A new multimedia resource for teaching quantum mechanics concepts

Antje Kohnle, Donatella Cassettari, Tom Edwards, Callum Ferguson, Alastair Gillies, Christopher Hooley, Natalia Korolkova, Joseph Llama and Bruce Sinclair

School of Physics and Astronomy
University of St Andrews

Overview of the animations

- Aimed at University students and instructors
- Created in Adobe Flash, Mathematica used for calculations and graphs \(\rightarrow\) small file size, inexpensive to produce
- Based on outcomes of education research and our lecturing experience (four quantum mechanics lecturers involved)
- Evaluation (questionnaires, diagnostic surveys, observation sessions) used to optimize the animations.
- Complementary to other multimedia resources (PhET, Physlets, QuILTs, etc.)
- Freely available at \textcolor{blue}{www.st-andrews.ac.uk/~qmanim}

see also Kohnle et al., Eur J Phys, 31, 1441 (2010)

Key features of the animations

- Interactivity
- Emphasis on time-dependent behaviour
- Adaptability to a variety of learning goals
- Instructor worksheets with full solutions

Animation topics

- >40 animations developed to date
- Probabilistic/interpretation of classical systems (2)
- Bohr’s model of the hydrogen atom (1)
- Photoelectric effect (1)
- Probability current (1)
- Wave packets (5)
- The Heisenberg Uncertainty Principle (2)
- Momentum probability densities (3)
- The one-dimensional infinite square well (10)
- The finite well (2)
- The harmonic oscillator (5)
- Bound states in other one-dimensional potentials (5)
- Measurement and wave function collapse (1)
- One-dimensional scattering (4)
- Expansion in eigenstates (5)
- The sudden approximation (3)
- Bound states in two-dimensional potentials (3)
- Time-independent perturbation theory (4)
- Multi-particle wave functions (2)
- Spin and angular momentum (5)
- Density matrix (1)
- Quantum information (1)
Student observation sessions

- Individual sessions with five student volunteers from Edinburgh and eight from St Andrews.
 - Students asked to “think aloud” while interacting freely with a previously unseen animation.
 - Questions aimed to test whether graphs and explanations make sense.
 - Follow-up interview on experience with this and previous animations.
- Consistency in issues raised. Outcomes used to optimize interface design and content of all animations.

Diagnostic survey outcomes

- Diagnostic survey given to level two Quantum Physics class at a time when only half of the class had used two animations in a workshop.
- Students that had used the animations outperformed students that had not on those questions pertaining to the animation topics.
Conclusions

- Number of animations has been doubled in the past year, extending the range and topics of animations available.
- Observation sessions used to optimize interface design and content.
- Evaluation shows positive short-term learning gains.

Future work

- More detailed investigation of student use and long-term learning gains
- Extend number of animations and instructor resources available, e.g. quantum information theory
- More external user input
- Integrate animations into multimedia learning modules

Animations available (use and download) at www.st-andrews.ac.uk/~qmanim