School of Physics & Astronomy

Find a PhD Project Here

Opportunities for fully funded PhD or EngDoc research projects are available in all fields of research within the School. You may search for current projects on this page. APPLY HERE for a PhD Place.

 PhD in Photonics
 PhD in Condensed Matter
 PhD in Astrophysics

Search current PhD opportunities in the School of Physics & Astronomy:-


Mass Distribution of the Galaxy
Zhao, Dr Hongsheng -

The mass distribution of the Galaxy is being / will be mapped out in great detail in the next decade with the numerous surveys of the Galaxy, including Segue, RAVE, GAIA, and completed ones like 2MASS, DENIS. A model for the potential and phase space of the galaxy is essential to bring various pieces of information together. The student will develop such models building on experience from existing models.
Annihilation of Dark Matter
Zhao, Dr Hongsheng -

A main diagnostic of the particle dark matter is its annihilation rate, which depends sensitively on the dark matter density profile. The student will explore various density models of the dark matter, taking into account the effects of black holes and baryonic dynamics.
Galactic Dark Matter Effects from New Physics of Modified Gravity or Dark Energy
Zhao, Dr Hongsheng -

We explore alternatives to the Cold Dark Matter framework by adding new physics in Dark Matter.
The new physics could include Modified Gravity or matter with fifth force interactions.
Several rare coincidences of scales in standard particle physics
are needed to explain why the negative pressure of the cosmological dark energy (DE)
(i) coincides with the positive pressure of random motion of dark matter (DM) in bright galaxies,
(ii) is within order of magnitude of the energy density of neutrinos, if it is allowed to have a mass of eV.
(iii) why Dark Matter in galaxies seems to follow the Tully-Fisher-Milgrom (MOND) relation of galaxy rotation curves, rather than the CDM predicted profile.
The aim is to link empirical dark matter constraints in galaxies with the cosmology.
The work can be purely theoretical using the Euler-Lagrangian approach. Or empirical by fitting galaxy velocity distributions and Gravitational Lensing data.