NIP Summer School 2011 'Truth and Paradox' Lecture #2

Aaron Cotnoir

- Target Paracomplete Logics
- Field's Advanced Paracomplete Theory

Theorem 1.1 (Curry's Paradox)

No language with self-reference underwritten by a logic satisfying (among other things) Contraction, the rule $A \to (A \to B) \vdash A \to B$, can formulate an adequate non-trivial truth theory that applies to itself.

Theorem 1.1 (Curry's Paradox)

No language with self-reference underwritten by a logic satisfying (among other things) Contraction, the rule $A \to (A \to B) \vdash A \to B$, can formulate an adequate non-trivial truth theory that applies to itself.

Proof Sketch

Let κ be the Gödel sentence for the predicate $\mathsf{T}(x) \to \bot$, where \bot is anything false.

Theorem 1.1 (Curry's Paradox)

No language with self-reference underwritten by a logic satisfying (among other things) Contraction, the rule $A \to (A \to B) \vdash A \to B$, can formulate an adequate non-trivial truth theory that applies to itself.

Proof Sketch

Let κ be the Gödel sentence for the predicate $\mathsf{T}(x) \to \bot$, where \bot is anything false.

(1)
$$T(\lceil \kappa \rceil) \to \kappa$$

[T-scheme]

Theorem 1.1 (Curry's Paradox)

No language with self-reference underwritten by a logic satisfying (among other things) Contraction, the rule $A \to (A \to B) \vdash A \to B$, can formulate an adequate non-trivial truth theory that applies to itself.

Proof Sketch

Let κ be the Gödel sentence for the predicate $T(x) \to \bot$, where \bot is anything false.

(1)
$$T(\lceil \kappa \rceil) \to \kappa$$

[T-scheme]

(2)
$$T(\lceil \kappa \rceil) \rightarrow (T(\lceil \kappa \rceil) \rightarrow \bot)$$

[Sub., (1)]

Theorem 1.1 (Curry's Paradox)

No language with self-reference underwritten by a logic satisfying (among other things) Contraction, the rule $A \to (A \to B) \vdash A \to B$, can formulate an adequate non-trivial truth theory that applies to itself.

Proof Sketch

Let κ be the Gödel sentence for the predicate $T(x) \to \bot$, where \bot is anything false.

(1)
$$T(\lceil \kappa \rceil) \to \kappa$$

[T-scheme]

(2)
$$T(\lceil \kappa \rceil) \rightarrow (T(\lceil \kappa \rceil) \rightarrow \bot)$$

[Sub., (1)]

(3)
$$T(\lceil \kappa \rceil) \rightarrow \bot$$

[Contraction, (2)]

Theorem 1.1 (Curry's Paradox)

No language with self-reference underwritten by a logic satisfying (among other things) Contraction, the rule $A \to (A \to B) \vdash A \to B$, can formulate an adequate non-trivial truth theory that applies to itself.

Proof Sketch

Let κ be the Gödel sentence for the predicate $\mathsf{T}(x) \to \bot$, where \bot is anything false.

(1)
$$T(\lceil \kappa \rceil) \to \kappa$$

[T-scheme]

(2)
$$T(\lceil \kappa \rceil) \rightarrow (T(\lceil \kappa \rceil) \rightarrow \bot)$$

[Sub., (1)]

(3)
$$T(\lceil \kappa \rceil) \rightarrow \bot$$

[Contraction, (2)]

[Sub., (3)]

Theorem 1.1 (Curry's Paradox)

No language with self-reference underwritten by a logic satisfying (among other things) Contraction, the rule $A \to (A \to B) \vdash A \to B$, can formulate an adequate non-trivial truth theory that applies to itself.

Proof Sketch

Let κ be the Gödel sentence for the predicate $\mathsf{T}(x) \to \bot$, where \bot is anything false.

(1)
$$T(\lceil \kappa \rceil) \to \kappa$$

[T-scheme]

(2)
$$T(\lceil \kappa \rceil) \rightarrow (T(\lceil \kappa \rceil) \rightarrow \bot)$$

[Sub., (1)]

(3)
$$T(\lceil \kappa \rceil) \rightarrow \bot$$

[Contraction, (2)] [Sub., (3)]

(5)
$$\kappa \to T(\lceil \kappa \rceil)$$

(4) κ

[T-scheme]

Theorem 1.1 (Curry's Paradox)

No language with self-reference underwritten by a logic satisfying (among other things) Contraction, the rule $A \to (A \to B) \vdash A \to B$, can formulate an adequate non-trivial truth theory that applies to itself.

Proof Sketch

Let κ be the Gödel sentence for the predicate $\mathsf{T}(x) \to \bot$, where \bot is anything false.

(1)
$$T(\lceil \kappa \rceil) \to \kappa$$

[T-scheme]

(2)
$$T(\lceil \kappa \rceil) \rightarrow (T(\lceil \kappa \rceil) \rightarrow \bot)$$

[Sub., (1)]

(3)
$$T(\lceil \kappa \rceil) \to \bot$$

[Contraction, (2)] [Sub., (3)]

(4)
$$\kappa$$

(5) $\kappa \to T(\lceil \kappa \rceil)$

[T-scheme]

[MPP, (4), (5)]

Theorem 1.1 (Curry's Paradox)

No language with self-reference underwritten by a logic satisfying (among other things) Contraction, the rule $A \to (A \to B) \vdash A \to B$, can formulate an adequate non-trivial truth theory that applies to itself.

Proof Sketch

Let κ be the Gödel sentence for the predicate $T(x) \to \bot$, where \bot is anything false.

(1)
$$T(\lceil \kappa \rceil) \to \kappa$$

[T-scheme]

(2)
$$T(\lceil \kappa \rceil) \rightarrow (T(\lceil \kappa \rceil) \rightarrow \bot)$$

[Sub., (1)]

(3)
$$T(\lceil \kappa \rceil) \rightarrow \bot$$

[Contraction, (2)]

[Sub., (3)]

(5)
$$\kappa \to T(\lceil \kappa \rceil)$$

[T-scheme] [MPP, (4), (5)]

[MPP, (3), (6)]

▶ What if one moved to a *four*-valued logic?

- ▶ What if one moved to a four-valued logic?
- Ł₄ expands the semantic values, has counterexamples to 2-1 contraction.

- ▶ What if one moved to a four-valued logic?
- Ł₄ expands the semantic values, has counterexamples to 2-1 contraction.
- ▶ However, Ł₄ validates 3-2 contraction. Similar Curry problems result.

- ▶ What if one moved to a four-valued logic?
- Ł₄ expands the semantic values, has counterexamples to 2-1 contraction.
- ► However, Ł₄ validates 3-2 contraction. Similar Curry problems result.
- ▶ Likewise, Ł₅ invalidates 3-2 contraction, but validates 4-3 contraction.

