke model for polaritons.
• Summary of results from mean field theory.
• Diversion: Atomic gases near Feshbach resonance – analogies
Overview

- Microcavity polariton condensation: review of experiments.
- Dicke model for polaritons.
- Summary of results from mean field theory.
- **Diversion**: Atomic gases near Feshbach resonance – analogies
- Fluctuations in two dimensions; fluctuations with condensate
Overview

- Microcavity polariton condensation: review of experiments.
- Dicke model for polaritons.
- Summary of results from mean field theory.
- **Diversion**: Atomic gases near Feshbach resonance – analogies
- Fluctuations in two dimensions; fluctuations with condensate
- Consider crossover between “B.E.C.” and “B.C.S.-like” transition.
BCS-BEC crossover in a system of microcavity polaritons

Exciton Polaritons

- Strong coupling of photons to excitons

[Pekar, *JETP* **6** 785 (1958)]
[Hopfield, *Phys. Rev.* **112** 1555 (1958)]
BCS-BEC crossover in a system of microcavity polaritons

Exciton Polaritons

- Strong coupling of photons to excitons
- Anti-crossing – form two new modes

[**Pekar, JETP** 6 785 (1958)]
[**Hopfield, Phys. Rev.** 112 1555 (1958)]
Exciton Polaritons

- Strong coupling of photons to excitons
- Anti-crossing – form two new modes
- No condensation – can relax to photon mode.

[Pekar, *JETP* 6 785 (1958)]
[Hopfield, *Phys. Rev.* 112 1555 (1958)]
BCS-BEC crossover in a system of microcavity polaritons

Microcavity polaritons

Quantum well excitons coupled to photons confined in a microcavity.
BCS-BEC crossover in a system of microcavity polaritons

Microcavity polaritons

Quantum well excitons coupled to photons confined in a microcavity.
BCS-BEC crossover in a system of microcavity polaritons

Microcavity polaritons

Quantum well excitons coupled to photons confined in a microcavity.

Quantum Wells

Distributed Bragg Reflector

Cavity mode

Cavity Photon $m_{ph} \sim 10^{-5} m_e$

Upper Polariton

Lower Polariton $m_{pol} = 2m_{ph}$

QW Exciton

J. Keeling, MIT CMT Informal Seminar, 2005
Why polariton condensation:

\[m_{\text{ph}} \approx 10^{-5} m_e \]

Lower Polariton

QW Exciton

Cavity Photon

Upper Polariton

Lower Polariton

\[m_{\text{pol}} = 2m_{\text{ph}} \]
Why polariton condensation:

- Polariton mass $10^{-4}m_{\text{electron}}$, high T_c.

\[m_{\text{pol}} = 2m_{\text{ph}} \]

\[m_{\text{ph}} \sim 10^{-5} m_{\text{e}} \]
Why polariton condensation:

- Polariton mass $10^{-4}m_{\text{electron}}$, high T_c.
- Photon component – Non-classical light.
Why polariton condensation:

- Polariton mass $10^{-4} m_{\text{electron}}$, high T_c.
- Photon component – Non-classical light.
- Greater control.
Why polariton condensation:

- Polariton mass $10^{-4}m_{\text{electron}}$, high T_c.
- Photon component – Non-classical light.
- Greater control.

Problems?

- Cavity lifetime is short (ps), hard to thermalise.
BCS-BEC crossover in a system of microcavity polaritons

Polariton Experiments

Non-linear ground state occupation.

[Deng et al. Science 298 199 (2002)]
(also [Dang et al. PRL. 81 3920 (1998)])
Non-linear ground state occupation.

(also [Dang et al. PRL. 81 3920 (1998)])

Peak in angular distribution.

[Deng et al. PNAS 100 15318]
Polariton Experiments (2)

Second order coherence of photons.

[Deng et al. Science 298 199 (2002)]
BCS-BEC crossover in a system of microcavity polaritons

Polariton Experiments (2)

Second order coherence of photons.

Interference fringes:

[Deng et al. Science 298 199 (2002)]

BCS-BEC crossover in a system of microcavity polaritons

Localised two level systems

Coupling to light:

\[\varepsilon = \frac{p^2}{2m} \]

\[g^2(\varepsilon, p) \]

[Marchetti et al. cond-mat/0509438].
BCS-BEC crossover in a system of microcavity polaritons

Localised two level systems

Coupling to light:

\[\varepsilon = \frac{p^2}{2m} \]

\[g^2(\varepsilon, p) \]

-3 -2 -1 0 1 2

Transverse photon mode

2 Level systems

[Marchetti et al. cond-mat/0509438].

J. Keeling, MIT CMT Informal Seminar, 2005
BCS-BEC crossover in a system of microcavity polaritons

Localised two level systems

Coupling to light:

- Effective hard-core exciton-exciton interaction exists.

[Marchetti et al. cond-mat/0509438].

