THE SYNTHESIS OF THE STEREOISOMERS OF 1,X-DIMETHYL-4-OXO-1,6,7--8,9,9a-HEXAHYDRO-4H-PYRIDO[1,2-a] PYRIMIDINE-3-CARBOXAMIDES

István Hermecz^a, Tibor Breining^a, Zoltán Mészáros^a, Gábor Tóth^b,
Márton Kajtár^c, Kálmán Simon^a.

- a./ CHINOIN Research Centre, H-1325 Budapest PO.Box 110, Hungary
- b./ Technical University; Institute for General and Analytical Chemistry, H-1111 Budapest Gellért tér 4, Hungary
- c./ Institute of Organic Chemistry; Eötvös University of Budapest, H-1088 Muzeum krt 4b, Hungary

We have been studying the chemistry and pharmacology of the $4-\infty$ -4H-pyrido [1,2-a] pyrimidines for over ten years. The $/\pm/1$, 6_{ax} -dimethyl-4-oxo-1,6,7,8,9,9a_{ax}-hexahydro-4H-pyrido-[1,2-a] pyrimidine $/\underline{10}$ / exhibited significant analgetic activity.

For structure—activity relationship study we aimed to synthethise 13 /the diastereomer of 10/, their optically active forms, as well as the structural isomers with the methyl-group in the 7 and 8 position. The synthetic routes are shown below.

Reduction of the quaternary salts /4,5,6/ with NaBH₄ /in H₂O/resulted always in the formation of the thermodynamically more stable diastereoisomer, i.e. <u>10</u>, <u>11</u> and <u>15</u> respectively, while catalytic reduction /Pd/C, MeOH/ of the enamines /7,8,9/ led to mixtures of the diastereoisomers, with ratios depending on the position of the methyl-group on the piperidine ring.

Starting from the optically active forms of the tetrahydro-derivative $\underline{1}$ we obtained the enantiomers of $\underline{10}$ and those of $\underline{13}$. $\underline{10}$ was also prepared by the alkylation of $\underline{16}$.

The conformation of the hexahydro-derivatives $\underline{10}$, $\underline{13}$ and $\underline{16}$ was investigated, by 1 H, 13 C NMR as well as by CD and X-ray analysis. The same pyrimidine ring conformation was found for $\underline{13}$ and $\underline{16}$, while that of $\underline{10}$ differed.

10 was pharmacologically more active than 13, and no difference between enantiomers was found.