Infinite Values!

► Each time one adds a semantic value, one invalidates some version of contraction, but others remain . . .

Infinite Values!

- ► Each time one adds a semantic value, one invalidates some version of contraction, but others remain . . .
- ...unless we expand to infinitely-many values.

Infinite Values!

- Each time one adds a semantic value, one invalidates some version of contraction, but others remain . . .
- ...unless we expand to infinitely-many values.
- \blacktriangleright \pounds_{ω} is a well-known fuzzy logic. It is *robustly contraction-free*.

▶ & has T-norm conjunction: $\nu(A \circ B) = lub\{0, (\nu(A) + \nu(B)) - 1\}$

- ▶ & has T-norm conjunction: $\nu(A \circ B) = \text{lub}\{0, (\nu(A) + \nu(B)) 1\}$
- ▶ We can use T-norm conjunction to define a *determinate* truth operator: $DA := A \circ A$.

- ▶ L_{ω} has T-norm conjunction: $\nu(A \circ B) = \mathsf{lub}\{0, (\nu(A) + \nu(B)) 1\}$
- ▶ We can use T-norm conjunction to define a *determinate* truth operator: $DA := A \circ A$.

$$\nu(DA) = \begin{cases} 0 \text{ if } \nu(A) \leq \frac{1}{2} \\ 2 \cdot \nu(A) - 1 \text{ otherwise} \end{cases}$$

- ▶ & has T-norm conjunction: $\nu(A \circ B) = \text{lub}\{0, (\nu(A) + \nu(B)) 1\}$
- ▶ We can use T-norm conjunction to define a *determinate* truth operator: $DA := A \circ A$.
- $\nu(DA) = \begin{cases} 0 \text{ if } \nu(A) \leq \frac{1}{2} \\ 2 \cdot \nu(A) 1 \text{ otherwise} \end{cases}$
- As a result, we can characterize the Liar as 'gappy': ¬DL ∧ ¬D¬L comes out true!

- ▶ & has T-norm conjunction: $\nu(A \circ B) = \text{lub}\{0, (\nu(A) + \nu(B)) 1\}$
- ▶ We can use T-norm conjunction to define a *determinate* truth operator: $DA := A \circ A$.
- $\nu(DA) = \begin{cases} 0 \text{ if } \nu(A) \leq \frac{1}{2} \\ 2 \cdot \nu(A) 1 \text{ otherwise} \end{cases}$
- As a result, we can characterize the Liar as 'gappy': ¬DL ∧ ¬D¬L comes out true!
- ▶ If we introduce a determinate-Liar, $Q_1 := \neg DT(\lceil Q_1 \rceil)$, this can also be characterized as $\neg DDQ_1 \land \neg DD \neg Q_1$.

- ▶ & has T-norm conjunction: $\nu(A \circ B) = \text{lub}\{0, (\nu(A) + \nu(B)) 1\}$
- ▶ We can use T-norm conjunction to define a *determinate* truth operator: $DA := A \circ A$.
- $\nu(DA) = \begin{cases} 0 \text{ if } \nu(A) \leq \frac{1}{2} \\ 2 \cdot \nu(A) 1 \text{ otherwise} \end{cases}$
- As a result, we can characterize the Liar as 'gappy': ¬DL ∧ ¬D¬L comes out true!
- ▶ If we introduce a determinate-Liar, $Q_1 := \neg DT(\lceil Q_1 \rceil)$, this can also be characterized as $\neg DDQ_1 \land \neg DD \neg Q_1$.
- ▶ This process can continue for D^n -Liars, $Q_n := \neg D^n T(\lceil Q_n \rceil)$, each type characterizable by the D^{n+1} operator.

Ultimate failure of L_{ω}

▶ What about the D^{ω} -liar? Well, there isn't one, since we don't have infinitely-long sentences, and so no infinite T-norm conjunctions.

Ultimate failure of Ł

- ▶ What about the D^{ω} -liar? Well, there isn't one, since we don't have infinitely-long sentences, and so no infinite T-norm conjunctions.
- ▶ But, Restall (1992) showed how we can use the truth predicate and universal quantifier to define the D^{ω} operator.

Ultimate failure of Ł

- ▶ What about the D^{ω} -liar? Well, there isn't one, since we don't have infinitely-long sentences, and so no infinite T-norm conjunctions.
- ▶ But, Restall (1992) showed how we can use the truth predicate and universal quantifier to define the D^{ω} operator.
- ▶ This results in the ω -inconsistency of arithmetic in \mathbb{E}_{ω} : $D^{\omega}A$ fails even when $D^{n}A$ holds for each n.

Ultimate failure of L_{ω}

- ▶ What about the D^{ω} -liar? Well, there isn't one, since we don't have infinitely-long sentences, and so no infinite T-norm conjunctions.
- ▶ But, Restall (1992) showed how we can use the truth predicate and universal quantifier to define the D^{ω} operator.
- ▶ This results in the ω -inconsistency of arithmetic in \mathbb{E}_{ω} : $D^{\omega}A$ fails even when $D^{n}A$ holds for each n.
- Hajek, Paris, and Shepherdson (2000) extend this result, showing how this leads to outright inconsistency when one adds universal generalizations claiming that truth commutes with negation, etc.

A01 $A \rightarrow A$

A01 $A \rightarrow A$ A02 $A \rightarrow A \lor B$ and $B \rightarrow A \lor B$

A01 $A \rightarrow A$ A02 $A \rightarrow A \lor B$ and $B \rightarrow A \lor B$ A03 $A \land B \rightarrow B$ and $A \land B \rightarrow A$

A01 $A \rightarrow A$ A02 $A \rightarrow A \lor B$ and $B \rightarrow A \lor B$ A03 $A \land B \rightarrow B$ and $A \land B \rightarrow A$ A04 $A \land (B \lor C) \rightarrow (A \land B) \lor (A \land C)$

A01 $A \rightarrow A$ A02 $A \rightarrow A \lor B$ and $B \rightarrow A \lor B$ A03 $A \land B \rightarrow B$ and $A \land B \rightarrow A$ A04 $A \land (B \lor C) \rightarrow (A \land B) \lor (A \land C)$ A05 $((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

$$A00 ((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

$$A07 \neg \neg A \rightarrow A$$

AU
$$I \neg \neg A \rightarrow I$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A13
$$A \lor \neg A$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

$$A07 \neg \neg A \rightarrow A$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

$$\textbf{A09} \ (\textbf{A} \rightarrow \textbf{B}) \rightarrow ((\textbf{B} \rightarrow \textbf{C}) \rightarrow (\textbf{A} \rightarrow \textbf{C}))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A13
$$A \lor \neg A$$