J. Keeling, MIT CMT Informal Seminar, 2005
BCS-BEC crossover in a system of microcavity polaritons

Localised two level systems

Coupling to light:

- Effective hard-core exciton-exciton interaction exists.
- Energy difference between levels represents energy of bound exciton state.

\[\varepsilon = \frac{p^2}{2m} \]

\[g^2(\varepsilon, p) \]

\[\varepsilon = \frac{p^2}{2m} - g^2(\varepsilon, p) \]

\[\varepsilon \] [meV]

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \]

\[-3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \]

Momentum [a.u]

[Marchetti et al. cond-mat/0509438].

J. Keeling, MIT CMT Informal Seminar, 2005
The Dicke Model Hamiltonian

\[H = \sum_{\alpha=1}^{\alpha=nA} \epsilon \left(b_{\alpha}^\dagger b_{\alpha} - a_{\alpha}^\dagger a_{\alpha} \right) \]
BCS-BEC crossover in a system of microcavity polaritons

The Dicke Model Hamiltonian

\[H = \sum_{\alpha=1}^{\alpha=nA} \epsilon (b_\alpha^\dagger b_\alpha - a_\alpha^\dagger a_\alpha) + \sum_{k=l/\sqrt{A}} \hbar \omega_k \psi_k^\dagger \psi_k \]
BCS-BEC crossover in a system of microcavity polaritons

The Dicke Model Hamiltonian

\[
H = \sum_{\alpha=1}^{\alpha=nA} \epsilon (b^{\dagger}_\alpha b_\alpha - a^{\dagger}_\alpha a_\alpha) + \sum_{k=l/\sqrt{A}} \hbar \omega_k \psi^\dagger_k \psi_k
+ \frac{g}{\sqrt{A}} \sum_{\alpha,k} \left(e^{2\pi i k \cdot r_n} \psi^\dagger_k b^{\dagger}_\alpha a_\alpha + e^{-2\pi i k \cdot r_n} \psi^\dagger_k a^{\dagger}_\alpha b_\alpha \right).
\]
The Dicke Model Hamiltonian

\[H = \sum_{\alpha=1}^{\alpha=nA} \epsilon (b_{\alpha}^\dagger b_{\alpha} - a_{\alpha}^\dagger a_{\alpha}) + \sum_{k=l/\sqrt{A}} \hbar \omega_k \psi_k^\dagger \psi_k \]
\[+ \frac{g}{\sqrt{A}} \sum_{\alpha, k} \left(e^{2\pi i k \cdot r_n} \psi_k b_{\alpha}^\dagger a_{\alpha} + e^{-2\pi i k \cdot r_n} \psi_k^\dagger a_{\alpha}^\dagger b_{\alpha} \right). \]

- T.L.S. areal density n
BCS-BEC crossover in a system of microcavity polaritons

The Dicke Model Hamiltonian

\[H = \sum_{\alpha=1}^{nA} \epsilon (b_\alpha^\dagger b_\alpha - a_\alpha^\dagger a_\alpha) + \sum_{k=l/\sqrt{A}} \hbar \omega_k \psi_k^\dagger \psi_k + \frac{g}{\sqrt{A}} \sum_{\alpha,k} \left(e^{2\pi i k \cdot r_n} \psi_k b_\alpha^\dagger a_\alpha + e^{-2\pi i k \cdot r_n} \psi_k^\dagger a_\alpha^\dagger b_\alpha \right). \]

- T.L.S. areal density \(n \)
- Photon dispersion in cavity:
 \[\omega_k = \sqrt{\omega_0^2 + \gamma^2 k^2} \approx \omega_0 + \hbar k^2 / 2m \]
BCS-BEC crossover in a system of microcavity polaritons

The Dicke Model Hamiltonian

\[
H = \sum_{\alpha=1}^{\alpha=nA} \epsilon (b_\alpha^\dagger b_\alpha - a_\alpha^\dagger a_\alpha) + \sum_{k=l/\sqrt{A}} \hbar \omega_k \psi_k^\dagger \psi_k
\]

\[
+ \frac{g}{\sqrt{A}} \sum_{\alpha,k} \left(e^{2\pi i k \cdot r_n} \psi_k^\dagger b_\alpha^\dagger a_\alpha + e^{-2\pi i k \cdot r_n} \psi_k^\dagger a_\alpha^\dagger b_\alpha \right).
\]

- T.L.S. areal density \(n \)
- Photon dispersion in cavity:
 \[
 \omega_k = \sqrt{\omega_0^2 + c^2 k^2} \approx \omega_0 + \hbar k^2 / 2m
 \]

Assume thermal equilibrium with fixed number of excitations, \(\tilde{H} = H - \mu N \)

\[
N = \sum_{\alpha=1}^{\alpha=nA} \frac{1}{2} (b_\alpha^\dagger b_\alpha - a_\alpha^\dagger a_\alpha + 1) + \sum_{k=l/\sqrt{A}} \psi_k^\dagger \psi_k.
\]

