2016-17 HANDBOOK FOR FIRST AND SECOND LEVEL MODULES IN THE SCHOOL OF PHYSICS AND ASTRONOMY, UNIVERSITY OF ST ANDREWS

INTRODUCTION

AIMS OF OUR TEACHING PROGRAMMES 4
ENTRY POINTS AND REQUIREMENTS 5
LEVEL-ONE MODULES 9
LEVEL-TWO MODULES 20
STUDENT WORK 31

GENERAL INFORMATION

Advisers of Studies 33
Special Circumstances Affecting Assessment 33
Use of Calculators in Examinations 34
The 0-20 Grading Scale – Pre-Honours Physics and Astronomy 34
Relevance of module grades 36
Progression to Honours Physics and Astronomy 36
Deans’ List 36
Absence from Classes or Examinations 37
Penalties for late submission and Word/Space Limit Issues 37
Good Academic Practice, and Academic Misconduct 38
Feedback, and Access to Examination Scripts 39
Appeals and Complaints 40
J F Allen Library 40
Work Spaces 41
Computing Facilities 41
Student-Staff Council, and School President 42
Diversity, Respect, Community 42
Advice and Support 43
Information for students 43
CAPOD Resources 44
Disabilities 44
English Language Support 45
Fees 45
Health and Safety 45
Academic Session 46
Finding Referees 46
We hope that the information in this handbook will be useful to our students. Our pre-honours students are expected to have read and understood what is in this document. Please ask staff if you have any queries. I am happy to meet with our students to discuss any aspects of their study here.

Bruce Sinclair, Director of Teaching for the School of Physics and Astronomy
b.d.sinclair@st-andrews.ac.uk, ext 3118, room 221
INTRODUCTION

This handbook provides information about the first and second level modules to be taught by the School of Physics and Astronomy in the session 2015-16. Students are asked to read this booklet carefully, and are expected to be familiar with the contents. As well as providing useful information for you, this is the “rule book” for these modules.

First Level:
- PH1011 Physics 1A
- PH1012 Physics 1B
- PH1501 Gateway – Maths for Physicists 1A
- PH1502 Gateway – Physics Skills 1A
- PH1503 Gateway – Physics Skills 1B
- AS1001 Astronomy & Astrophysics 1
- AS1101 Astrophysics 1 (condensed)
- AS1002 The Physical Universe (daytime)
- AS1901 The Physical Universe (evening degree)

Second Level:
- PH2011 Physics 2A
- PH2012 Physics 2B
- AS2001 Astronomy & Astrophysics 2
- AS2101 Astrophysics 2 (condensed)

Each of these modules lasts for one semester and is assessed during and/or at the end of the semester in which it is taught. First level modules are each worth 20 credits (except AS1101 at 5 credits), and the second level modules listed are each worth 30 credits (except AS2101, which is 15 credits). Normally 120 credits are taken in each year of study, and this will usually include modules from other Schools. Accelerated entry students have a different mix, please see later in this handbook.

The selection of modules depends primarily on the degree(s) in view and on the student's own interests and qualifications. Those with limited prior knowledge in physics and/or mathematics may find the introductory module AS1002 the Physical Universe to be appropriate. Those aiming for a degree involving this School will start with either Physics 1A and 1B or Physics 2A and 2B depending on their entry point. The Gateway modules are available only to those students on the Gateway programmes. AS1901 is available only to those on the evening degree programme. AS1002 is intended to be suitable for students from across the University, and may not be taken alongside PH1011, PH1012, PH2011, PH2012, AS1001 or AS1101.

A separate booklet provides full details of the honours degree programmes and modules offered by the School, i.e. those which normally occupy the third, fourth and fifth levels of an honours degree. This is available from the School’s Students and Staff web page. Students wishing to take an honours degree involving this School will normally be expected to have good passes in at least Physics 2A, Physics 2B, and Maths MT2501 and MT2503.
AIMS OF OUR TEACHING PROGRAMMES

- To provide a systematic functional knowledge and understanding of core physical concepts, principles and theories, and some of their applications.
- To provide specialist functional knowledge and understanding relevant to the particular degree programme, for example in astrophysics, theoretical physics, or photonics.
- To provide access to physics at the frontiers, capitalising on the strengths of the research undertaken in the School.
- To develop proficiency in the analysis of complex physical problems and the use of mathematical and other appropriate techniques to solve them.
- To develop the ability of students to organise their knowledge in a way that they can articulate the big ideas from the various modules, and can see the inter-relationship of material from different modules. Students should develop the ability to filter their knowledge in such a way that they can access the information that they need to apply to a particular problem or learning situation.
- To provide the ability to plan, execute under supervision, analyse and report upon the results of an experiment or investigation.
- To provide experience and expertise in experimental investigations for all students at the earlier stages of the programme. At least for students on the Physics degree programmes to develop these skills further in the honours years. At least for students on the Astrophysics degree programmes to develop competence in observational and computational techniques in astronomy. At least for Physics students to develop skills in the use of computers for control, data acquisition, and data analysis in experimental investigations.
- To develop the professional skills of teamwork, independent learning, information retrieval, critical analysis, and the communication of scientific concepts in writing and orally.
- To develop the ability to be a self-directed learner, including fostering a healthy intellectual curiosity in this and other disciplines, and the ability to determine one’s own learning needs and to organise one’s own learning.
- To enthuse students about the discipline and its applications, and to develop their confidence in their work using the discipline.
- To provide students in the School with an educational and social environment which encourages them to become informed, responsible, and respected members of society.
- To provide opportunities and support for all students to reach their full potential during their studies.
ENTRY POINTS AND REQUIREMENTS