A14
$$(A \rightarrow \neg A) \rightarrow \neg A$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

$$A07 \neg \neg A \rightarrow A$$

AU/
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A13
$$A \lor \neg A$$

A14
$$(A \rightarrow \neg A) \rightarrow \neg A$$

A15
$$A \rightarrow (B \rightarrow A)$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

$$A07 \neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A13
$$A \lor \neg A$$

A14
$$(A \rightarrow \neg A) \rightarrow \neg A$$

A15
$$A \rightarrow (B \rightarrow A)$$

A16
$$A \rightarrow (A \rightarrow A)$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A13
$$A \lor \neg A$$

A14
$$(A \rightarrow \neg A) \rightarrow \neg A$$

A15
$$A \rightarrow (B \rightarrow A)$$

A16
$$A \rightarrow (A \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A13
$$A \lor \neg A$$

A14
$$(A \rightarrow \neg A) \rightarrow \neg A$$

A15
$$A \rightarrow (B \rightarrow A)$$

A16
$$A \rightarrow (A \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

$$A00 ((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A13
$$A \lor \neg A$$

A14
$$(A \rightarrow \neg A) \rightarrow \neg A$$

A15
$$A \rightarrow (B \rightarrow A)$$

A16
$$A \rightarrow (A \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

R1
$$A, A \rightarrow B \vdash B$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

$$A00 ((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A13
$$A \lor \neg A$$

A14
$$(A \rightarrow \neg A) \rightarrow \neg A$$

A15
$$A \rightarrow (B \rightarrow A)$$

A16
$$A \rightarrow (A \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

R1
$$A, A \rightarrow B \vdash B$$

R2
$$A, B \vdash A \land B$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

$$ACC ((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A13
$$A \lor \neg A$$

A14
$$(A \rightarrow \neg A) \rightarrow \neg A$$

A15
$$A \rightarrow (B \rightarrow A)$$

A16
$$A \rightarrow (A \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

R1
$$A, A \rightarrow B \vdash B$$

R2
$$A, B \vdash A \land B$$

R3
$$A \rightarrow B \vdash (C \rightarrow A) \rightarrow (C \rightarrow B)$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A13
$$A \lor \neg A$$

A14
$$(A \rightarrow \neg A) \rightarrow \neg A$$

A15
$$A \rightarrow (B \rightarrow A)$$

A16
$$A \rightarrow (A \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

R1
$$A, A \rightarrow B \vdash B$$

R2
$$A, B \vdash A \land B$$

R3
$$A \rightarrow B \vdash (C \rightarrow A) \rightarrow (C \rightarrow B)$$

$$\mathbf{R4} \ A \to B \vdash (B \to C) \to (A \to C)$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

$$A07 \neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A13
$$A \lor \neg A$$

A14
$$(A \rightarrow \neg A) \rightarrow \neg A$$

A15
$$A \rightarrow (B \rightarrow A)$$

A16
$$A \rightarrow (A \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

R1
$$A, A \rightarrow B \vdash B$$

R2
$$A, B \vdash A \land B$$

R3
$$A \rightarrow B \vdash (C \rightarrow A) \rightarrow (C \rightarrow B)$$

$$\mathbf{R4} \ A \to B \vdash (B \to C) \to (A \to C)$$

R5
$$A \rightarrow B \vdash \neg B \rightarrow \neg A$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A13
$$A \lor \neg A$$

A14
$$(A \rightarrow \neg A) \rightarrow \neg A$$

A15
$$A \rightarrow (B \rightarrow A)$$

A16
$$A \rightarrow (A \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

R1
$$A, A \rightarrow B \vdash B$$

R2
$$A, B \vdash A \land B$$

R3
$$A \rightarrow B \vdash (C \rightarrow A) \rightarrow (C \rightarrow B)$$

R4
$$A \rightarrow B \vdash (B \rightarrow C) \rightarrow (A \rightarrow C)$$

R5
$$A \rightarrow B \vdash \neg B \rightarrow \neg A$$

NB: A08 makes R5 redundant.

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A13
$$A \lor \neg A$$

A14
$$(A \rightarrow \neg A) \rightarrow \neg A$$

A15
$$A \rightarrow (B \rightarrow A)$$

A16
$$A \rightarrow (A \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

R1
$$A, A \rightarrow B \vdash B$$

R2
$$A, B \vdash A \land B$$

R3
$$A \rightarrow B \vdash (C \rightarrow A) \rightarrow (C \rightarrow B)$$

R4
$$A \rightarrow B \vdash (B \rightarrow C) \rightarrow (A \rightarrow C)$$

R5
$$A \rightarrow B \vdash \neg B \rightarrow \neg A$$

- NB: A08 makes R5 redundant.
- As does A09 for R4; and A10 for R3

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

$$A07 \neg \neg A \rightarrow A$$

AU7
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

$$\textbf{A09} \ (\textbf{A} \rightarrow \textbf{B}) \rightarrow ((\textbf{B} \rightarrow \textbf{C}) \rightarrow (\textbf{A} \rightarrow \textbf{C}))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A11
$$(A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A13
$$A \lor \neg A$$

A14
$$(A \rightarrow \neg A) \rightarrow \neg A$$

A15
$$A \rightarrow (B \rightarrow A)$$

A16
$$A \rightarrow (A \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

R1
$$A, A \rightarrow B \vdash B$$

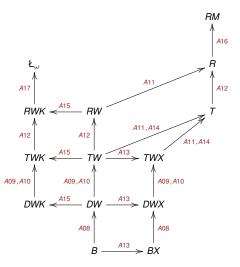
R2
$$A, B \vdash A \land B$$

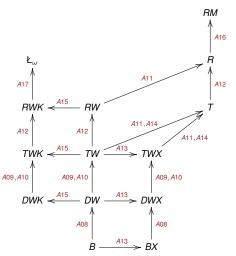
R3
$$A \rightarrow B \vdash (C \rightarrow A) \rightarrow (C \rightarrow B)$$

R4
$$A \rightarrow B \vdash (B \rightarrow C) \rightarrow (A \rightarrow C)$$

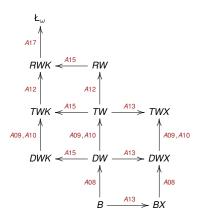
R5
$$A \rightarrow B \vdash \neg B \rightarrow \neg A$$

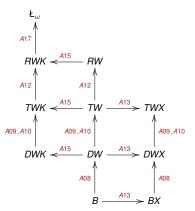
- NB: A08 makes R5 redundant.
- As does A09 for R4; and A10 for R3
- Our Basic logic, B, is axiomatized by A01-A07 and rules R1-R5.



