Optical Fibres and Telecommunications

Lecture 8 – Laser Structures and Modulating Lasers

Introduction

• Where are we?
• Laser structures
• Modulating laser diodes
 – Relaxation oscillations
 – Chirp
Last Time

- Temporal response of an LED.
- Rise time and fall time.
- Modulation bandwidth.
- Laser structures
 - Homojunction
 - Double heterostructure
- Optical confinement
 - Gain guiding
 - Index guiding.
- Next time Fabry-Perot modes, modulating laser diodes.

Fabry-Perot Laser Structures

- The laser structures shown so far are Fabry-Perot structures.
- To form a standing wave pattern, antinodes must be formed at the mirrors.
- Only modes with certain allowed wavelengths can be supported.
- These are the longitudinal modes of the resonator.
Longitudinal Modes

- Longitudinal modes are standing waves.
- For a longitudinal mode to be supported:
 \[\frac{2L}{\lambda} = N \]
 \(L \) = length of cavity, \(N \) = Integer number

Example: \(\lambda = 1500\text{nm} \), \(L = 0.4\text{mm} \), \(N = 533.333 \) – Not allowed!

Allowed mode: \(\lambda = \frac{2L}{N} = \frac{0.8\text{mm}}{534} = 1498.1\text{nm} \)
BUT: \(\lambda = \frac{0.8\text{mm}}{533} = 1500.9\text{nm} \) is also an allowed mode!

What does this mean?
Longitudinal Modes III

• Laser can generally operate simultaneously in several longitudinal modes.
• Effectively increases bandwidth of the source.

Spacing between adjacent modes $\approx \frac{\lambda}{2L}$

DBR’s and DFB’s

• In most situations want narrow linewidth.
• Implies operation on a single longitudinal mode.
• Simple Fabry-Perot Cavity is not sufficient.
• Need to design a cavity with a very narrow oscillation bandwidth.
• Use Distributed Bragg Reflector (DBR) or Distributed Bragg Feedback (DFB) Cavity.
• Similar to the Fibre Bragg Gratings we met earlier in the course.
Bragg Reflectors

- Portion of the light is reflected at each interface.
- Only for one wavelength can a coherent addition be performed.
- Wavelength satisfying the Bragg Condition, λ_B: $2\Lambda n_{eff} = \lambda_B$
 - n_{eff} is the effective index of the waveguide core.
 - Very narrow bandwidths are possible.

DBR Lasers

- Active region is terminated by a Bragg Reflector.
- Can use either a single ended grating or have a grating on both ends.
DFB Lasers

- Bragg grating placed in the vicinity of the active region.
- Feedback takes place throughout the laser cavity.
- Bragg condition must be satisfied.
- Narrow linewidth operation.
- Wavelength tuning is possible by heating the grating.

DFB Laser Spectrum

http://photonics.kist.re.kr/Teams/photonic/English/Research_FGG.html
Laser Structures – VCSEL’s

Picture from: http://www.physics.montana.edu/optics/jlc/VCSEL.htm

VCSEL SEM Image

http://www.gerhard-franz.org/title/vcsel-01.jpg
VCSELS II

- Replaces the traditional edge emitting geometry with a surface emitter like the SLED.
- Gives a VERY short cavity length.
- Widely spaced longitudinal modes – well outside the gain bandwidth.
- Single mode operation.
- Current injected through a shaped contact or a transparent Indium Tin Oxide (ITO) contact.
- Small size gives efficient operation and high switching speeds.
- Circular output well matched to fibre.
- On-chip testing possible for cheap production.
- Still difficult to obtain long wavelength operation, but rapidly becoming the most important laser source for datacomms applications.

Laser Diode Characteristics

- Below threshold, device operates as an LED.
- Above threshold, lasing takes place.

Slope Efficiency:
\[\eta_{se} = \frac{P_2 - P_1}{I_2 - I_1} = \frac{\Delta P}{\Delta I} \text{ } \mu W/mA \]

\[\eta_{se \text{ laser}} \approx 100 \times \eta_{se \text{ LED}} \]
Quantum Efficiency

- Previously we met η_{int} – the internal quantum efficiency.
 - Fraction of injected charge carriers that produce photons.

- Also need to consider how efficiently light is coupled out of the device – the light extraction efficiency, E_{light}.
 - Some light may bounce around and be internally reflected.