Students who are aiming for a degree in physics or astrophysics (including joint degrees with mathematics but not with other subjects) may consider whether they wish to take the conventional entry route starting with level one physics (and other) modules, or whether they wish to take an accelerated entry route. The former allows a broader education, but the latter allows students to complete their honours degree one year earlier. Joint degrees with all subjects apart from Maths require first year entry.

First Year Entry to Physics and Astronomy Degree Programmes

The majority of entrants aiming for a degree involving this School start their programme in first year with 120 credits from first year modules, including Physics 1A PH1011, Physics 1B PH1012, and Mathematics MT1002.

Accelerated Entry to Physics and Astronomy Degree Programmes

The accelerated route gives direct entry to level two physics and maths modules. Qualifying students are given 120 “advanced standing credits” on the basis of their school/college attainment, and can then obtain an honours BSc degree in three years or an honours MPhys degree in four years (note that the University may withdraw these advanced standing credits if the student changes to a programme where they are no longer appropriate).

The qualifications required for direct entry to second level are currently normally one of

- AAA in Advanced Higher or A-levels, with A in both Mathematics and Physics, or
- AA in Advanced Higher in Mathematics and Physics, and AA in Highers in two other subjects, or
- qualifications equivalent to the above.

We strongly recommend that those with A-levels taking direct entry to second level should have included at least one mechanics module in their mathematics A-level. For those who take direct entry to second level, the following combinations of modules taken in the entry year can lead into the degree programme shown below. The number of credits for each module is shown in brackets. There is more information on module choices in the pre-advising advice pages on the School’s Students and Staff web pages.
A. With the modules shown this can lead to a BSc or MPhys in Physics or Theoretical Physics. If two relevant level two maths modules are taken as the choice in second semester then this can also lead to the joint degrees with Mathematics. The Choice credits in second semester may be at level 1.

B. With modules shown can lead to BSc or MPhys Astrophysics, Physics or Theoretical Physics. It is worth noting that this set of modules can lead to any of the single-honours degrees within the School.

C. With modules shown can lead to BSc or MPhys Physics or Theoretical Physics. If two relevant level 2 maths modules are taken as the choice in second semester then can also lead to the joint degrees with Mathematics. Those seeking an applied maths flavour of a joint degree should take MT2501 and MT2503 in first semester, and MT2506 and MT2507 in second semester. Those seeking a pure maths flavour should take MT2503 and MT2502 in first semester, and MT2501 and MT2505 in second semester.

The MSci Physics and Chemistry students do not normally have the option of reducing the number of years they study here, but they can use appropriate school qualifications to bypass for example Physics 1A or 1B and take Physics 2A or 2B in their year of entry, thus allowing a more conventional credit load in second year than would otherwise be the case.

Although direct entry to second level may be offered to suitable applicants as part of the admission process, no final decision is required until incoming students have consulted their Adviser of Studies after arrival in St Andrews.
Entry to the Gateway Programme

This programme and its dedicated modules are available only to those who have been offered entry to this programme as part of the admissions process.

Summary of Entry Requirements for Pre-Honours AS/PH Modules

We welcome on to our pre-honours modules those intending to do a degree involving the School and those who are aiming for a degree in a different discipline.

PH1011 Physics 1A and AS1001/1101 Astrophysics 1 assume that students have a familiarity and competence in physics and mathematics (including calculus) equivalent to at least B-grade attainment in SQA Highers in these subjects. PH1012 Physics 1B builds on the material of Physics 1A, and so Physics 1A is a pre-requisite for Physics 1B.

AS1002 The Physical Universe is available to all students in the University apart from those taking a degree involving physics or astronomy, and has no specific pre-requisites.

PH2011 Physics 2A builds on level one physics and maths material, though is also accessible for those joining us on the accelerated entry route having obtained the equivalent of A-grades in the SQA Advanced Highers in physics and maths. PH2012 Physics 2B builds on the material of Physics 2A. AS2001 and AS2101 Astrophysics 2 require the knowledge and skills developed in Astrophysics 1 or in the Gateway Programme.

We welcome students with other relevant qualifications on to these modules. Those from outside the UK may wish to look at past Scottish Higher Exam Papers to see the level: www.sqa.org.uk/pastpapers/papers/papers/2014/H_Physics_QP_2014.pdf for physics www.sqa.org.uk/pastpapers/papers/papers/2014/H_Mathematics_all_2014.pdf for maths.