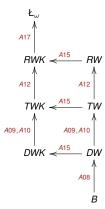


Reminder: A11 is a form of *Contraction*! So none of T, R, and RM are acceptable logics for our purposes.





B is *paraconsistent* (as are all relevant logics) and *paracomplete*. In lecture 3, we will discuss the purely paraconsistent logics: e.g. *BX*, *DWX*, *TWX*, as well as *DL*, *DJ*, and *DK*.



► For this lecture, we will discuss the purely paracomplete logics. Which are those?

- ► For this lecture, we will discuss the purely paracomplete logics. Which are those?
- From Contraposition (A08), Weakening (A15), together with Modus Ponens (R1), one can prove EFQ.

$$\frac{A \quad \overline{A \to (B \to A)}}{B \to A} \quad \overline{(B \to A) \to (\neg A \to \neg B)}$$

$$\frac{\neg A \quad \qquad \qquad \neg A \to \neg B}{\neg B}$$

- ► For this lecture, we will discuss the purely paracomplete logics. Which are those?
- From Contraposition (A08), Weakening (A15), together with Modus Ponens (R1), one can prove EFQ.

$$\frac{A \quad \overline{A \to (B \to A)}}{B \to A} \quad \frac{B \to A}{(B \to A) \to (\neg A \to \neg B)}$$

$$\frac{\neg A \quad \qquad \qquad \qquad \neg A \to \neg B}{\neg B}$$

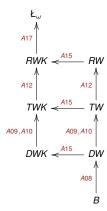
▶ We have $A, \neg A \vdash \neg B$, which given DNE (A07) is equivalent to EFQ.

- ► For this lecture, we will discuss the purely paracomplete logics. Which are those?
- From Contraposition (A08), Weakening (A15), together with Modus Ponens (R1), one can prove EFQ.

$$\frac{A \quad \overline{A \to (B \to A)}}{B \to A} \quad \frac{B \to A}{(B \to A) \to (\neg A \to \neg B)}$$

$$\frac{\neg A \quad \qquad \qquad \neg A \to \neg B}{\neg B}$$

- ▶ We have $A, \neg A \vdash \neg B$, which given DNE (A07) is equivalent to EFQ.
- ▶ So, any extension of B with A08 and A15 is not paraconsistent.



Advanced Paracomplete Logics

L_{ω} Axioms

L_{ω} Axioms

Ł_ω Axioms

A01 $A \rightarrow A$

L_{ω} Axioms

A01 $A \rightarrow A$ **A02** $A \rightarrow A \lor B$ and $B \rightarrow A \lor B$

L_{ω} Axioms

A01 $A \rightarrow A$

A02 $A \rightarrow A \lor B$ and $B \rightarrow A \lor B$

A03 $A \wedge B \rightarrow B$ and $A \wedge B \rightarrow A$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

\mathcal{L}_{ω} Axioms

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

L_{ω} Axioms

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

L_{ω} Axioms

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

\mathcal{L}_{ω} Axioms

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

\mathcal{L}_{ω} Axioms

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A15
$$A \rightarrow (B \rightarrow A)$$

L_{ω} Axioms

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A15
$$A \rightarrow (B \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

L_{ω} Axioms

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A15
$$A \rightarrow (B \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A15
$$A \rightarrow (B \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

Closed under R1 and R2.

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A15
$$A \rightarrow (B \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

- Closed under R1 and R2.
- Adding A11, A13, or A14 gives Classical Logic.

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A15
$$A \rightarrow (B \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

- Closed under R1 and R2.
- Adding A11, A13, or A14 gives Classical Logic.
- RWK drops A17; TWK also drops A12; DWK also drops A09 and A10.

A01
$$A \rightarrow A$$

A02
$$A \rightarrow A \lor B$$
 and $B \rightarrow A \lor B$

A03
$$A \wedge B \rightarrow B$$
 and $A \wedge B \rightarrow A$

A04
$$A \wedge (B \vee C) \rightarrow (A \wedge B) \vee (A \wedge C)$$

A05
$$((A \rightarrow B) \land (A \rightarrow C)) \rightarrow (A \rightarrow B \land C)$$

A06
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow (A \lor B \rightarrow C)$$

A07
$$\neg \neg A \rightarrow A$$

A08
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

A09
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

A10
$$(A \rightarrow B) \rightarrow ((C \rightarrow A) \rightarrow (C \rightarrow B))$$

A12
$$A \rightarrow ((A \rightarrow B) \rightarrow B)$$

A15
$$A \rightarrow (B \rightarrow A)$$

A17
$$((A \rightarrow B) \rightarrow B) \rightarrow A \lor B$$

- Closed under R1 and R2.
- Adding A11, A13, or A14 gives Classical Logic.
- RWK drops A17; TWK also drops A12; DWK also drops A09 and A10.
- How far down does one have to go to avoid the problems with \mathbf{L}_{ω} ? That's a hard question.

▶ Field (2008) attempts to weaken \pounds_{ω} to avoid its problems.

- ▶ Field (2008) attempts to weaken \pounds_{ω} to avoid its problems.
- ▶ Here is his algebraic semantics for his logic (pp. 231–234).

- ▶ Field (2008) attempts to weaken \pounds_{ω} to avoid its problems.
- ▶ Here is his algebraic semantics for his logic (pp. 231–234).
- $ightharpoonup \mathcal V$ is an infinite set of values partially ordered by \leq .

- ▶ Field (2008) attempts to weaken \pounds_{ω} to avoid its problems.
- ▶ Here is his algebraic semantics for his logic (pp. 231–234).
- $ightharpoonup \mathcal{V}$ is an infinite set of values partially ordered by \leq .
- Łω has infinitely-many linearly ordered values; Field generalizes to partially ordered values.

(1) A binary operator, \sqcup , on values corresponds to *lub* relative to \leq .

- (1) A binary operator, \sqcup , on values corresponds to *lub* relative to \leq .
- (2) A binary operator, \sqcap , on values corresponds to *glb* relative to \leq .

- (1) A binary operator, \sqcup , on values corresponds to *lub* relative to \leq .
- (2) A binary operator, \sqcap , on values corresponds to *glb* relative to \leq .
 - Our value space $\langle \mathcal{V}, \sqcup, \sqcap \rangle$ is a *lattice*.

- (1) A binary operator, \sqcup , on values corresponds to *lub* relative to \leq .
- (2) A binary operator, \sqcap , on values corresponds to *glb* relative to \leq .
 - Our value space $\langle \mathcal{V}, \sqcup, \sqcap \rangle$ is a *lattice*.
- (3) ⊔ distributes over □ and vice versa.

