Mini-Course 2: Non-Normal Modal Logics

Aaron J. Cotnoir

Northern Institute of Philosophy | November 17, 2010

1 Non-Normal Frames

Syntax for normal modal languages is identical to \mathcal{L}_K and all its extensions. Non-normal frames are a lot like normal frames, but with our worlds divided into two types: *normal* and *non-normal*.

Definition 1.1. A non-normal frame is a quadruple $\langle W, \mathcal{N}, \mathcal{R}, \nu \rangle$ s.t.:

- 1. W is a non-empty set of worlds;
- 2. $\mathcal{N} \subseteq \mathcal{W}$ is a non-empty set of 'normal' worlds ($\mathcal{W} \mathcal{N}$ are 'non-normal');
- 3. \mathcal{R} is a binary access-relation on $W R \subseteq W \times W$; and
- 4. ν is a function from sentence-world pairs into our values 1 and $0 \nu : \mathcal{W} \times \mathcal{S} \to \{1, 0\}$.

2 Basic Non-Normal Language: $\mathcal{L}_{\mathsf{NN}}$

Definition 2.1. An \mathcal{L}_{NN} *model* is a non-normal frame s.t.

- 1. If *w* is normal ($w \in \mathcal{N}$), then ν obeys all the clauses for normal modal models.
- 2. If w is non-normal $(w \in W N)$, then v obeys all the clauses for the extensional connectives, and
 - (a) $v_w(\Box A) = 0$.
 - (b) $v_w(\diamondsuit A) = 1$.
- A function v is an admissible valuation for L_{NN} iff there is an L_{NN}-model ⟨W,N,R,v⟩ and a normal world w∈ N s.t. v = v_w.
- An admissible valuation ν satisfies a sentence A iff $\nu(A) = 1$.
- $\models_{NN} A$ iff every \mathcal{L}_{NN} -admissible valuation satisfies A.
- $X \models_{\mathsf{NN}} A$ iff every $\mathcal{L}_{\mathsf{NN}}$ -admissible valuation that satisfies \mathcal{X} satisfies A.

Exercise 2.2. Prove that Necessitation fails: for some A, $\models_{NN} A$ but $\not\models_{NN} \Box A$.

Definition 2.3. \mathcal{M} is an \mathcal{L}_{NN} *countermodel* to an argument from \mathcal{X} to A iff \mathcal{M} satisfies \mathcal{X} at w, but does not satisfy A at w, for some *normal* $w \in \mathcal{N}$.

Exercise 2.4. Give an \mathcal{L}_{NN} countermodel to $\Box(A \supset \Box(A \lor \neg A))$; show that $\not\models_{NN} \Box(A \supset \Box(A \lor \neg A))$.

Exercise 2.5. Show that \mathcal{L}_{K} is an extension of \mathcal{L}_{NN} (and hence that all normal modal logics are too).

aaron.cotnoir@uconn.edu

Logic S2: \mathcal{L}_{NN}^{r}

Definition 2.6. An \mathcal{L}_{NN}^{r} model is a \mathcal{L}_{NN} model s.t. \mathcal{R} is reflexive over \mathcal{N} .

Definition 2.7. C.I. Lewis's Strict Implication: $A \rightarrow B$ is an abbreviation for $\Box (A \supset B)$.

Exercise 2.8. Show that $A, A \rightarrow B \nvDash_{NN} B$ but $A, A \rightarrow B \vDash_{NN}^{r} B$.

Exercise 2.9. Prove Lewis's Consistency Postulate; $\models_{NN}^r \Diamond(A \land B) \supset \Diamond A$

3 Variations on Validity

Logic E2: all-worlds validity for S2

• A function v is an admissible valuation for \mathcal{L}_{E2} iff there is an \mathcal{L}_{NN}^{r} -model $\langle \mathcal{W}, \mathcal{N}, \mathcal{R}, v \rangle$ and any world (normal or non-normal) $w \in \mathcal{W}$ s.t. $v = v_w$.

Exercise 3.1. Let \bot be a sentence false in all worlds in any model; $\nu_w(\bot) = 0$ for all $w \in \mathcal{W}$. Show that $\models_{\mathsf{NN}}^r \bot \neg \exists A$ but $\not\models_{\mathsf{E2}} \bot \neg \exists A$.

Logic S6: standard-worlds validity for S2

Definition 3.2. Let a world w be standard iff it is (i) normal and (ii) accesses some non-normal world.

• A function ν is an admissible valuation for \mathcal{L}_{S6} iff there is an \mathcal{L}_{NN}^{r} -model $\langle \mathcal{W}, \mathcal{N}, \mathcal{R}, \nu \rangle$ and standard world $w \in \mathcal{N}$ s.t. $\nu = \nu_w$.

Exercise 3.3. Show that $\not\models_{S2} \Diamond \Diamond A$, but $\not\models_{S6} \Diamond \Diamond A$.

4 RANDOM NON-NORMAL LANGUAGE: $\mathcal{L}_{\mathsf{RNN}}$

There are other ways for modal operators to behave at non-normal worlds. Here is a *random* way of doing it:

Definition 4.1. An \mathcal{L}_{RNN}^{r} *model* is a non-normal frame s.t.

- 1. If w is normal ($w \in \mathcal{N}$), then v obeys all the clauses for normal modal models.
- 2. If w is non-normal ($w \in W N$), then v obeys all the clauses for the extensional connectives, and the modal connectives are randomly assigned:
 - (a) $\nu_w(\Box A) \in \{1, 0\}.$
 - (b) $\nu_w(\lozenge A) \in \{1, 0\}.$

Logic S0.5: \mathcal{L}_{RNN}^{r}

Definition 4.2. An \mathcal{L}_{RNN}^{r} model is a \mathcal{L}_{RNN} model s.t. \mathcal{R} is reflexive over \mathcal{N} .

Exercise 4.3. Prove that if A is a tautology of \mathcal{L}_{cpl} then $\models_{RNN}^r \Box A$.

$\mathcal{R} \mid Normal \mid Non ext{-}Normal \mid All ext{-}worlds \models \mid Standard ext{-}worlds \models \mid Random \ Non ext{-}Normal$	S0.5 ⁰	S0.5	S0.5	S0.5	S0.5
STANDARD-WORLDS E	₀ 9S	9S	S7 ⁰	S7	S7.5
ALL-WORLDS	E2 ⁰	E2	E30	E3	E3.5
Non-Normal	$S2^0$	S2	$S3^0$	S3	S3.5
Normal	~	—	В	S 4	S5
\aleph	None	7	7.5	rt	rst