Mini-Course 4: Paraconsistent and Paracomplete Logics

Aaron J. Cotnoir

Northern Institute of Philosophy | November 29, 2010

1 Basic Relevant Logic: FDE

The syntax of our basic many-valued languages will be the same as classical logic \mathcal{L}_{CPL} . We will treat \supset and \equiv as defined connectives.

Definition 1.1. The set of values \mathcal{V} for $\mathcal{L}_{\mathsf{FDE}}$ is $\{1, b, n, 0\}$. These values are *ordered* in the following way. A $\mathcal{L}_{\mathsf{FDE}}$ valuation ν is any map from sentences of $\mathcal{L}_{\mathsf{FDE}}$ into $\{1, b, n, 0\}$ ($\nu : \mathcal{S} \to \{1, b, n, 0\}$).

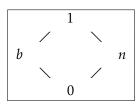


Table 1: Dunn's 4-valued FDE

Definition 1.2. Let V be any ordered set, and let $x, y \in V$. The *least upper bound* of x, y (lub $\{x, y\}$) is the lowest value greater-than-or-equal-to x and y. The *greatest lower bound* of x, y (glb $\{x, y\}$) is the highest value less-than-or-equal to x and y.

Definition 1.3. A \mathcal{L}_{FDE} valuation is *admissible* iff it satisfies the following clauses.

- 1. $v(A) \in \{1, b, n, 0\}$ for all atomic A.
- 2. $\nu(A \vee B) = \text{lub}\{\nu(A), \nu(B)\}.$
- 3. $\nu(A \wedge B) = \text{glb}\{\nu(A), \nu(B)\}.$

4.
$$\nu(\neg A) = \begin{cases} 1 \text{ if } \nu(A) = 0\\ b \text{ if } \nu(A) = b\\ n \text{ if } \nu(A) = n\\ 0 \text{ if } \nu(A) = 1 \end{cases}$$

Exercise 1.4. Create truth tables for \mathcal{L}_{FDE} conjunction and disjunction.

Definition 1.5. Let $\mathcal{D} = \{1, b\}$ be a set of *designated* values.

- A sentence *A* is *designated* by an \mathcal{L}_{FDE} -admissible valuation ν iff $\nu(A) \in \mathcal{D}$.
- A sentence *A* is *satisfied* iff it is designated.
- $\models_{\mathsf{FDE}} A \mathsf{\ iff\ } A \mathsf{\ is\ satisfied\ by\ every\ } \mathcal{L}_{\mathsf{FDE}}\mathsf{\ -admissible\ valuation.}$
- $\mathcal{X} \models_{\mathsf{FDE}} A$ iff every $\mathcal{L}_{\mathsf{FDF}}$ -admissible valuation that satisfies \mathcal{X} satisfies A.

Exercise 1.6. Prove the De Morgan Laws for \mathcal{L}_{FDE} .

Exercise 1.7. Show that \mathcal{L}_{FDE} is paraconsistent; i.e. give a counterexample to Ex Falso Quodlibet: $A \land \neg A \nvDash_{FDE} B$

Exercise 1.8. Show that \mathcal{L}_{FDE} is paracomplete; i.e. give a counterexample to the Law of Excluded Middle: $B \not\models_{FDE} A \lor \neg A$

Exercise 1.9. Give a counterexample to the Deduction Theorem: If $\mathcal{X}, A \models_{\mathsf{FDE}} B$ then $\mathcal{X} \models_{\mathsf{FDE}} A \supset B$

FACT: Many standard relevant logics arise from adding a (modal) conditional to this logic.

2 Paracomplete Languages: K₃, Ł₃

Strong Kleene: K₃

Definition 2.1. The set of values V for \mathcal{L}_{K_3} is $\{1, n, 0\}$. These values are *ordered* in the following way.

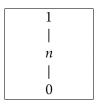


Table 2: Strong Kleene K₃

Definition 2.2. A \mathcal{L}_{K_3} valuation is *admissible* iff it satisfies the following clauses.

- 1. $\nu(A) \in \{1, n, 0\}$ for all atomic A.
- 2. $\nu(A \vee B) = \text{lub}\{\nu(A), \nu(B)\}.$
- 3. $\nu(A \wedge B) = \text{glb}\{\nu(A), \nu(B)\}.$

4.
$$\nu(\neg A) = \begin{cases} 1 \text{ if } \nu(A) = 0\\ n \text{ if } \nu(A) = n\\ 0 \text{ if } \nu(A) = 1 \end{cases}$$

Exercise 2.3. Create truth tables for \mathcal{L}_{K_3} conjunction, disjunction, and the material conditional.