- (1) A binary operator, \sqcup , on values corresponds to *lub* relative to \leq .
- (2) A binary operator, \sqcap , on values corresponds to *glb* relative to \leq .
 - Our value space $\langle \mathcal{V}, \sqcup, \sqcap \rangle$ is a *lattice*.
- (3) ⊔ distributes over □ and vice versa.
 - $\langle \mathcal{V}, \sqcup, \sqcap \rangle$ is a *distributive* lattice.

- (1) A binary operator, \sqcup , on values corresponds to *lub* relative to \leq .
- (2) A binary operator, \sqcap , on values corresponds to *glb* relative to \leq .
 - Our value space $\langle \mathcal{V}, \sqcup, \sqcap \rangle$ is a *lattice*.
- (3) ⊔ distributes over □ and vice versa.
 - $\langle \mathcal{V}, \sqcup, \sqcap \rangle$ is a *distributive* lattice.
- (4) There are special elements, 1 and 0 s.t. $a \le 1$ and $0 \le a$ for any a.

- (1) A binary operator, \sqcup , on values corresponds to *lub* relative to \leq .
- (2) A binary operator, \sqcap , on values corresponds to *glb* relative to \leq .
 - Our value space $\langle \mathcal{V}, \sqcup, \sqcap \rangle$ is a *lattice*.
- (3) ⊔ distributes over □ and vice versa.
 - $\langle \mathcal{V}, \sqcup, \sqcap \rangle$ is a *distributive* lattice.
- (4) There are special elements, 1 and 0 s.t. $a \le 1$ and $0 \le a$ for any a.
 - $\langle \mathcal{V}, \sqcup, \sqcap, 1, 0 \rangle$ is a *bounded* distributive lattice.

- (1) A binary operator, \sqcup , on values corresponds to *lub* relative to \leq .
- (2) A binary operator, \sqcap , on values corresponds to *glb* relative to \leq .
 - Our value space $\langle \mathcal{V}, \sqcup, \sqcap \rangle$ is a *lattice*.
- (3) ⊔ distributes over □ and vice versa.
 - $\langle \mathcal{V}, \sqcup, \sqcap \rangle$ is a *distributive* lattice.
- (4) There are special elements, 1 and 0 s.t. $a \le 1$ and $0 \le a$ for any a.
 - $\langle \mathcal{V}, \sqcup, \sqcap, 1, 0 \rangle$ is a *bounded* distributive lattice.
- (5) 1 is 'join irreducible', i.e. if $a, b \neq 1$, then $a \sqcap b \neq 1$.

- (1) A binary operator, \sqcup , on values corresponds to *lub* relative to \leq .
- (2) A binary operator, \sqcap , on values corresponds to *glb* relative to \leq .
 - Our value space $\langle \mathcal{V}, \sqcup, \sqcap \rangle$ is a *lattice*.
- (3) ⊔ distributes over □ and vice versa.
 - $\langle \mathcal{V}, \sqcup, \sqcap \rangle$ is a *distributive* lattice.
- (4) There are special elements, 1 and 0 s.t. $a \le 1$ and $0 \le a$ for any a.
 - $\langle \mathcal{V}, \sqcup, \sqcap, 1, 0 \rangle$ is a *bounded* distributive lattice.
- (5) 1 is 'join irreducible', i.e. if $a, b \neq 1$, then $a \sqcap b \neq 1$.
 - Not needed in linearly-ordered value spaces; but required here to guarantee Reasoning By Cases.

- (1) A binary operator, \sqcup , on values corresponds to *lub* relative to \leq .
- (2) A binary operator, \sqcap , on values corresponds to *glb* relative to \leq .
 - Our value space $\langle \mathcal{V}, \sqcup, \sqcap \rangle$ is a *lattice*.
- (3) ⊔ distributes over □ and vice versa.
 - $\langle \mathcal{V}, \sqcup, \sqcap \rangle$ is a *distributive* lattice.
- (4) There are special elements, 1 and 0 s.t. $a \le 1$ and $0 \le a$ for any a.
 - $\langle \mathcal{V}, \sqcup, \sqcap, 1, 0 \rangle$ is a *bounded* distributive lattice.
- (5) 1 is 'join irreducible', i.e. if $a, b \neq 1$, then $a \sqcap b \neq 1$.
 - Not needed in linearly-ordered value spaces; but required here to guarantee Reasoning By Cases.
 - Also implies that ⟨V, □, □, 1, 0⟩ is not Boolean unless the only elements in V are 1 and 0.

(6) There exists a unary operation * that is order-inverting; i.e. $a \le b$ iff $b^* \le a^*$.

- (6) There exists a unary operation * that is order-inverting; i.e. $a \le b$ iff $b^* \le a^*$.
- (7) * is involutive; i.e. $a^** = a$.

- (6) There exists a unary operation * that is order-inverting; i.e. $a \le b$ iff $b^* \le a^*$.
- (7) * is involutive; i.e. $a^** = a$.
 - Together these imply that $1^* = 0$ and $0^* = 1$.

- (6) There exists a unary operation * that is order-inverting; i.e. a ≤ b iff b* ≤ a*.
- (7) * is involutive; i.e. $a^** = a$.
 - Together these imply that $1^* = 0$ and $0^* = 1$.
 - $\langle \mathcal{V}, \sqcup, \sqcap, 1, 0, {}^* \rangle$ is a De Morgan algebra.

- (6) There exists a unary operation * that is order-inverting; i.e. a ≤ b iff b* ≤ a*.
- (7) * is involutive; i.e. $a^** = a$.
 - Together these imply that $1^* = 0$ and $0^* = 1$.
 - $\langle \mathcal{V}, \sqcup, \sqcap, 1, 0, {}^* \rangle$ is a De Morgan algebra.
- (8) * has a fixed point; i.e. $z = z^*$.

- (6) There exists a unary operation * that is order-inverting; i.e. a ≤ b iff b* ≤ a*.
- (7) * is involutive; i.e. $a^** = a$.
 - Together these imply that $1^* = 0$ and $0^* = 1$.
 - $\langle \mathcal{V}, \sqcup, \sqcap, 1, 0, * \rangle$ is a De Morgan algebra.
- (8) * has a fixed point; i.e. $z = z^*$.
 - This guarantees there exists a z s.t. a □ a* ≤ z ≤ a □ a*; so it rules out the two-element Boolean algebra.

- (6) There exists a unary operation * that is order-inverting; i.e. a ≤ b iff b* ≤ a*.
- (7) * is involutive; i.e. $a^** = a$.
 - Together these imply that $1^* = 0$ and $0^* = 1$.
 - $\langle \mathcal{V}, \sqcup, \sqcap, 1, 0, ^* \rangle$ is a De Morgan algebra.
- (8) * has a fixed point; i.e. $z = z^*$.
 - This guarantees there exists a z s.t. a □ a* ≤ z ≤ a □ a*; so it rules out the two-element Boolean algebra.
 - $\langle \mathcal{V}, \sqcup, \sqcap, 1, 0, * \rangle$ is a *Kleene* algebra.

