ASYMMETRIC REDUCTIONS WITH CHIRAL 1,4-DIHYDROPYRIDINE CROWN ETHERS Richard M. Kellogg, J.G. de Vries, and C.B. Troostwijk

Department of Chemistry, University of Groningen, Nijenborgh, 9747 AG Groningen, The Netherlands

The synthesis of a series of chiral "crown-ether" 1,4-dihydropyridines ($\underline{2}$) has been accomplished employing, as key to the ring-closure, the smooth reaction of the cesium carboxylates ($\underline{1}$) with the required polyethyleneglycol dibromide. We have found that cesium salts often can be used to advantage in the syntheses of various macrocylic compounds.

The compounds $\underline{2}$ (R^2 =CH $_3$, (CH $_3$) $_2$ CH, C_6 H $_5$ CH $_2$; R^1 =CH $_3$, C_6 H $_5$ CH $_2$) in the presence of Mg $^{2\oplus}$ ions as catalyst are capable of reducing various phenyl-glyoxalate derivatives. The degree of asymmetric reduction can be as high as 85-90%. From analysis of steric interactions using molecular models it is possible to predict the configuration of the major enantiomer formed

of the alcohol. Reduction of the pyridinium salts $\frac{3}{2}$ back to $\frac{2}{2}$ with Na $_2$ S $_2$ 0 $_4$ completes the catalytic cycle.

Various aspects of these and other reactions will be discussed.