J. Keeling, MIT CMT Informal Seminar, 2005
BCS-BEC crossover in a system of microcavity polaritons

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^\dagger + \sum_{\alpha} X_\alpha b_\alpha^\dagger a_\alpha)} \prod_{\alpha} a_{\alpha}^\dagger |0\rangle$$

J. Keeling, MIT CMT Informal Seminar, 2005
BCS-BEC crossover in a system of microcavity polaritons

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

\[|\Psi\rangle = e^{\lambda(\psi_0^\dagger + \sum_\alpha X_\alpha b_\alpha^\dagger a_\alpha)} \prod_\alpha a_\alpha^\dagger |0\rangle = e^{\lambda\psi_0^\dagger} \prod_\alpha (v_\alpha b_\alpha^\dagger + u_\alpha a_\alpha^\dagger) |0\rangle \]

J. Keeling, MIT CMT Informal Seminar, 2005
BCS-BEC crossover in a system of microcavity polaritons

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

\[|\Psi\rangle = e^{\lambda (\psi_0^\dagger + \sum_\alpha X_\alpha b_\alpha^\dagger a_\alpha)} \prod_\alpha a_\alpha^\dagger |0\rangle = e^{\lambda \psi_0^\dagger} \prod_\alpha (v_\alpha b_\alpha^\dagger + u_\alpha a_\alpha^\dagger) |0\rangle \]

At finite T, Integrate out TLS, and minimise w.r.t \psi.

J. Keeling, MIT CMT Informal Seminar, 2005
BCS-BEC crossover in a system of microcavity polaritons

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^\dagger + \sum_\alpha X_\alpha b_\alpha^\dagger a_\alpha)} \prod_\alpha a_\alpha^\dagger |0\rangle = e^{\lambda\psi_0^\dagger} \prod_\alpha (v_\alpha b_\alpha^\dagger + u_\alpha a_\alpha^\dagger) |0\rangle$$

At finite T, Integrate out TLS, and minimise w.r.t ψ. Gap equation:

$$\tilde{\omega}_0 \psi_0 = g^2 n \frac{\tanh(\beta E)}{E} \psi_0$$

$$E = \sqrt{\tilde{c}^2 + g^2 n |\psi_0|^2}$$

J. Keeling, MIT CMT Informal Seminar, 2005
BCS-BEC crossover in a system of microcavity polaritons

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

\[|\Psi\rangle = e^{\lambda(\psi_0^\dagger + \sum_\alpha X_\alpha b_\alpha^\dagger a_\alpha)} \prod_\alpha a_\alpha^\dagger |0\rangle = e^{\lambda\psi_0^\dagger} \prod_\alpha (v_\alpha b_\alpha^\dagger + u_\alpha a_\alpha^\dagger) |0\rangle \]

At finite T, Integrate out TLS, and minimise w.r.t ψ.

Gap equation:

\[\tilde{\omega}_0 \psi_0 = g^2 n \frac{\tanh(\beta E)}{E} \psi_0 \]

Excitation density:

\[E = \sqrt{\tilde{\epsilon}^2 + g^2 n |\psi_0|^2} \quad \rho_{ex} = -\frac{\tilde{\epsilon}}{2E} \tanh(\beta E) + |\psi_0|^2 \]

J. Keeling, MIT CMT Informal Seminar, 2005
BCS-BEC crossover in a system of microcavity polaritons

Mean field theory

At zero temperature, BCS-like ansatz is exact minimum

$$|\Psi\rangle = e^{\lambda(\psi_0^\dagger + \sum_{\alpha} X_\alpha b_\alpha^\dagger a_\alpha)} \prod_{\alpha} a_\alpha^\dagger |0\rangle = e^{\lambda\psi_0^\dagger} \prod_{\alpha} (v_\alpha b_\alpha^\dagger + u_\alpha a_\alpha^\dagger) |0\rangle$$

At finite T, Integrate out TLS, and minimise w.r.t ψ.

Gap equation:

$$\tilde{\omega}_0 \psi_0 = g^2n \frac{\tanh(\beta E)}{E} \psi_0$$

Excitation density:

$$E = \sqrt{\tilde{\epsilon}^2 + g^2n |\psi_0|^2}$$

$$\rho_{ex} = -\frac{\tilde{\epsilon}}{2E} \tanh(\beta E) + |\psi_0|^2$$

BCS-BEC crossover in a system of microcavity polaritons

Fluctuation spectrum

Consider fluctuations about mean field — Poles of greens function for photon response.

J. Keeling, MIT CMT Informal Seminar, 2005
Consider fluctuations about mean field — Poles of greens function for photon response.