(I)
$$a \Rightarrow b = 1$$
 iff $a \le b$

- (I) $a \Rightarrow b = 1$ iff $a \le b$
 - Partially yields agreement with the material conditional, via the 'positive horseshoe' rule": ¬A ∨ B ⊢ A → B.

- (I) $a \Rightarrow b = 1$ iff $a \le b$
 - Partially yields agreement with the material conditional, via the 'positive horseshoe' rule": ¬A ∨ B ⊢ A → B.
- (II) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$; if $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.

- (I) $a \Rightarrow b = 1$ iff $a \le b$
 - Partially yields agreement with the material conditional, via the 'positive horseshoe' rule": ¬A ∨ B ⊢ A → B.
- (II) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$; if $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
 - This used to guarantee 'prefixing' and 'suffixing'.

- (I) $a \Rightarrow b = 1$ iff $a \le b$
 - Partially yields agreement with the material conditional, via the 'positive horseshoe' rule": ¬A ∨ B ⊢ A → B.
- (II) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$; if $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
 - This used to guarantee 'prefixing' and 'suffixing'.

(III)
$$1 \Rightarrow 0 = 0$$

- (I) $a \Rightarrow b = 1$ iff $a \le b$
 - Partially yields agreement with the material conditional, via the 'positive horseshoe' rule": ¬A ∨ B ⊢ A → B.
- (II) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$; if $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
 - This used to guarantee 'prefixing' and 'suffixing'.
- (III) $1 \Rightarrow 0 = 0$
 - Also required for agreement with the material conditional. Yields the 'negative horseshoe' rule: A, ¬B ⊢ ¬(A → B).

- (I) $a \Rightarrow b = 1$ iff $a \le b$
 - Partially yields agreement with the material conditional, via the 'positive horseshoe' rule": ¬A ∨ B ⊢ A → B.
- (II) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$; if $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
 - This used to guarantee 'prefixing' and 'suffixing'.
- (III) $1 \Rightarrow 0 = 0$
 - Also required for agreement with the material conditional. Yields the 'negative horseshoe' rule: A, ¬B ⊢ ¬(A → B).
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$

- (I) $a \Rightarrow b = 1$ iff $a \le b$
 - Partially yields agreement with the material conditional, via the 'positive horseshoe' rule": ¬A ∨ B ⊢ A → B.
- (II) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$; if $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
 - This used to guarantee 'prefixing' and 'suffixing'.
- (III) $1 \Rightarrow 0 = 0$
 - Also required for agreement with the material conditional. Yields the 'negative horseshoe' rule: A, ¬B ⊢ ¬(A → B).
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
 - Strengthening of (6) together with (I).

- (I) $a \Rightarrow b = 1$ iff $a \le b$
 - Partially yields agreement with the material conditional, via the 'positive horseshoe' rule": ¬A ∨ B ⊢ A → B.
- (II) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$; if $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
 - This used to guarantee 'prefixing' and 'suffixing'.
- (III) $1 \Rightarrow 0 = 0$
 - Also required for agreement with the material conditional. Yields the 'negative horseshoe' rule: A, ¬B ⊢ ¬(A → B).
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
 - Strengthening of (6) together with (I).
- (V) $a \le b \Rightarrow a$

- (I) $a \Rightarrow b = 1$ iff $a \le b$
 - Partially yields agreement with the material conditional, via the 'positive horseshoe' rule": ¬A ∨ B ⊢ A → B.
- (II) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$; if $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
 - This used to guarantee 'prefixing' and 'suffixing'.
- (III) $1 \Rightarrow 0 = 0$
 - Also required for agreement with the material conditional. Yields the 'negative horseshoe' rule: A, ¬B ⊢ ¬(A → B).
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
 - Strengthening of (6) together with (I).
- (V) $a \le b \Rightarrow a$
 - This constraint has been added by Field in recent work on restricted quantification.

- (1) $a \sqcup b = lub \le \{a, b\}$
- (2) $a \sqcap b = glb \le \{a, b\}$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)$

- (1) $a \sqcup b = lub \le \{a, b\}$
- (2) $a \sqcap b = glb \le \{a, b\}$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)$
- (4) $a \le 1 \text{ and } 0 \le b$
- (5) 1 is 'join irreducible'.

- (1) $a \sqcup b = lub \le \{a, b\}$
- (2) $a \sqcap b = glb < \{a, b\}$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)$
- (4) $a \le 1 \text{ and } 0 \le b$
- (5) 1 is 'join irreducible'.
- (6) $a \le b \text{ iff } b^* \le a^*$
- (7) $a^{**} = a$
- (8) $\exists z \text{ s.t. } z = z*$

- (1) $a \sqcup b = lub \le \{a, b\}$
- (2) $a \sqcap b = glb \le \{a, b\}$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)$
- (4) $a \le 1 \text{ and } 0 \le b$
- (5) 1 is 'join irreducible'.
- (6) $a \le b \text{ iff } b^* \le a^*$
- (7) $a^{**} = a$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b$
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$.
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
- (V) $a < b \Rightarrow a$

- (1) $a \sqcup b = lub \le \{a, b\} \rightsquigarrow A02$
- (2) $a \sqcap b = glb \le \{a, b\}$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)$
- (4) $a \le 1 \text{ and } 0 \le b$
- (5) 1 is 'join irreducible'.
- (6) $a \le b \text{ iff } b^* \le a^*$
- (7) $a^{**} = a$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b$
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$.
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
- (V) $a < b \Rightarrow a$

- (1) $a \sqcup b = lub \le \{a, b\} \rightsquigarrow A02$
- (2) $a \sqcap b = glb \leq \{a, b\} \rightsquigarrow A03$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c)$
- (4) $a \le 1 \text{ and } 0 \le b$
- (5) 1 is 'join irreducible'.
- (6) $a \le b \text{ iff } b^* \le a^*$
- (7) $a^{**} = a$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b$
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$.
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
- (V) $a < b \Rightarrow a$

- $(1) a \sqcup b = lub \leq \{a, b\} \rightsquigarrow A02$
- (2) $a \sqcap b = glb \leq \{a, b\} \rightsquigarrow A03$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c) \rightsquigarrow A04$
- (4) $a \le 1 \text{ and } 0 \le b$
- (5) 1 is 'join irreducible'.
- (6) $a \le b \text{ iff } b^* \le a^*$
- (7) $a^{**} = a$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b$
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$.
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
- (V) $a < b \Rightarrow a$

