Week II - 2nd Order ODEs

Review

> Manipulate[expression[a], \{a,min, max\}]
>DSolve[differntial equation, $y[x]$, x]
> Curly brackets used to add in extra information
>Remove[y]

Introduction

Same as DSolve in the case that we don't specify initial conditions however we now have two constants c[1] and c[2].

```
DSolve[y''[x] == - y[x], y[x], x]
```


Therefore we now need to have two initial conditions to fully define our function

```
DSolve[{y''[x] == - y[x], y'[0] == 0, y[0] == 1}, y[x], x]
{{y[x] 僤[x]}}
```

We have so far used $y(x)$, we can also use $x(t)$ or $f(r)$ or any other combination as long as we are careful not to use variables that are defined as something different elsewhere.

```
DSolve[differential equation, function, variable]
```

A useful application of studying differential equations are in the context of oscilations. We can study solutions of $x^{\prime \prime}(t)=-k^{*} x(t) / m$

```
m=1(*set the mass = 1*)
```

```
DSolve[{x''[t] == - k* x[t] /m, x'[0] == 0, x[0] == 1}, x[t], t]
{{x[t]->\operatorname{Cos}[\sqrt{}{k}t]}}
```

```
function1[k_, t_] := Cos[\sqrt{}{k}}\textrm{t}
```


$$
\text { function2 [k_] := Plot[function1 [k, t], \{t, 0, 10\}] }
$$

Manipulate[function2[k], \{k, 1, 5\}]

Summary

$>$ As in maths we can use any symbol to define our functions. However we need to be extra careful not to use symbols we have defined differently elsewhere.
$>$ DSolve is the same for 1 st and 2 nd order differential equations but in the case of 2 nd order differential equations we need to define 2 initial conditions.
$>$.Functions are a good way of splitting up code into understandable pieces that can be reused with different input values.