Those joining us with AP qualifications in both physics and maths should find Physics 1A accessible to them. Those joining us from the USA without AP should consider taking the Gateway entry route. It seems that there is typically rather more physics covered in a UK school/college experience than in the USA if the AP is not taken.
Summary of Pathways for Degree Programmes Within the School

Traditional Entry Route

<table>
<thead>
<tr>
<th>Level One Sem 1</th>
<th>Level One Sem 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 1A</td>
<td>Physics 1B</td>
</tr>
<tr>
<td>(20 credits)</td>
<td>(20 credits)</td>
</tr>
<tr>
<td>Maths MT1001 or</td>
<td>Maths MT1002 or</td>
</tr>
<tr>
<td>MT1002 (20 credits)</td>
<td>Choice (20 credits)</td>
</tr>
<tr>
<td>Astronomy 1 or</td>
<td>Choice (20 credits)</td>
</tr>
<tr>
<td>Choice (20 credits)</td>
<td></td>
</tr>
</tbody>
</table>

Accelerated Entry Route

<table>
<thead>
<tr>
<th>Level Two Sem 1</th>
<th>Level Two Sem 2</th>
<th>Acc Entry Sem 1</th>
<th>Acc Entry Sem 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 2A</td>
<td>Physics 2B</td>
<td>Physics 2A</td>
<td>Physics 2B</td>
</tr>
<tr>
<td>(30 credits)</td>
<td>(30 credits)</td>
<td>(30 credits)</td>
<td>(30 credits)</td>
</tr>
<tr>
<td>Typically Maths</td>
<td>Asto 2, level two maths, or Choice</td>
<td>Typically Maths</td>
<td>More Maths, Asto 2, or choice</td>
</tr>
<tr>
<td>MT2501 and</td>
<td>(30 credits)</td>
<td>MT2501 and</td>
<td>(to 30 credits)</td>
</tr>
<tr>
<td>MT2503, (30 credits)</td>
<td></td>
<td>MT2503, (30 credits)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AS1101 for astro (5)</td>
<td></td>
</tr>
</tbody>
</table>

Junior Honours
Builds on Physics, Maths, and where appropriate Astronomy modules from second year. Honours BSc programmes need grade 11 in level two Physics modules and Maths MT2501 and 2503 (and Astronomy as appropriate). MPhys programmes need grade 15. Full details in handbooks.

All, Semester One
<table>
<thead>
<tr>
<th>Maths for Physicists</th>
<th>Physics Sem 2</th>
<th>Theoretical Ph Sem 2</th>
<th>Astronomy Sem 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electromagnetism</td>
<td>Electromagnetism</td>
<td>Electromagnetism</td>
</tr>
<tr>
<td>Quantum Mechanics 1</td>
<td>Quantum Mechanics 2</td>
<td>Quantum Mechanics 2</td>
<td>Quantum Mechanics 2</td>
</tr>
<tr>
<td>Trans skills 1st section</td>
<td>Trans skills 2nd section</td>
<td>Trans skills 2nd section</td>
<td>Trans skills 2nd section</td>
</tr>
<tr>
<td>Option – Electronics, Extragalactic Astro ...</td>
<td>Physics lab 1</td>
<td>Lag & Ham Dynamics</td>
<td>Computational Astro</td>
</tr>
</tbody>
</table>

Senior Honours
Builds on knowledge and skills developed in JH and before. Full module choices for different programmes are given in the Honours Handbook. Honours BSc students have project this year, then should graduate. MPhys students have one further year of study.

MPhys Year
Major project and advanced lecture-based modules. These modules assume knowledge of the core physics and maths covered earlier, and many will have specific pre-requisites in terms of JH and SH modules that may not be taken by all students - please plan ahead.

NB: This is just an overview. Full details are in the relevant School Handbooks and the University’s Course Catalogue, including for joint degrees. There are different routes available.
LEVEL-ONE MODULES

Co-ordinators:

<table>
<thead>
<tr>
<th>Course</th>
<th>Name</th>
<th>Room</th>
<th>Tel</th>
<th>e-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 1A, PH1011</td>
<td>Dr Peter Woitke</td>
<td>306</td>
<td>1681</td>
<td>pw31</td>
</tr>
<tr>
<td>Physics 1B, PH1012</td>
<td>Dr Peter Wahl</td>
<td>208</td>
<td>3122</td>
<td>gpw2</td>
</tr>
<tr>
<td>Lab coordinator</td>
<td>Dr Cameron Rae</td>
<td>132c</td>
<td>7314</td>
<td>cfr</td>
</tr>
<tr>
<td>Physics and Astronomy (Gateway) (PH1501-3)</td>
<td>Dr Lucy Hadfield</td>
<td>304</td>
<td>3144</td>
<td>ljh11</td>
</tr>
<tr>
<td>Astrophysics 1 (AS1001) (AS1101)</td>
<td>Dr Aleks Scholz</td>
<td>331</td>
<td>1668</td>
<td>as110</td>
</tr>
<tr>
<td></td>
<td>Dr Anne-Marie Weijmans</td>
<td>334</td>
<td>2823</td>
<td>amw23</td>
</tr>
<tr>
<td>The Physical Universe (AS1002)</td>
<td>Dr Martin Dominik</td>
<td>242</td>
<td>3068</td>
<td>md35</td>
</tr>
<tr>
<td>The Physical Universe (AS1901, evening</td>
<td>Dr HongSheng Zhao</td>
<td>316a</td>
<td>3135</td>
<td>hz4</td>
</tr>
<tr>
<td>degree)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Level One Physics