- $(1) a \sqcup b = lub \leq \{a, b\} \rightsquigarrow A02$
- (2) $a \sqcap b = glb \leq \{a, b\} \rightsquigarrow A03$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c) \rightsquigarrow A04$
- (4) $a \le 1$ and $0 \le b \rightarrow R2$
- (5) 1 is 'join irreducible'.
- (6) $a \le b \text{ iff } b^* \le a^*$
- (7) $a^{**} = a$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b$
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$.
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
- (V) $a < b \Rightarrow a$

- $(1) a \sqcup b = lub \leq \{a, b\} \rightsquigarrow A02$
- (2) $a \sqcap b = glb \leq \{a, b\} \rightsquigarrow A03$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c) \rightsquigarrow A04$
- (4) $a \le 1$ and $0 \le b \rightarrow R2$
- (5) 1 is 'join irreducible'.
- (6) $a \le b \text{ iff } b^* \le a^*$
- (7) $a^{**} = a$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b$
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$.
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
- (V) $a < b \Rightarrow a$

- $(1) a \sqcup b = lub \leq \{a, b\} \rightsquigarrow A02$
- (2) $a \sqcap b = glb \le \{a, b\} \rightsquigarrow A03$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c) \rightsquigarrow A04$
- (4) $a \le 1$ and $0 \le b \rightarrow R2$
- (5) 1 is 'join irreducible'.
- (6) $a \le b$ iff $b^* \le a^* \rightsquigarrow R5$
- (7) $a^{**} = a$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b$
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$.
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
- (V) $a < b \Rightarrow a$

- $(1) a \sqcup b = lub \leq \{a, b\} \rightsquigarrow A02$
- (2) $a \sqcap b = glb \le \{a, b\} \rightsquigarrow A03$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c) \rightsquigarrow A04$
- (4) $a \le 1$ and $0 \le b \rightarrow R2$
- (5) 1 is 'join irreducible'.
- (6) $a \le b$ iff $b^* \le a^* \rightsquigarrow R5$
- (7) $a^{**} = a \sim A07$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b$
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$.
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
- (V) $a < b \Rightarrow a$

- $(1) a \sqcup b = lub \leq \{a, b\} \rightsquigarrow A02$
- (2) $a \sqcap b = glb \le \{a, b\} \rightsquigarrow A03$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c) \rightsquigarrow A04$
- (4) $a \le 1$ and $0 \le b \rightarrow R2$
- (5) 1 is 'join irreducible'.
- (6) $a \le b$ iff $b^* \le a^* \rightsquigarrow R5$
- (7) $a^{**} = a \sim A07$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b$
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$.
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
- (V) $a < b \Rightarrow a$

- $(1) a \sqcup b = lub \leq \{a, b\} \rightsquigarrow A02$
- (2) $a \sqcap b = glb \leq \{a, b\} \rightsquigarrow A03$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c) \rightsquigarrow A04$
- (4) $a \le 1$ and $0 \le b \rightarrow R2$
- (5) 1 is 'join irreducible'.
- (6) $a \le b$ iff $b^* \le a^* \rightsquigarrow R5$
- (7) $a^{**} = a \sim A07$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b \rightarrow A01$, R1
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b$.
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
- (V) $a < b \Rightarrow a$

- $(1) a \sqcup b = lub \leq \{a, b\} \rightsquigarrow A02$
- (2) $a \sqcap b = glb \leq \{a, b\} \rightsquigarrow A03$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c) \rightsquigarrow A04$
- (4) $a \le 1$ and $0 \le b \rightarrow R2$
- (5) 1 is 'join irreducible'.
- (6) $a \le b \text{ iff } b^* \le a^* \rightsquigarrow R5$
- (7) $a^{**} = a \sim A07$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b \rightarrow A01$, R1
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b \rightsquigarrow R3$
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c$.
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
- (V) $a \le b \Rightarrow a$

- $(1) a \sqcup b = lub \leq \{a, b\} \rightsquigarrow A02$
- (2) $a \sqcap b = glb \le \{a, b\} \rightsquigarrow A03$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c) \rightsquigarrow A04$
- (4) $a \le 1$ and $0 \le b \rightarrow R2$
- (5) 1 is 'join irreducible'.
- (6) $a \le b$ iff $b^* \le a^* \rightsquigarrow R5$
- (7) $a^{**} = a \sim A07$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b \rightarrow A01$, R1
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b \rightsquigarrow R3$
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c \rightsquigarrow R4$
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
- (V) $a < b \Rightarrow a$

- $(1) a \sqcup b = lub \leq \{a, b\} \rightsquigarrow A02$
- (2) $a \sqcap b = glb \le \{a, b\} \rightsquigarrow A03$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c) \rightsquigarrow A04$
- (4) $a \le 1$ and $0 \le b \rightarrow R2$
- (5) 1 is 'join irreducible'.
- (6) $a \le b$ iff $b^* \le a^* \rightsquigarrow R5$
- (7) $a^{**} = a \sim A07$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b \rightarrow A01$, R1
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b \rightsquigarrow R3$
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c \rightsquigarrow R4$
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a$
- (V) $a < b \Rightarrow a$

- $(1) a \sqcup b = lub \leq \{a, b\} \rightsquigarrow A02$
- (2) $a \sqcap b = glb \leq \{a, b\} \rightsquigarrow A03$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c) \rightsquigarrow A04$
- (4) $a \le 1$ and $0 \le b \rightarrow R2$
- (5) 1 is 'join irreducible'.
- (6) $a \le b$ iff $b^* \le a^* \rightsquigarrow R5$
- (7) $a^{**} = a \sim A07$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b \rightarrow A01$, R1
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b \rightsquigarrow R3$
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c \rightsquigarrow R4$
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a \rightsquigarrow A08$
- (V) $a < b \Rightarrow a$

- $(1) a \sqcup b = lub \leq \{a, b\} \rightsquigarrow A02$
- (2) $a \sqcap b = glb \leq \{a, b\} \rightsquigarrow A03$
- $(3) \ a \sqcup (b \sqcap c) = (a \sqcup b) \sqcap (a \sqcup c) \rightsquigarrow A04$
- (4) $a \le 1$ and $0 \le b \rightarrow R2$
- (5) 1 is 'join irreducible'.
- (6) $a \le b$ iff $b^* \le a^* \rightsquigarrow R5$
- (7) $a^{**} = a \sim A07$
- (8) $\exists z \text{ s.t. } z = z*$
- (I) $a \Rightarrow b = 1$ iff $a \le b \rightarrow A01$, R1
- (IIa) If $a \le b$ then $c \Rightarrow a \le c \Rightarrow b \rightsquigarrow R3$
- (IIb) If $a \le b$ then $b \Rightarrow c \le a \Rightarrow c \rightsquigarrow R4$
- (III) $1 \Rightarrow 0 = 0$
- (IV) $a^* \Rightarrow b^* = b \Rightarrow a \rightsquigarrow A08$
- (V) $a < b \Rightarrow a \rightsquigarrow A15$

► So, we have A01–A04, plus A07–A08, and A15.