For small k, linear dispersion mode,

$$\xi_1 = \pm ck + O(k^2)$$
BCS-BEC crossover in a system of microcavity polaritons

Fluctuation spectrum

Consider fluctuations about mean field — Poles of greens function for photon response.

For small k, linear dispersion mode,

$$\xi_1 = \pm ck + O(k^2)$$

At large k, recover bare exciton/photon spectra.
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Feshbach resonance

Condensation in system of bosons coupled to fermion pairs — analogies to Feshbach resonance.
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Feshbach resonance

Condensation in system of bosons coupled to fermion pairs — analogies to Feshbach resonance.

- Interaction between fermions depends on spin states.
Diversion: Feshbach resonance

Condensation in system of bosons coupled to fermion pairs — analogies to Feshbach resonance.

- Interaction between fermions depends on spin states.
- At resonance, “strong-coupling” of atoms and molecule:
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Feshbach resonance

Condensation in system of bosons coupled to fermion pairs — analogies to Feshbach resonance.

- Interaction between fermions depends on spin states.
- At resonance, “strong-coupling” of atoms and molecule:
- Detuning gives crossover from BCS of atoms to BEC of molecules.
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Analogies and differences

Comparison of physical systems:

Feshbach resonance \iff **Microcavity Polaritons**
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Analogies and differences

Comparison of physical systems:

- Feshbach resonance \iff Microcavity Polaritons
- Closed channel molecules \iff Microcavity Photons
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Analogies and differences

Comparison of physical systems:

- **Feshbach resonance** \iff **Microcavity Polaritons**
- **Closed channel molecules** \iff **Microcavity Photons**
- **Atoms** \iff **Electron/Holes**
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Analogies and differences

Comparison of physical systems:

- **Feshbach resonance** \iff **Microcavity Polaritons**
- Closed channel molecules \iff Microcavity Photons
- Atoms \iff Electron/Holes
- Inter-channel coupling \iff Electric dipole interaction
Diversion: Analogies and differences

Comparison of physical systems:

- **Feshbach resonance** \leftrightarrow **Microcavity Polaritons**
- Closed channel molecules \leftrightarrow Microcavity Photons
- Atoms \leftrightarrow Electron/Holes
- Inter-channel coupling \leftrightarrow Electric dipole interaction
- Background potential \leftrightarrow Coulomb attraction
Diversion: Analogies and differences

Comparison of physical systems:

- **Feshbach resonance** ⇔ **Microcavity Polaritons**
- Closed channel molecules ⇔ Microcavity Photons
- Atoms ⇔ Electron/Holes
- Inter-channel coupling ⇔ Electric dipole interaction
- Background potential ⇔ Coulomb attraction

Important differences

- Polaritons: Measure only emitted photons.
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Analogies and differences

Comparison of physical systems:

- **Feshbach resonance** \iff **Microcavity Polaritons**
 - Closed channel molecules \iff Microcavity Photons
 - Atoms \iff Electron/Holes
 - Inter-channel coupling \iff Electric dipole interaction
 - Background potential \iff Coulomb attraction

Important differences

- Polaritons: Measure only emitted photons.
- Cannot dynamically change exciton-photon detuning.
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Holland-Timmermans model

One model of Feshbach resonance, very similar to Dicke model:
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Holland-Timmermans model

One model of Feshbach resonance, very similar to Dicke model:

\[
H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^\dagger c_{k,\sigma}
\]
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Holland-Timmermans model

One model of Feshbach resonance, very similar to Dicke model:

\[
H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_k^{\dagger} b_k
\]
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Holland-Timmermans model

One model of Feshbach resonance, very similar to Dicke model:

\[
H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_{k} (\epsilon_k + 2\Delta - 2\mu) b_{k}^{\dagger} b_{k} \\
+ g \sum_{k,q} \left(b_{q}^{\dagger} c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow} + c_{k+q/2,\uparrow}^{\dagger} c_{-k+q/2,\downarrow} b_{q} \right)
\]
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Holland-Timmermans model

One model of Feshbach resonance, very similar to Dicke model:

\[
H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^\dagger c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_{k}^\dagger b_k \\
+ g \sum_{k,q} \left(b_{q}^\dagger c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow}^\dagger + c_{k+q/2,\uparrow}^\dagger c_{-k+q/2,\downarrow}^\dagger b_q \right) \\
- \frac{U}{2} \sum_{k,k',q} c_{k+q,\uparrow}^\dagger c_{k',-q,\downarrow}^\dagger c_{k,\downarrow} c_{k',\uparrow}.
\]
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Holland-Timmermans model

One model of Feshbach resonance, very similar to Dicke model:

\[
H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^\dagger c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_{k}^\dagger b_{k}
\]

\[
+ g \sum_{k,q} \left(b_{q}^\dagger c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow} + c_{k+q/2,\uparrow}^\dagger c_{-k+q/2,\downarrow}^\dagger b_{q} \right)
\]

\[
- \frac{U}{2} \sum_{k,k',q} c_{k+q,\uparrow}^\dagger c_{k',-q,\downarrow}^\dagger c_{k,\downarrow} c_{k',\uparrow}.
\]

