Mini-Course 3: Intuitionistic, Sub-intuitionistic, and Super-intuitionistic Logics

Aaron J. Cotnoir

Northern Institute of Philosophy | November 26, 2010

1 Intuitionistic Language: $\mathcal{L}_{l}^{\mathsf{rt}}$

Syntax for our (sub-/super-)intuitionistic languages is as follows.

- 1. A set of atomic sentences: \perp , p, q, r,...
- 2. A set of connectives: \land , \lor , \rightarrow , \leftrightarrow , (,)
- 3. A set of sentences S such that:
 - (a) All atomics are in S.
 - (b) If $A \in \mathcal{S}$ then $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$ are in \mathcal{S} .
 - (c) Nothing else is in S.

Intuitionistic frames are identical to normal frames:

Definition 1.1. A *intuitionistic frame* is a triple $\langle W, \mathcal{R}, \nu \rangle$ s.t.:

- 1. W is a non-empty set of worlds;
- 2. \mathcal{R} is a binary access-relation on \mathcal{W} ($R \subseteq \mathcal{W} \times \mathcal{W}$); and
- 3. ν is a function from sentence-world pairs into our values 1 and 0 (ν : $\mathcal{W} \times \mathcal{S} \rightarrow \{1,0\}$).

Intuitionistic models have certain constraints:

Definition 1.2. An \mathcal{L}_{1}^{rt} *model* is an intuitionistic frame s.t.

- 1. \mathcal{R} is reflexive and transitive.
- 2. $\nu_w(A) \in \{1, 0\}$ for all atomic A.
- 3. Absurdity: $v_w(\perp) = 0$.
- 4. Heredity: if $v_w(A) = 1$ and $w\mathcal{R}w'$, then $v_{w'}(A) = 1$.
- 5. $v_w(A \wedge B) = 1 \text{ iff } v_w(A) = 1 \text{ and } v_w(B) = 1.$
- 6. $v_w(A \vee B) = 1$ iff $v_w(A) = 1$ or $v_w(B) = 1$.
- 7. $v_w(A \to B) = 1$ iff for all w' s.t. $w\mathcal{R}w'$, if $v_{w'}(A) = 1$ then $v_{w'}(B) = 1$.
- 8. $v_w(A \leftrightarrow B) = 1$ iff for all w' s.t. wRw', $v_{w'}(A) = v_{w'}(B)$.

Note: there is no negation. In $\mathcal{L}_1^{\text{rt}}$, negation is *defined*: $v_w(\neg A) = v_w(A \to \bot)$. Admissible valuations, satisfaction, and validity are exactly as in normal modal logics.

Exercise 1.3. Prove the Double Negation facts: $A \models_{l}^{rt} \neg \neg A$ but $\neg \neg A \not\models_{l}^{rt} A$.

aaron.cotnoir@uconn.edu 2

Exercise 1.4. Is $\neg (A \lor B)$ equivalent to $\neg A \land \neg B$? What about the equivalence of $\neg (A \land B)$ and $\neg A \lor \neg B$? Prove whichever direction(s) you can't prove.

Exercise 1.5. Give an $\mathcal{L}_1^{\mathsf{rt}}$ -countermodel to Peirce's Law: $\mathsf{E}_1^{\mathsf{rt}}$ $((A \to B) \to A) \to A$

2 Some Sub-Intuitionistic Languages

Sub-intuitionistic languages are languages for which \mathcal{L}_{l}^{rt} is an *extension*.

Definition 2.1. Let an \mathcal{L}_1^r model be any \mathcal{L}_1^{rt} model without the transitivity requirement.

Exercise 2.2. Show that
$$\vDash_1^{rt} (A \to B) \to ((B \to C) \to (A \to C))$$
 but $\npreceq_1^r (A \to B) \to ((B \to C) \to (A \to C))$.

Definition 2.3. Let an \mathcal{L}_1 *model* be any \mathcal{L}_1^r model without the reflexivity requirement.

Exercise 2.4. Show that $\models_1^r (A \land (A \rightarrow B)) \rightarrow B$ but $\not\models_1 (A \land (A \rightarrow B)) \rightarrow B$.

Definition 2.5. Let an \mathcal{L}_{l}^{-h} *model* be any \mathcal{L}_{l}^{rt} model without the heredity requirement.

Exercise 2.6. Show that $\models_1^{rt} A \to (B \to A)$ but $\not\models_1^{-h} A \to (B \to A)$.

Definition 2.7. Let an \mathcal{L}_{l}^{-a} *model* be any \mathcal{L}_{l}^{rt} model without the absurdity requirement. Note: this logic is Johannson's Minimal Logic.

Exercise 2.8. Show that $\vDash_1^{rt} \bot \to A$ but $\nvDash_1^{-a} \bot \to A$.

Exercise 2.9. Show that A, $\neg A \not\models_1^{-a} B$ but A, $\neg A \models_1^{-a} \neg B$.

3 A Super-Intuitionistic Language: Gödel-Dummett Logic

Super-intuitionistic languages are sometimes called 'intermediary logics'. They are 'intermediate' in the sense that they are extensions of $\mathcal{L}_{\text{cpl}}^{\text{rt}}$ and \mathcal{L}_{cpl} is an extension of them.

Definition 3.1. A relation \mathcal{R} is linear iff \mathcal{R} is reflexive, antisymmetric, transitive, and total.

- Reflexive: xRx
- Antisymmetric: if xRy and yRx then x = y
- *Transitive*: if xRy and yRz, then xRz
- *Total*: either xRy or yRx

Definition 3.2. Let an \mathcal{L}_{l}^{\leq} model be any \mathcal{L}_{l}^{rt} model s.t. \mathcal{R} is linear.

Exercise 3.3. Show that $\not\models_{\perp}^{rt}(A \to B) \lor (B \to A)$ but $\not\models_{\perp}^{\leq}(A \to B) \lor (B \to A)$.

We will give a *many-valued* semantics for this language in a few weeks. Tantalizing fact: the semantic values will be *linearly* ordered.