The two level-one modules in core physics PH1011 and PH1012 provide a balanced introduction to university physics, assuming a prior knowledge and understanding of mathematics and physics at SQA Higher grade BB (or equivalent, or higher) in these subjects. They are not a first course in physics, whereas AS1002 can be so. The modules include appropriate coverage of the traditional disciplines of classical physics, but also exposure to the ideas of modern physics including quantum concepts, and to applications including laser physics and optical communications. The labs give experience in experimental investigations and techniques. It is intended that the two modules should be similar in standard to that of the SQA Advanced Higher in Physics although the syllabi will not match in detail. In particular, students may find a much greater emphasis here on how mathematical and physical relations are determined.

Physics 1A PH1011 (20 Credits)

This module covers the core subjects of mechanics, waves and optics, and the properties of matter. It includes lectures on Newton's laws, simple harmonic motion, the different types of wave motion, geometrical and wave optics, the nature and composition of nuclei, atoms, molecules, solids, and gases.
Physics 1B PH1012 (20 credits)

This module covers the mechanics of gravitation and rotational motion, quantum phenomena, and an introduction to lasers. The module is suitable for those who have already taken Physics 1A. It includes lectures on the origins of quantum theory, and its application to atoms and other small scale systems, dynamics and conservation laws; the principles of lasers, and some aspects of optical communication. The module also includes a set of group based activities associated with the use of physics ideas to solve an interesting problem.

Students who take Physics 1A and/or Physics 1B should acquire
• an understanding of the topics covered in the module,
• an ability to solve problems based on the lecture material,
• an increased interest in exploring and understanding the physical world
• a competence in using some of the standard equipment in physics laboratories,
• an appreciation of uncertainty analysis in experimental work.
• an ability to model a real-world problem using physical concepts.
• experience of working in small groups to solve technical problems

Gateway Maths for Physicists PH1501 (20 credits)

This module provides the necessary semester-one mathematics for students following the Physics and Astronomy (Gateway) entry route. The module mirrors the content of that presented in the level one course MT1001 and is intended to highlight the application of mathematics within Physics and Astronomy contexts. It is designed to give students a solid mathematical background and to introduce them to a range of mathematical techniques required for physics and mathematics degrees. It is a core module in the Gateway first year and is taken in conjunction with the semester two module MT1002. The following topics will be covered: basic algebra (inequalities, functions, coordinate systems, algebraic manipulation), geometric sequences and series, techniques of differentiation and integration. Students who have a grade B at Advanced Higher Mathematics (including units 1 and 2) or B at A-level Mathematics may bypass PH1501 and take MT1002 in the first semester and MT1003 (or another module if there is agreement from their adviser) in the second semester.

Gateway Physics Skills 1A PH1502 (20 credits)

The first of the two Level 1 Gateway skills modules provides a grounding in studying physics at university. The aim is to consolidate basic scientific/numerical skills and equip students with the study and lab skills needed to develop a firm foundation for future learning. The module will also address problem solving in physics with the aim being to develop confident and competent physicists. To this end, emphasis is placed on the understanding of fundamental scientific concepts and the encouragement of independent study. Students will learn how to use Mathematica to model physical situations. A short astronomy section is included to allow progression to level-two astrophysics for those who wish. Gateway Physics Skills 1A serves as preparation for Gateway Physics Skills 1B.
Gateway Physics Skills 1B PH1503 (20 credits)

Building upon the skills developed in semester one, the second skills module continues to expand and develop problem solving and communication skills that are essential for progression to more complex challenges.

The Gateway Physics Skills 1A and 1B modules will be delivered via a combination of taught material, workshop style tutorials, practical activities and self-study assignments. Students who successfully complete the modules, should

- be able to manage their own learning and understand the requirements of academic integrity
- accept responsibility for developing their potential as a higher education student and critically reflect and evaluate personal progress
- develop a portfolio to highlight the adoption and integration of good study habits
- approach problem solving in a structured way and become confident in applying knowledge to familiar and unfamiliar problems
- foster an appreciation of the interplay between different areas of physics and independently pursue topics that are of particular interest
- be developing skills in learning from and critically evaluating textual material
- be developing skills in science communication including presenting work using written and oral media
- understand how to create a mathematical model to describe a physical situation

Astronomy & Astrophysics 1 - AS1001 (20 credits)

The aim of this module is to provide an elementary understanding of the structure of the observable universe and our position within it. The physical content of the universe, its structures and their mutual interactions, are explored. It is shown how the properties of planets, stars, galaxies, etc may be determined from observations coupled with theoretical models based on physical principles. The module comprises four 11-lecture courses on The Solar System, Stars and Elementary Astrophysics, The Milky Way Galaxy, and Cosmology, thereby providing a complete overview of the subject at this level.

