Week 7 - Defining Functions

Review
>Differentiate using Dt[function, variable]
$>$ Dt[function, \{variable, n times\}]
> Press equals twice ' $==$ ' to search for just about anything

Defining a function

Am exaple of a function is $f(x)=x^{2}$. Typically we will define in the following way:

$$
f\left[x_{-}\right]:=x^{\wedge} 2
$$

Comparing ways of defining a function:
Method 1:

```
Func1[x_] := Dt [x^2, x]
```

Func1 [3]

General::ivar: 3 is not a valid variable. >>

```
Dt[9, 3]
```

Method 2:

```
Func2 [x_] = Dt[ [x^2, x]
2 x
```

```
Func2 [3]
```

6

Method 3:

```
Func3 = Dt[x^2, x]
2 x
```

```
Func3
2 x
```


Letters Turn Green for ‘Dotted’ Function on LHS and RHS

```
g1(x)=x+x^2
```

```
g1[var_] := var + var^2
g1[x]
x+x
```

```
g1 [y]
y+ y 
```

g1 [physics]
g1 [2]
6

Letters Turn Green for 'Non-dotted' Function only on LHS

```
g2[var_] = var + var^2
```


Built-in Functions

There are many built-in functions in Mathematica. An example of one that we have seen before is Sin.

```
Sin[x]
Sin[x]
```

```
Sin[y]
Sin[y]
```

$\operatorname{Sin}[3.14]$

```
0.00159265
```

Keeping our Code Tidy
Terms of Taylor Expansion $1-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\frac{x^{11}}{11!}$

Or Define function first:
$h\left[x_{-}\right]:=1-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\frac{x^{11}}{11!}$
$\operatorname{Plot}[h[x],\{x, 0,3\}$, AxesLabel $\rightarrow\{" x ", " h[x] "\}]$

Summary

$>$ Dots-Delay evaluation of function; no Dots - evaluates function and replaces input value into the output of the already evaluated function.
> You can define a function by Name[variable]:=(something dependent on 'variable').
> Green text on the RHS indicates what is being replaced before the evaluation of the RHS takes place.
> Functions are a good way of organising code into manageable pieces.