- ► So, we have A01–A04, plus A07–A08, and A15.
- ▶ We also have R1–R5.

- ► So, we have A01–A04, plus A07–A08, and A15.
- ▶ We also have R1–R5.
- What about A05 and A06?

- ► So, we have A01–A04, plus A07–A08, and A15.
- ▶ We also have R1–R5.
- What about A05 and A06?
- We don't quite have them in axiom form, but we can easily prove them in rule form.

- ► So, we have A01–A04, plus A07–A08, and A15.
- ▶ We also have R1–R5.
- ▶ What about A05 and A06?
- We don't quite have them in axiom form, but we can easily prove them in rule form.
 - If $a \le b$ and $a \le c$, then $a \le b \sqcap c$. (This follows from the fact \sqcap is glb.)

- ► So, we have A01–A04, plus A07–A08, and A15.
- ▶ We also have R1–R5.
- ▶ What about A05 and A06?
- We don't quite have them in axiom form, but we can easily prove them in rule form.
 - If $a \le b$ and $a \le c$, then $a \le b \sqcap c$. (This follows from the fact \sqcap is glb.)
 - If $a \le c$ and $b \le c$, then $a \sqcup b \le c$. (This follows from the fact \sqcup is lub.)

- ► So, we have A01–A04, plus A07–A08, and A15.
- ▶ We also have R1–R5.
- ▶ What about A05 and A06?
- We don't quite have them in axiom form, but we can easily prove them in rule form.
 - If $a \le b$ and $a \le c$, then $a \le b \sqcap c$. (This follows from the fact \sqcap is glb.)
 - If $a \le c$ and $b \le c$, then $a \sqcup b \le c$. (This follows from the fact \sqcup is lub.)
- ▶ Thus, Field's logic is a slight weakening of DWK.

Transparent Truth

Field has shown, via a complicated construction, that with this logic one can extend a standard model of PA with a transparent truth predicate.

Transparent Truth

- Field has shown, via a complicated construction, that with this logic one can extend a standard model of PA with a transparent truth predicate.
- ▶ Field also shows how to define a 'determinate truth' operator from his conditional: $DA := A \land \neg (A \rightarrow \neg A)$.

Transparent Truth

- ▶ Field has shown, via a complicated construction, that with this logic one can extend a standard model of PA with a transparent truth predicate.
- ▶ Field also shows how to define a 'determinate truth' operator from his conditional: $DA := A \land \neg (A \rightarrow \neg A)$.
- ▶ The resulting operator has many of the desirable features of the $Ł_ω$ operator including being able to say of any gap that it is 'gappy' without ω-inconsistency.

An obvious question is whether one could strengthen the rule forms of A05 and A06 to their axiom forms. This would bring us up to full DWK.

- An obvious question is whether one could strengthen the rule forms of A05 and A06 to their axiom forms. This would bring us up to full DWK.
- A parallel question concerns strengthening R3 and R4 to their axiom forms, namely A09 and A10. This would bring us up to TWK.

- An obvious question is whether one could strengthen the rule forms of A05 and A06 to their axiom forms. This would bring us up to full DWK.
- A parallel question concerns strengthening R3 and R4 to their axiom forms, namely A09 and A10. This would bring us up to TWK.
- ▶ Finally, Field has recently started toying with adding A12 or at least its rule form – as it seems desirable for restricted quantification. Adding the full version would bring us up to RWK.

- An obvious question is whether one could strengthen the rule forms of A05 and A06 to their axiom forms. This would bring us up to full DWK.
- A parallel question concerns strengthening R3 and R4 to their axiom forms, namely A09 and A10. This would bring us up to TWK.
- Finally, Field has recently started toying with adding A12 or at least its rule form – as it seems desirable for restricted quantification. Adding the full version would bring us up to RWK.
- ▶ RWK is the logic identified by Restall (1992) as the place to start. But how does one prove it avoids the problems with Ł...?

▶ The Fieldian approach, similarly to Tarski, contains an unending hierarchy of 'determinate truth'.

- ► The Fieldian approach, similarly to Tarski, contains an unending hierarchy of 'determinate truth'.
- Does this approach re-invite the problems with Tarski?

- ▶ The Fieldian approach, similarly to Tarski, contains an unending hierarchy of 'determinate truth'.
- Does this approach re-invite the problems with Tarski?
- ► Consider a reworked example of Kripke's Dean-Nixon case.

- ▶ The Fieldian approach, similarly to Tarski, contains an unending hierarchy of 'determinate truth'.
- Does this approach re-invite the problems with Tarski?
- ▶ Consider a reworked example of Kripke's Dean-Nixon case.

Dean: Nothing that Nixon says about Watergate is determinately true.

- The Fieldian approach, similarly to Tarski, contains an unending hierarchy of 'determinate truth'.
- Does this approach re-invite the problems with Tarski?
- ▶ Consider a reworked example of Kripke's Dean-Nixon case.

Dean: Nothing that Nixon says about Watergate is determinately true.

Nixon: Nothing that Dean says about Watergate is determinately true.

- The Fieldian approach, similarly to Tarski, contains an unending hierarchy of 'determinate truth'.
- Does this approach re-invite the problems with Tarski?
- ► Consider a reworked example of Kripke's Dean-Nixon case.

Dean: Nothing that Nixon says about Watergate is determinately true.

Nixon: Nothing that Dean says about Watergate is determinately true.

▶ We also have a parallel version of Priest's worry with the inexpressibility of 'determinately true at all levels'. It seems we understand such a notion, and even perhaps Field's model-theory depends on it (i.e. semantic value 1).

- ➤ The Fieldian approach, similarly to Tarski, contains an unending hierarchy of 'determinate truth'.
- Does this approach re-invite the problems with Tarski?
- ▶ Consider a reworked example of Kripke's Dean-Nixon case.

Dean: Nothing that Nixon says about Watergate is determinately true.

Nixon: Nothing that Dean says about Watergate is determinately true.

- We also have a parallel version of Priest's worry with the inexpressibility of 'determinately true at all levels'. It seems we understand such a notion, and even perhaps Field's model-theory depends on it (i.e. semantic value 1).
- Notably, dialetheic theories don't need to stratify to characterize 'defective' sentences. So, let's turn to those theories next.