By the end of this module, students will have gained

- an understanding of the structure and evolution of the physical universe from the solar system, through the galaxy, to the large-scale distribution of galaxies and the origin of the universe,
- an ability to calculate astrophysical properties of planets, stars and galaxies from basic physical and mathematical models and simplified data.
Astrophysics 1 – AS1101 (5 credits)

This is a condensed version of AS1001 that is available for accelerated-entry astrophysics students before taking level two astrophysics in the following semester.

The Physical Universe AS1002 and AS1901 (20 credits)

These modules present a descriptive, largely non-mathematical account of the physical universe, and are designed for those who do not intend to follow a degree programme within the School of Physics and Astronomy. The modules have no prerequisites and are divided into two components: concepts in astronomy, dealing with our understanding of the properties and ages of planets, stars and galaxies, their distributions in space, cosmology and the origin of the universe; and concepts in physics, dealing with our understanding of matter, the nature of light, the structure of atoms and of atomic nuclei, fundamental particles and their link to cosmology, and the applications of physics in everyday life.

The learning objectives of these modules are

- an understanding of the structure of the physical universe on all scales from the sub-atomic level of matter to the large-scale distribution of galaxies,
- an appreciation of physical and astronomical phenomena in everyday life, and the value of that understanding in promoting rational interpretations of such phenomena.

In alternate years, this module is available in the evening (as AS1901) to part-time students enrolled for the General MA degree programme.

Detailed syllabuses for all first level modules are given in Appendix B.

Entry Requirements

The general entry requirements for students entering the university are described in the Undergraduate Prospectus. The following are the specific requirements for each of the first level modules in Physics and Astronomy.

Physics 1A, Physics 1B, Astronomy & Astrophysics AS1001 and AS1101

Passes are normally required in SQA Higher-grade Physics and Mathematics (minimum grades BB) or GCE A-level Physics and Mathematics (minimum grades BB), or an equivalent set of qualifications. Physics 1A is a pre-requisite for Physics 1B.

Gateway Modules

Only those students who are registered on the Gateway programme may take these modules.
The Physical Universe AS1002 and AS1901
There are no module-specific entry requirements. However the modules cannot be taken in conjunction with any of the other modules mentioned here, i.e. Physics 1A, Physics 1B and Astronomy and Astrophysics 1.

Recommended Books for Level-One Physics and Astronomy

All students may wish to read Learn How to Study (3rd edition), a programmed text by D Rowntree (Macdonald 1998) which provides training in study techniques.

Physics
The core text is Halliday, Resnick, and Walker, Principles of Physics, Extended 10th edition. We request that this book should be purchased by all students on these modules. We strongly recommend making this purchase at Blackwells bookshop in St Andrews, as doing so will give students for no additional charge access to the e-learning resources associated with this text. The ISBN number for the book with the "Wiley Plus" online resource is 9781118901601. This resource contains much useful stuff provided by the publisher, and may contain material tailored by us for use at St Andrews. It is available only from Blackwell's bookshop in St Andrews, and costs £49.99. Given the large amount of online resource that comes with this purchase, this seems to us to be good value compared with buying the book elsewhere without the associated electronic resources. If you wish to reserve you may contact the shop on 01334 476367 or st.andrews@blackwell.co.uk.

Other texts that students may also wish to consult are:-
- Physics for Scientists and Engineers: A Strategic Approach with Modern Physics by R D Knight, Pearson, 2007,
- Sears and Zemansky's University Physics by H D Young and R A Freedman (12th edition, Addison-Wesley 2008 or other edition), and

Additional reading for the lasers course is Understanding Lasers by J Hecht, (3rd Edition, IEEE Press 2008), though we do not recommend purchase; there are multiple copies in the library.

Useful reading for the labs is Measurements and their Uncertainties: A Practical Guide to Modern Error Analysis by I G Hughes and T P A Hase, Oxford, 2010. We do not recommend purchase as we think there are sufficient copies in the library.

Astronomy & Astrophysics AS1001 and AS1101
The main recommended book for this module is Astronomy – a Physical Perspective by M L Kutner (CUP 2003). This text can be accessed as an ebook.
The Physical Universe

Access to ebooks
Some books are available as ebooks to registered students. The links to booklists for AS and PH modules on the School’s Students and Staff web page will show you what is available, and will provide links as appropriate.