J. Keeling, MIT CMT Informal Seminar, 2005
BCS-BEC crossover in a system of microcavity polaritons

Diversion: Holland-Timmermans model

One model of Feshbach resonance, very similar to Dicke model:

\[
H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu) c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_{k}^{\dagger} b_{k}
\]

\[
+ g \sum_{k,q} \left(b_{q}^{\dagger} c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow} + c_{k+q/2,\uparrow} c_{-k+q/2,\downarrow}^{\dagger} b_{q} \right)
\]

\[- \frac{U}{2} \sum_{k,k',q} c_{k+q,\uparrow}^{\dagger} c_{k',-q,\downarrow}^{\dagger} c_{k,\downarrow} c_{k',\uparrow}^{\dagger} . \]

Gives energy dependant fermion-fermion scattering.
Diversion: Holland-Timmermans model

One model of Feshbach resonance, very similar to Dicke model:

\[
H - \mu N = \sum_{k,\sigma} (\epsilon_k - \mu)c_{k,\sigma}^\dagger c_{k,\sigma} + \sum_k (\epsilon_k + 2\Delta - 2\mu) b_{k}^\dagger b_{k} \\
+ g \sum_{k,q} \left(b_{q}^\dagger c_{-k+q/2,\downarrow} c_{k+q/2,\uparrow} + c_{k+q/2,\uparrow}^\dagger c_{-k+q/2,\downarrow}^\dagger b_{q} \right) \\
- \frac{U}{2} \sum_{k,k',q} c_{k+q,\uparrow}^\dagger c_{k',-q,\uparrow}^\dagger c_{k,\downarrow} c_{k',\uparrow}.
\]

Gives energy dependant fermion-fermion scattering. Unnecessary for current experiments. e.g. [Simonucci et al. Europhys. Lett. 69 713 (2005)]
Comparing mean field theories

General form

$$\frac{1}{U_{\text{eff}}} = \int \nu_s(\epsilon) \frac{\tanh(\beta(\epsilon - \mu))}{\epsilon - \mu} d\epsilon$$

BCS superconductor Holland-Timmermans Dicke model
Comparing mean field theories

General form

\[
\frac{1}{U_{\text{eff}}} = \int \nu_s(\epsilon) \frac{\tanh(\beta(\epsilon - \mu))}{\epsilon - \mu} d\epsilon
\]

BCS superconductor Holland-Timmermans Dicke model

DOS

Occupation

Energy
Comparing mean field theories

General form

\[
\frac{1}{U_{\text{eff}}} = \int \nu_s(\epsilon) \frac{\tanh(\beta(\epsilon - \mu))}{\epsilon - \mu} \, d\epsilon
\]

BCS superconductor Holland-Timmermans Dicke model
Comparing mean field theories

General form

\[
\frac{1}{U_{\text{eff}}} = \int \nu_s(\epsilon) \frac{\tanh(\beta(\epsilon - \mu))}{\epsilon - \mu} d\epsilon
\]

BCS superconductor Holland-Timmermans Dicke model

\[
\frac{1}{U} = \nu(\mu) \ln \left(\frac{\Omega}{T} \right)
\]
Comparing mean field theories

General form

\[\frac{1}{U_{\text{eff}}} = \int \nu_s(\epsilon) \frac{\text{tanh}(\beta(\epsilon - \mu))}{\epsilon - \mu} d\epsilon \]

BCS superconductor Holland-Timmermans Dicke model

\[\frac{1}{U} = \nu(\mu) \ln \left(\frac{\Omega}{T} \right) \]

\[\frac{1}{U_{\text{bg}}} + \frac{g^2}{\Delta - \mu} = \nu(\mu) \ln \left(\frac{\Omega}{T} \right) \]
BCS-BEC crossover in a system of microcavity polaritons

Comparing mean field theories

General form

\[\frac{1}{U_{\text{eff}}} = \int \nu_s(\epsilon) \frac{\tanh(\beta(\epsilon - \mu))}{\epsilon - \mu} d\epsilon \]

BCS superconductor Holland-Timmermans Dicke model

\[\frac{1}{U} = \nu(\mu) \ln \left(\frac{\Omega}{T} \right), \quad \frac{1}{U_{\text{bg}}} + \frac{g^2}{\Delta - \mu} = \nu(\mu) \ln \left(\frac{\Omega}{T} \right), \quad \frac{\omega - \mu}{g^2} = \frac{\tanh(\beta(\epsilon_{\text{ex}} - \mu))}{\epsilon_{\text{ex}} - \mu} \]

J. Keeling, MIT CMT Informal Seminar, 2005
BCS-BEC crossover in a system of microcavity polaritons

Fluctuation corrections

- Consider crossover to BEC with changing density.
BCS-BEC crossover in a system of microcavity polaritons

Fluctuation corrections

- Consider crossover to BEC with changing density.

