Week 8 - Integration

Review:

> f[variable_]:= variable ${ }^{\wedge} 2$
> Dots delay evalution until input specified
> Green text on RHS indicates what is replaced before the RHS is evaluated.
Form of function:
Integrate[function, variable]

Calculating a definite integral:

$\int_{0}^{3} 1 d x$ or equivalently $\int_{0}^{3} d x$

```
Integrate [1, {x, 0, 3}]
```

3

Comparing forms of built-in Mathematica functions:

Plot[function, \{variable, min, max\}]
Integrate[function, \{variable, $\min , \max \}$]

Defining functions:

$$
f\left[a_{-}, b_{-}\right]:=\text {Integrate }\left[x^{\wedge} 2,\{x, a, b\}\right]
$$

Corresponds to $\mathrm{f}(\mathrm{a}, \mathrm{b})=\int_{\mathrm{a}}^{b} \mathrm{x}^{2} d x$

```
f[-3, 3]
f[-3, 3]
```

```
f[0,5]
f[0, 5]
```


Summary:

$>$ We can integrate using Integrate[function, \{variable, min value, max value\}].
> The form of 'integrate' is similar to that of plot. More importantly, we should try and spot patterns between functions to help us understand how new code works.
$>$ Reminder: All built-in functions begin with a capital letter and use square brackets e.g. Sin[x]