Tutorials and Workshops
For the modules Physics 1A and Physics 1B each student will typically attend one tutorial and one workshop (problem-solving class) per week. The tutorials will involve discussions on lecture material and the solution of conceptual and numerical problems based on the course. Students are expected to have attempted all designated tutorial problems in advance of the tutorial and are required to bring their written solutions to the tutorial. They are also required, prior to the tutorial, to hand in a self-reporting form and answers to selected problems for marking. In the workshops, students attempt problems on current lecture topics with demonstrator assistance.

Students will also work though maths revision exercises at the start of the PH1011 class. The purpose of this exercise is to re-acquaint students with the mathematics that will be required to undertake this module. Students carry out mathematical exercises (largely in their own time, but with demonstrator support available in the first lab afternoon) on topics which cover part of the syllabus of Higher and A-level Mathematics. A problem sheet for this work is handed in for assessment.

The Gateway modules involve significant amounts of tutorial and workshop time with input from academic staff. Room 230 will be used for this purpose.

Astrophysics AS1001 runs one tutorial per week, while AS1101 runs a total of 4 tutorials and 4 peer-support sessions. The tutorials will involve discussions on lecture material and the solution of conceptual and numerical problems based on the course. Students are expected to have attempted all designated tutorial problems in advance of the tutorial.
Practical Work

Physics
The aims of first level practical work in physics are

- to allow an exploration of relevant physics,
- to illustrate the subject matter covered in the lectures,
- to introduce students to some of the modern equipment that is used in physics laboratories,
- to teach the principles of experimental techniques and methods of analysis underlying experimental procedures.

For the Physics 1A and 1B modules there will be one afternoon period of 2½ hours per week of practical work. We expect that most of your practical work should be completed within these normal laboratory hours, with just a little more time 'at home'; prior to the start of a practical to familiarise yourself with the upcoming work and attempt the pre-lab questions, between lab session for producing graphs or completing other data analysis and at the end to finalise your analysis and write a short conclusion. In Physics 1A, the first few weeks of practical sessions take the form of sessions to develop some important lab skills. These will be developed further later in the semester during experimental work aimed more at exploring physics. A detailed description of the arrangements for practical work is available separately.

Astronomy & Astrophysics AS1001 and AS1101

The aim of practical work is to teach the acquisition and analysis of astronomical data through simple observations, lab exercises, and computer simulations. Students will gain an appreciation of the physical properties of objects in the universe, e.g., planetary motions, masses and temperatures of stars, distances to stars and galaxies, and the age of the universe. In addition, students may wish to get access to some of the telescopes at the University Observatory through the student society Astrosoc.

Laboratory sessions in astronomy are 2½ hours long in afternoons. Students work individually, in pairs, or in small groups at their own pace on experiments selected from a range which may cover planetary motions, radiation laws, properties of the Sun and of the stars, the distribution of stars and galaxies in space, and the expansion of the Universe. AS1001 has weekly lab sessions, while AS1101 has lab sessions two weeks of the semester.

Monitoring and Assessment

The progress of students taking each module will be monitored in different ways. For Physics 1A and Physics 1B, the weekly workshops and tutorials entail some written work, some of which is handed in for marking, as well as a class test in the middle of the semester. Correspondingly, those taking Astronomy and Astrophysics 1 will be given a brief test, on two occasions during the semester, intended to focus attention on material covered in recent
The performance of those taking The Physical Universe will also be monitored and assessed through tests. The Gateway skills modules are entirely continuously assessed.

The examinations consist of one written paper of two hours at the end of the semester. There is no choice of questions in the AS and PH exams. Resit examinations for those who are eligible (roughly, those who get a module grade between 4.0 and 6.9 and have not been given an Academic Alert FINAL) are held late in the summer. For any continuous assessment component specified in the reassessment below the mark is carried over from what was given during the semester.

A student who achieves grade 7.0 or better in both the practical and examination components will be awarded an overall grade for the module according to the formulae:

- **PH1011** 60% examination, 15% class test, 25% labs (Reassessment the same)
- **PH1012** 50% exam, 25% labs, 15% Group Discovery Project, 10% class test (Re-assessment the same)
- **PH1501** 50% examination, 50% continuous assessment (Reassessment 100% examination)
- **PH1502** 100% continuous assessment
 Made up of problem solving and study skills exercises (25%), practical work (25%), Astronomy short course (25%), Mathematica course (25%)
 (Reassessment 60% new assignments, 40% carried through from semester)
- **PH1503** 100% continuous assessment
 Made up of problem solving and study skills exercises (30%), scientific reporting (50%), practical experiments (20%)
 (Reassessment 60% new assignments, 40% carried through from semester)
- **AS1001** 60% examination, 15% tests, 25% practical
 (Re-assessment 75% examination, 25% practical)
- **AS1101** 50% class test, 25% practical, 15% take-home exam, 10% online quizzes
 (Reassessment 75% resit of class test, 25% practical work)
- **AS1002** 50% examination, 50% tests (Re-assessment 100% examination)
- **AS1901** 50% two essays, 50% two class tests (Re-assessment 100% examination)

In modules that have both examination and continuously assessed components, a student who achieves grade 7.0 or better in one component but grade 6.9 or less in the other will be awarded an overall grade for the module which is determined by the formulae above but subject to a maximum grade 6.9.
Medals and Prizes

In each module a medal is awarded to the student with the best performance overall in the assessment. The J F Allen Prize in Physics is awarded to the most outstanding student in PH1011 and PH1012 taken together. The Margaret Stewart Prize is awarded to the student in the module AS1001 who gains the highest grade.