- Treatment similar to \([\text{Nozières & Schmitt-Rink } J.L.T.P \textbf{59} 195 (1985)](\)
Fluctuation corrections

- Consider crossover to BEC with changing density.

- Treatment similar to [Nozières & Schmitt-Rink *J. L. T. P* 59 195 (1985)]

- However:
 - Two dimensional system — consider Kosterlitz-Thouless
Fluctuation corrections

- Consider crossover to BEC with changing density.

- Treatment similar to [Nozières & Schmitt-Rink J.L.T.P 59 195 (1985)]

- However:
 - Two dimensional system — consider Kosterlitz-Thouless
 - Boson field dynamic, with chemical potential — similar to Holland-Timmermans model, e.g. [Ohashi & Griffin, PRA. 67 063612 (2003)]
BCS-BEC crossover in a system of microcavity polaritons

Fluctuations in 2d

J. Keeling, MIT CMT Informal Seminar, 2005
BCS-BEC crossover in a system of microcavity polaritons

Fluctuations in 2d

\[\rho_s = \frac{2mk_B T}{\hbar^2} \]

J. Keeling, MIT CMT Informal Seminar, 2005
BCS-BEC crossover in a system of microcavity polaritons

Fluctuations in 2d

Need \(\rho_{sf} = \rho_{total} - \rho_{normal} \).

\[\rho_s = \# \frac{2mk_B T}{\hbar^2} \]
Fluctuations in 2d

Need \(\rho_{sf} = \rho_{\text{total}} - \rho_{\text{normal}} \).

\(\rho_{\text{normal}} \) found by current response:

\[J_i(q) = \chi_{ij}(q)F_j(q). \]

\[\rho_s = \# \frac{2mk_BT}{\hbar^2} \]
BCS-BEC crossover in a system of microcavity polaritons

Fluctuations in 2d

Need $\rho_{sf} = \rho_{total} - \rho_{normal}$.

ρ_{normal} found by current response:

$$J_i(q) = \chi_{ij}(q)F_j(q).$$

$$\chi_{ij} = \chi_L \frac{q_i q_j}{q^2} + \chi_T \left(\delta_{ij} - \frac{q_i q_j}{q^2} \right)$$

Thus $\rho_{normal} = m\chi_T(q \to 0)$

\[\rho_s = \# \frac{2mk_B T}{\hbar^2} \]
BCS-BEC crossover in a system of microcavity polaritons

Fluctuations in 2d

The figure shows a graph with temperature on the x-axis and superfluid density on the y-axis. The graph has a dashed line indicating a phase transition at a certain temperature.

Need $\rho_{sf} = \rho_{total} - \rho_{normal}$.

ρ_{normal} found by current response:

$J_i(q) = \chi_{ij}(q)F_j(q)$.

$$\chi_{ij} = \chi_L \frac{q_i q_j}{q^2} + \chi_T \left(\delta_{ij} - \frac{q_i q_j}{q^2} \right)$$

Thus $\rho_{normal} = m \chi_T(q \to 0)$

Thus, need to find: ρ_{total} in presence of condensate.
BCS-BEC crossover in a system of microcavity polaritons

Fluctuations in presence of condensate

Density is total derivative of free energy:

\[\rho = - \frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0} \]
Density is total derivative of free energy:

\[\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0} \]

Write \(F = F_{\text{m.f.}} + F_{\text{fluct}} \).
Density is total derivative of free energy:

\[\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0} \]

Write \(F = F_{\text{m.f.}} + F_{\text{fluct}} \).

Schematically,

\[F_{\text{fluct}} = -k_B T \ln \left\langle e^{-\beta (H_{\text{fluct}}[\psi_0] - \mu \rho_{\text{uncondensed}})} \right\rangle \]
BCS-BEC crossover in a system of microcavity polaritons

Fluctuations in presence of condensate

Density is total derivative of free energy:

\[\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0} \]

Write \(F = F_{\text{m.f.}} + F_{\text{fluct}}. \)

Schematically,

\[F_{\text{fluct}} = -k_B T \ln \langle e^{-\beta (H_{\text{fluct}}[\psi_0] - \mu \rho_{\text{uncondensed}})} \rangle \]

By definition, \(\partial F_{\text{m.f.}}/\partial \psi_0 = 0, \) so:
Fluctuations in presence of condensate

Density is total derivative of free energy:

\[\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0} \]

Write \(F = F_{\text{m.f.}} + F_{\text{fluct}} \).