- The product of η_{int} and E_{light} is defined as the external quantum efficiency – η_{ext}.
 - $\eta_{\text{ext}} = \eta_{\text{int}} \times E_{\text{light}}$

- Number of photons escaping from the device (ie. useful light) :
 - $N_{\text{esc}} = \eta_{\text{ext}} \times N_{\text{carriers}}$

Calculating Slope Efficiency

Let’s consider the case of a diode operating above threshold.

$$P_{\text{out}} = (E_{p} \times N_{\text{esc}})/t$$

P_{out} = output power, E_{p} = Photon energy $= hc/\lambda$, N_{esc}= Number of photons escaping

$$N_{\text{esc}} = \eta_{\text{ext}} \times N_{\text{carriers}}$$

N_{carriers}=Number of carriers injected, η_{ext} = External quantum efficiency.

$$N_{\text{esc}} = \eta_{\text{ext}} \times ((I_{f} \times t) / e)$$

I_{f} = Forward current, e = electron charge.

$$P = (E_{p} / e) \times \eta_{\text{ext}} \times I_{f}$$

Therefore:

$$\eta_{\text{se}} = \Delta P / \Delta I \approx P/I_{f}$$

$$= (E_{p} / e) \times \eta_{\text{ext}} = (E_{g} / e) \times \eta_{\text{ext}}$$

E_{g}=Energy gap of semiconductor.
Modulating Laser Diodes

- Laser diodes can be modulated by switching the current, \(I_F \).
- Modulation takes place around the threshold current \(I_{th} \).
- This is called **Direct Modulation**.
- Most cases modulation is digital.
- Analogue modulation still used in some cable TV systems.
- How fast can lasers be modulated using this method?

Modulating Lasers – A Simplistic Approach.

- Switching the current above threshold causes a population inversion. \(\tau_{pl} \)
- Electron hole pair combine to form a photon. \(\tau_{ehr} \)
- Photon escapes from the laser cavity. \(\tau_{ph} \)
Modulating Lasers – A Simplistic Approach II

• The photon lifetime, τ_{ph}, is the fundamental limit.
• After creation the photon travels through the diode before escaping from the facet.
• Can relate the lifetime to the cavity properties:
 \[\exp(-t/\tau_{ph}) = \exp(-\alpha x) \] (Loss after travelling for t s is same as for travelling x m)

 Now, $x = vt = (c/n_{index}) \times t$

 Therefore: $\tau_{ph} = n_{index}/(\alpha c) = n_{index}/(g_{th} c)$

 $n_{index} =$ refractive index (3.5), $\alpha =$ loss (1000 m$^{-1}$), $g_{th} =$ threshold gain.

 $\tau_{ph} = 0.12$ ps \rightarrow Modulation frequency = 8.3THz

 However in reality the limit is much less than this – why?

Modulating Laser Diodes – Relaxation Oscillations

• In order to understand behaviour, necessary to consider rate equations.

 \[
 \frac{dn}{dt} = \frac{J}{ed} - \frac{n}{\tau_{sp}} - Dns
 \]

 Carriers injected \hspace{1cm} Rate of stimulated emission

 Rate of change of electron density \hspace{1cm} Rate of spontaneous emission

 \[
 \frac{ds}{dt} = Dns + \frac{\zeta n}{\tau_{sp}} - \frac{s}{\tau_{ph}}
 \]

 Stimulated emission photons \hspace{1cm} Photons lost

 Spontaneous emission in the right direction

 Rate of change of Photon Density
Modulating Laser Diodes – Rate Equations II

Solution to these coupled equations gives a classically damped system.

• These are relaxation oscillations.
• Leads to a finite time before photon can be emitted.
• Represents the limit of diode operation.
Modulating Diodes - Chirp

- There is a problem with direct modulation of diodes.
- A change in light intensity during modulation can change the output frequency of the laser.
- Mechanism is due to change in carrier population causes a change in refractive index – slightly changes the laser output frequency.
- Chirp acts to broaden the laser linewidth. Undesirable and causes chromatic dispersion.
- Have to move to an external modulator geometry to get very high data speeds.

Summary

- Fabry-perot laser structures
 - Longitudinal modes
- Single mode laser operation.
 - DBR lasers
 - DFB lasers
- VCSEL’s
- Modulating laser diodes
 - Relaxation oscillations
 - Chirp