Academic Alerts

Academic Alerts are a way of helping students who are having trouble coping with their studies, such as missing deadlines for handing in work, or missing compulsory tutorials. The aim of the Alert system is to help students by flagging up problems before they seriously affect students’ grades. Academic Alerts will be issued by email from a member of staff within the School and will tell students what is wrong and what they are required to do (e.g. attend classes in future). The Alerts will also tell students what support the University can offer. If students do not take the action required they will get another Alert, and eventually will automatically get a grade of zero and will fail that module. The system is designed to help and support students in order to remedy any problems or issues before these lead to failing a module. Alerts will never appear on a student’s permanent transcript.

For more information on Academic Alerts and details on how the categories work, see https://www.st-andrews.ac.uk/media/teaching-and-learning/policies/AcademicAlerts.pdf

Guidance for students is available at http://www.st-andrews.ac.uk/media/teaching-and-learning/policies/AlertsStudentGuide.pdf

Note that a “FINAL” alert can result in a student receiving grade 0 for the module with no right to a resit examination, ie they will get a fail for the module for that year. This can have serious consequences for their study at the University.

In all pre-honours modules in physics and astronomy, attendance at all classes (lectures, tutorials, workshops, and any specified practical work) is strongly recommended and in some cases is a requirement. In level-one modules (apart from AS1101) in this School, in order to avoid a FINAL alert, a student must:

1. **Attend a minimum of 75% of the tutorials of the module.**

2. **For tutorials in Physics 1A, Physics 1B, and Astronomy AS1001 hand in on time a serious attempt at the specified hand-in questions for a minimum of 75% of the tutorials.**

3. **Attend a minimum of 75% of any laboratory classes associated with the module, and achieve a grade of at least 7.0 overall for the laboratory work.**

4. **For Physics (PH) modules, attend a minimum of 75% of the workshops, and in the case of Physics 1B, 75% of the scheduled group-project sessions.**

5. **For Astronomy AS1001, achieve a grade of at least 4.0 in the combined score for the tests.**
6. For Physics 1A and 1B, achieve a grade of at least 4.0 for the class tests.
7. For the Gateway Physics Skills modules complete and submit to a reasonable standard a minimum of 75% (measured by credit contribution) of the continuously assessed components of the module.
8. For the Gateway modules attend at least 75% of the scheduled classes, including tutorials and supported study sessions.
9. For PH1502 attain a minimum of a grade 7.0 in the Astronomy component, and achieve at least a grade 4.0 for the Astronomy class test within that.
10. In module AS1002 (daytime Physical Universe) achieve at least grade 4.0 in the combined score for the class tests.
11. In module AS1901 (evening degree Physical Universe) complete and submit a minimum of 75% of the continuously assessed components of the module.
12. In module AS1901, achieve a grade of at least 4.0 in the combined score for the class tests.
13. For all modules with examinations, achieve a grade of at least 4.0 in the final examination. (This includes the case of students who fail to attend the examination without a satisfactory reason.)

For AS1101 to avoid a category FINAL academic alert a student must

1. Submit at least one of the two lab reports and get for it at least grade 4.0.
2. Attain at least grade 4.0 in the class test

Any justifiable reasons for absence from tutorials, workshops, labs, tests and exams should as soon as possible be presented by a self-certificate of absence on the University’s systems. In such cases students should also immediately contact the member of staff concerned in order to arrange how and when the missed work should be undertaken. Late justifications of missing work will be accepted only in exceptional circumstances.

Progression

Students are normally expected to gain at least grade 7 in all level-one modules for progression to level two.

Grade 7 does not indicate mastery of the material, and we expect our students to be aiming for a much higher grade than this. They may wish to note that all module grades will appear on their final degree transcript. The knowledge and skills developed and practised in level one maths and physics (and astrophysics where appropriate) are the foundations for level two study in this School.
Level-One Module Combinations

Entering at level one, 120 credits are usually taken, which often means that six modules are chosen. This can allow a wide range of combinations of modules that are consistent with a particular honours degree. A student may therefore branch out into subjects unrelated to their honours degree, out of interest.

Students wishing to take an honours degree in the School of Physics and Astronomy and starting at first level on the traditional route must take the modules

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH1011</td>
<td>Physics 1A</td>
</tr>
<tr>
<td>PH1012</td>
<td>Physics 1B</td>
</tr>
<tr>
<td>MT1001</td>
<td>Introductory Mathematics</td>
</tr>
<tr>
<td>MT1002</td>
<td>Mathematics</td>
</tr>
</tbody>
</table>

For the degrees in Astrophysics an additional requirement is to attend the module AS1001 Astronomy & Astrophysics 1. Also, those interested in taking a joint honours degree must attend the module(s) associated with the other subject involved.