Schematically,

\[F_{\text{fluct}} = -k_B T \ln \left< e^{-\beta (H_{\text{fluct}}[\psi_0] - \mu \rho_{\text{uncondensed}})} \right> \]

By definition, \(\partial F_{\text{m.f.}} / \partial \psi_0 = 0 \), so:

\[\rho = \left(\rho_{\text{m.f.}} - \frac{d\psi_0}{d\mu} \frac{\partial F_{\text{fluct}}}{\partial \psi_0} \right) - \frac{\partial F_{\text{fluct}}}{\partial \mu} \]
Fluctuations in presence of condensate

Density is total derivative of free energy:

\[
\rho = -\frac{\partial F}{\partial \mu} - \frac{d\psi_0}{d\mu} \frac{\partial F}{\partial \psi_0}
\]

Write \(F = F_{\text{m.f.}} + F_{\text{fluct}} \).

Schematically,

\[
F_{\text{fluct}} = -k_B T \ln \left< e^{-\beta(H_{\text{fluct}}[\psi_0] - \mu \rho_{\text{uncondensed}})} \right>
\]

By definition, \(\partial F_{\text{m.f.}}/\partial \psi_0 = 0 \), so:

\[
\rho = \left(\rho_{\text{m.f.}} - \frac{d\psi_0}{d\mu} \frac{\partial F_{\text{fluct}}}{\partial \psi_0} \right) - \frac{\partial F_{\text{fluct}}}{\partial \mu}
\]

Condensate depletion changes critical chemical potential.

J. Keeling, MIT CMT Informal Seminar, 2005
Simple example: Weakly interacting Bose gas

\[H - \mu N = \sum_k \left(\epsilon_k - \mu \right) a_k^{\dagger} a_k + \frac{g}{2} \sum_{k,k',q} a_{k+q}^{\dagger} a_{k'}^{\dagger} - q a_k a_{k'}. \]
BCS-BEC crossover in a system of microcavity polaritons

Simple example: Weakly interacting Bose gas

\[H - \mu N = \sum_k (\epsilon_k - \mu) a_k^\dagger a_k + \frac{g}{2} \sum_{k,k',q} a_k^\dagger a_{k+q}^\dagger a_{k'} - q a_k a_{k'}. \]
BCS-BEC crossover in a system of microcavity polaritons

Simple example: Weakly interacting Bose gas

\[
H - \mu N = \sum_k (\epsilon_k - \mu) a_k^\dagger a_k + \frac{g}{2} \sum_{k,k',q} a_{k+q}^\dagger a_{k'}^\dagger a_k a_{k'}.
\]

J. Keeling, MIT CMT Informal Seminar, 2005
BCS-BEC crossover in a system of microcavity polaritons

Simple example: Weakly interacting Bose gas

\[H - \mu N = \sum_k \left(\epsilon_k - \mu \right) a_k^\dagger a_k + \frac{g}{2} \sum_{k,k',q} a_{k+q}^\dagger a_{k'}^\dagger a_k a_{k'}. \]

Normal state exists for \(\mu > 0 \): Need self energy.
BCS-BEC crossover in a system of microcavity polaritons

The phase diagram

Calculate density where \(\rho_{\text{superfluid}} = 0 \).

J. Keeling, MIT CMT Informal Seminar, 2005
BCS-BEC crossover in a system of microcavity polaritons

The phase diagram

Calculate density where $\rho_{\text{superfluid}} = 0$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{phase_diagram.png}
\caption{Phase diagram of the BCS-BEC crossover in a system of microcavity polaritons.}
\end{figure}
Calculate density where $\rho_{\text{superfluid}} = 0$.

![Diagram showing phase diagram]

- **BCS-like regime**
- **BEC of polaritons**
- **BEC of photons**
BCS-BEC crossover in a system of microcavity polaritons

The phase diagram

Calculate density where $\rho_{\text{superfluid}} = 0$.

![Phase diagram with density and temperature axes showing the crossover between BCS-like regime and BEC of polaritons.](image)
BCS-BEC crossover in a system of microcavity polaritons

The phase diagram

Calculate density where $\rho_{\text{superfluid}} = 0$.

Crossover when:

$$T_{\text{deg}} = \frac{\rho}{m}$$
BCS-BEC crossover in a system of microcavity polaritons

The phase diagram

Calculate density where $\rho_{\text{superfluid}} = 0$.

Crossover when:

$$T_{\text{deg}} = \frac{\rho}{m} \approx T_c \approx \frac{g\sqrt{n}}{-\ln(\rho/n)}$$
The phase diagram

Calculate density where $\rho_{\text{superfluid}} = 0$.

Crossover when:

$$T_{\text{deg}} = \frac{\rho}{m} \approx T_c \approx \frac{g\sqrt{n}}{-\ln(\rho/n)}$$

Current experiments in BCS-like regime: $\rho_{\text{crossover}}/n \approx mg/\sqrt{n} \approx 10^{-3}$, experiments around $\rho/n \approx 0.01$.
Conclusions

- Including fluctuations, B.E.C. transition at low density, internal structure matters at higher densities.