Definition 2.4. A sentence A is designated by an \mathcal{L}_{K_3} -admissible valuation ν iff $\nu(A)=1$. Satisfaction and validity are similar to $\mathcal{L}_{\mathsf{FDE}}$.

Exercise 2.5. Show that \mathcal{L}_{K_3} is an extension of \mathcal{L}_{FDE} .

Exercise 2.6. Show that \mathcal{L}_{K_3} is *paracomplete* but not paraconsistent.

Exercise 2.7. Prove Modus Ponens is valid: A, $A \supset B \models_{K_3} B$.

aaron.cotnoir@uconn.edu

3

Exercise 2.8. Give a counterexample to Material Identity: $\not\models_{K_3} A \supset A$.

Exercise 2.9. Does \mathcal{L}_{K_3} have any logical truths? Is there any sentence A s.t. $\models_{K_3} A$?

Łukasiewicz's 3-Valued Language: Ł3

 $\mathcal{L}_{\underbrace{L_3}} \text{ is nearly identical to } \mathcal{L}_{K_3} \text{ except that it adds a primitve conditional} \rightarrow \text{to the syntax}.$

Definition 2.10. $\mathcal{L}_{\c L_3}$ -admissible valuations are $\mathcal{L}_{\c K_3}$ -admissible valuations that follow the truth table for \to given below.

Table 3: Conditional in Ł₃

Exercise 2.11. Prove Modus Ponens is valid: A, $A \rightarrow B \models_{\stackrel{}{L}_3} B$.

Exercise 2.12. Prove Material Identity: $\models_{L_3} A \rightarrow A$.

3 Paraconsistent Languages: LP, RM₃

LOGIC OF PARADOX: LP

Definition 3.1. The set of values V for \mathcal{L}_{LP} is $\{1,b,0\}$. These values are *ordered* in the following way.

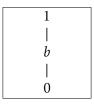


Table 4: Logic of Paradox LP

Definition 3.2. A \mathcal{L}_{1P} valuation is *admissible* iff it satisfies the following clauses.

- 1. $\nu(A) \in \{1, b, 0\}$ for all atomic A.
- 2. $\nu(A \vee B) = \text{lub}\{\nu(A), \nu(B)\}.$
- 3. $\nu(A \wedge B) = \text{glb}\{\nu(A), \nu(B)\}.$

4.
$$\nu(\neg A) = \begin{cases} 1 \text{ if } \nu(A) = 0\\ b \text{ if } \nu(A) = b\\ 0 \text{ if } \nu(A) = 1 \end{cases}$$

aaron.cotnoir@uconn.edu

Exercise 3.3. Create truth tables for \mathcal{L}_{LP} conjunction, disjunction, and the material conditional.

4

Definition 3.4. A sentence A is *designated* by an \mathcal{L}_{LP} -admissible valuation ν iff $\nu(A) \in \{1, b\}$. Satisfaction and validity are similar to \mathcal{L}_{FDE} .

Exercise 3.5. Show that \mathcal{L}_{LP} is an *extension* of \mathcal{L}_{FDE} , but is not an extension of \mathcal{L}_{K_3} .

Exercise 3.6. Show that \mathcal{L}_{LP} is paraconsistent but not paracomplete.

Exercise 3.7. Give a counterexample to Modus Ponens: A, $A \supset B \not\models_{LP} B$.

Exercise 3.8. Prove Material Identity: $\models_{LP} A \supset A$.

R-Mingle 3-Valued Language: RM₃

 $\mathcal{L}_{\mathsf{RM}_3}$ is nearly identical to $\mathcal{L}_{\mathsf{LP}}$ except that it adds a primitve conditional o to the syntax.

Definition 3.9. \mathcal{L}_{RM_3} -admissible valuations are \mathcal{L}_{LP} -admissible valuations that follow the truth table for \rightarrow given below.

Table 5: Conditional in RM₃

Exercise 3.10. Prove Modus Ponens is valid: $A, A \rightarrow B \models_{\mathsf{RM}_3} B$.

Exercise 3.11. Prove Material Identity: $\models_{RM_3} A \rightarrow A$.

Exercise 3.12. Give a counterexample to Disjunctive Syllogism: $A \lor B$, $\neg A \models_{\mathsf{RM}_3} B$.