Electron Energies and Wavefunctions in Crystals

Student Background
To fully appreciate this simulation practical you will need to have studied basic quantum mechanics, the quantised free electron theory of solids and appreciate concepts such as the density of states. You should also have some understanding of the nature of electron states in semiconductors and at least a qualitative appreciation of the band theory of solids.

Introduction

These simulations allow you to investigate the effect of the periodic lattice potential on the energies and wavefunctions of bound electrons in solids. You will use the third program in the CUPS Solid State Physics Simulations package: LATCE1D.

LATCE1D calculates the bound state wavefunctions and energy eigenvalues for an electron in a one dimensional lattice, consisting of a finite (< 12) number of square potential wells. It uses the Numerov method to solve Schrodinger’s equation for the given periodic potential function. As you increase the number of wells in the potential, this allows you to see how the evolving periodicity of the potential affects the energy levels of the single potential well. You can also investigate the resulting density of states and the effect of introducing an impurity atom well into the lattice.

CUPS Buttons for LATCE1D

Wells: allows you to select the number, shape and size of the potential wells in your one-dimensional lattice.

Lattice: allows you to specify a regular lattice or one with a specified irregularity.

Method: selects the means of generating the energy eigenvalues.

Spectrum: allows automatic calculation of energies, wavefunctions and probability densities.

Notes on the methods for finding energy eigenvalues

There are several methods for finding the energy eigenvalues corresponding to a particular potential. Some are more direct than others. Nevertheless the manual approach allows you to better understand the nature of the eigenfunctions and for that reason you should use it for the single and double well exercises.

Using Method/ Try Energy you can try a particular energy eigenvalue either through using the mouse or entering the value via the keyboard. The resulting eigenfunction is displayed. Functions which diverge are not acceptable: why is this so? An approximate energy eigenvalue may found, in this way. 

Using Method/ Solve Range of Energies you can then obtain a more accurate value by determining the energy at which the coefficient of the diverging exponential, vanishes. 

Alternatively, using Method/ Hunt for Zero you can enter the approximate range of energies enclosing a suspected eigenvalue and the program will solve for a non-divergent eigenfunction automatically, displaying both this function and the corresponding energy.

Exercise: Multiple-Well Lattice Simulations

Use a well width of 0.075nm and well depth of 300eV.

A. Select the single, square well potential and find the energy eigenvalues and corresponding wavefunctions. These should be very familiar to you from basic quantum mechanics. Using the probability density functions, give the physical interpretation of the ground state and each excited state.

B. Select two wells whose centre are separated by 0.1nm and repeated this process. Compare the energies and eigenfunctions, you obtain in this case, with those in (a). What is the main effect of the double well potential on the spread of electron energies?

C. Continue this process for three, four, six, eight and twelve wells. What observations can you make on (i) the distribution of energy eigenvalues and (ii) the appearance of the electron wavefunctions, as the extent of the lattice increases. Relate your answers to the principle of the tight binding approximation and to the concept of a Bloch wavefunction.

D. For the lattice of twelve wells use the button Spectrum: Sum Probabilities to add up the total probability density within one band, say the lowest one. What does the result say about the distribution of charge density within the lattice?

E. Again, using the twelve well lattice deduce an approximate density of states distribution within an energy band. With only twelve states to consider it is best to split the band into a small number of equal energy ranges and simply count the number of states in each, thus producing a crude histogram. How does this compare with real examples?

F. Finally, with the twelve well model, change the well width between 0.01nm and 0.09 nm measuring the bandwidths and number of energy states on each occasion. How do your results relate to the tight binding principle?

G. We can model the energy states for a simple, one-dimensional, extrinsic semiconductor by introducing one well of different characteristics into the regular lattice. This represents a single impurity atom in the structure. Using the button Lattice: Irregular Lattice select one shallow well within a twelve well model. You can alter its parameters through Lattice: Adjust Parameters. Try the impurity well shallower, say 270eV and deeper, say 330eV, than the host lattice wells. Calculate the energy eigenvalues in each case. Describe what you observe. It will be helpful to first of all calculate the energies for an electron in a single well of this depth. Display the electron eigenfunctions and comment on what they tell you about the states associated with the electrons in this system. You can repeat this exercise by alternatively altering the width, rather than the depth, of the impurity well. 

H. Further work:You can extend the use of this program in two main areas:

a. You can try different well shapes, such as parabolic and Coulombic, and determine the effects on the electron energies and wavefunctions.

b. You can model different irregularities within the lattice including the junction between two dissimilar lattices and an amorphous lattice.
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