Conclusions

- Including fluctuations, B.E.C. transition at low density, internal structure matters at higher densities.

- Fluctuations in 2D require considering fluctuations in condensate

Conclusions

- Including fluctuations, B.E.C. transition at low density, internal structure matters at higher densities.

- Fluctuations in 2D require considering fluctuations in condensate

- Fluctuations in condensate deplete order parameter.

Conclusions

- Including fluctuations, B.E.C. transition at low density, internal structure matters at higher densities.
- Fluctuations in 2D require considering fluctuations in condensate
- Fluctuations in condensate deplete order parameter.
- Density crossover set by wavelength, so experiments in B.C.S. regime.

Conclusions

- Including fluctuations, B.E.C. transition at low density, internal structure matters at higher densities.
- Fluctuations in 2D require considering fluctuations in condensate.
- Fluctuations in condensate deplete order parameter.
- Density crossover set by wavelength, so experiments in B.C.S. regime.

BCS-BEC crossover in a system of microcavity polaritons

Supplementary material
Experimental signatures: $N(k)$

From spectrum find:

$$N(k) = \left\langle \psi_{k}^\dagger(\tau + \eta)\psi_{k}(\tau) \right\rangle$$
BCS-BEC crossover in a system of microcavity polaritons

Experimental signatures: \(N(k) \)

From spectrum find:

\[
N(k) = \langle \psi_k^\dagger (\tau + \eta) \psi_k (\tau) \rangle
\]

Can calculate if:

- Uncondensed,
- or low \(T \), phase fluctuations.

![Graph showing N(k) vs Density and Temperature](image_url)
Experimental signatures: $N(k)$

From spectrum find:

$$N(k) = \left\langle \psi_k^\dagger(\tau + \eta)\psi_k(\tau) \right\rangle$$

Can calculate if:

- Uncondensed,
- or low T, phase fluctuations.

Universal form:

$$N(p) \propto \rho_0 \frac{\xi_T^\eta}{p^{2-\eta}}, \quad \eta = \frac{m}{2\pi\beta\rho_0\hbar^2}$$
Inhomogeneous broadening — spectral weight

With inhomogeneous broadening of exciton energies, lines become broadened.
Can plot $\Im G(i\omega = z + i\eta)$, absorption coefficient.
Inhomogeneous broadening — spectral weight

With inhomogeneous broadening of exciton energies, lines become broadened.

Can plot $\Im G(i\omega = z + i\eta)$, absorption coefficient. Figures for broadening, $0.3g\sqrt{n}$ other parameters as previously.
BCS-BEC crossover in a system of microcavity polaritons

Inhomogeneous broadening — spectral weight

With inhomogeneous broadening of exciton energies, lines become broadened.

Can plot $\Im G(i\omega = z + i\eta)$, absorption coefficient. Figures for broadening, $0.3g\sqrt{n}$ other parameters as previously.

Note Goldstone mode is not broadened.
Inhomogeneous broadening: What the spectrum means

Absorption probability is:

\[P_{\text{absorb}}(x) = \sum_{n,m} |\langle m | \psi^\dagger | n \rangle|^2 e^{\beta (F - E_n)} \delta(x - E_{mn}) = (1 + n_B(x)) \rho_L(x). \]
Inhomogeneous broadening: What the spectrum means

Absorption probability is:

\[P_{\text{absorb}}(x) = \sum_{n,m} \left| \langle m | \psi^\dagger | n \rangle \right|^2 e^{\beta (F - E_n)} \delta (x - E_{mn}) = (1 + n_B(x)) \rho_L(x). \]

Emission probability is:

\[P_{\text{emit}}(x) = \sum_{n,m} \left| \langle m | \psi | n \rangle \right|^2 e^{\beta (F - E_n)} \delta (x + E_{mn}) = n_B(x) \rho_L(x). \]
Inhomogeneous broadening: What the spectrum means

Absorption probability is:

\[P_{\text{absorb}}(x) = \sum_{n,m} \left| \langle m | \psi^\dagger | n \rangle \right|^2 \ e^{\beta(F-E_n)} \delta(x - E_{mn}) = (1 + n_B(x)) \rho_L(x). \]

Emission probability is:

\[P_{\text{emit}}(x) = \sum_{n,m} \left| \langle m | \psi | n \rangle \right|^2 \ e^{\beta(F-E_n)} \delta(x + E_{mn}) = n_B(x) \rho_L(x). \]

Where \(\rho_L \), the difference is given by:

\[\rho_L(x) = \lim_{\eta \to 0} \Im G(i\omega = x + i\eta) = P_{\text{absorb}}(x) - P_{\text{emit}}(x). \]
BCS-BEC crossover in a system of microcavity polaritons

Inhomogeneous broadening — Emission probability

Alternative plots: P_{emit} Figures for broadening, $0.1g\sqrt{n}$ other parameters as previously.