The other modules making up the total of about six may be selected according to personal interests and timetabling. The choice is made at the start of the session after the student has met their Adviser of Studies and discussed all the options. Relevant factors to be considered at that time are the timetable and particular interests in second level subjects.

Students who enter the Gateway programme normally take in their year of entry PH1011, PH1501, PH1502, PH1012, MT1002, and PH1503.

1 The requirement to attend Introductory Mathematics is relaxed for students with a pass at grade B or better in SQA Advanced Higher Mathematics or GCE A-level Mathematics or with an equivalent qualification.
LEVEL-TWO MODULES

Co-ordinators:

Physics (PH2011, PH2012)
Dr Paul Cruickshank
Room 305 Tel 3296 e-mail pasc

Dr Cameron Rae
(laboratory)
Room 132c Tel 7314 e-mail cfr

Astrophysics (AS2001, AS2101)
Prof Andrew Cameron
Room 315 Tel 3147 e-mail acc4

The duties of the co-ordinator are to enrol students at the start of the academic session and to organise tutorials, workshops and assessment. The organisation and planning of the physics teaching laboratory is the responsibility of Dr Rae.

Second Level Physics

The two modules in physics at second level are intended to be equally suitable for two categories of students: (a) those who have entered the university at first level and who have taken appropriate first level modules in physics and mathematics, and (b) those who have taken direct entry from school or college into second level on the basis of good Advanced Higher, A-Level, IB, or equivalent passes including physics and mathematics. Full details are provided in the sections following. Physical topics are covered in greater depth than in the first level modules, but a high priority is given to continuity of treatment between topics at school and university levels.

Physics 2A and Physics 2B are given in the first and second semester respectively. Both are taken by students aiming for any of the degrees taught within the School. Students taking them should acquire

- The ability to reason through scientific concepts, to relate different concepts to one another and to solve qualitative and quantitative problems in the areas covered in the courses with a toolkit of problem-solving techniques.
- Laboratory skills, including the planning of experimental investigations, the use of modern test equipment, and the construction of electronic circuits.
- An appreciation of the value of learning of physics as a transformative experience in terms of motivated use (using physics beyond the course e.g. in everyday situations) and expansion of perception (seeing the world through the lens of physics).
In addition, students who have taken Physics 2A should be able to

- Identify a hierarchy of physical concepts and mathematical equations pertinent to mechanics, understanding which are the most fundamental and which follow from the fundamental laws.
- Embed previously acquired knowledge correctly within the more general framework of mechanics presented in the course and to be aware of the limits of applicability and connectivity of that previous knowledge and its relation to newly acquired knowledge.
- Solve elementary problems in mechanics, being confident in correctly identifying concepts that are applicable to each problem and to correctly visualize and analyse the problem in order to allow a solution to be formulated.
- Be confident in the use of vectors, their manipulation, their transformation to different coordinate systems, and to be clear about why vectors are necessary to properly understand some problems. This includes being able to visualise a problem in mechanics and then to correctly formulate the problem in vector notation in order to allow a solution to be arrived at. To be clear about when the reduction of a vector problem to a scalar one is possible or advantageous.
- Be confident in the use of Cartesian, polar and cylindrical coordinates, transformations between them, and to recognise which might be the most appropriate system to work in or which system might facilitate better insight into a problem or provide greater ease of solution.
- Apply concepts of classical mechanics to derive equations of motion for oscillatory systems.
- For undamped and simple cases of damped, forced and coupled oscillations, solve the resulting equations of motion and distinguish between general and specific solutions.
- Represent oscillatory motion physically, mathematically and graphically and explain the connections between these representations.
- Give numerous real-world examples of oscillatory systems and be able to model these systems using different representations.
- State the postulates of special relativity, and use them to derive the formulas for length contraction and time dilation.
- Use the Lorentz transformations to find the spacetime coordinates of events in different reference frames.
- Draw and interpret spacetime diagrams.
- Derive and apply the relativistic velocity addition formula.
- Give multiple examples of experimental evidence that supports the theory of special relativity.
- Use the relativistic definitions of energy and momentum, and transform these quantities between different reference frames.
- Identify invariant quantities in special relativity, distinguish invariants from conserved quantities, and use both concepts to determine the outcome of relativistic collisions.
• Give multiple examples of experimental evidence that support the theory of special relativity.
• State the zeroth, first and second laws of thermodynamics, explain their physical meaning and relate them to the thermodynamic identity.
• Solve problems involving thermal expansion, heat capacity and the transport of energy by heating in terms of the thermal properties of materials.
• Appreciate the differences between reversible and irreversible processes.
• State the ideal gas law and equipartition theorem and apply them to a variety of different thermodynamic problems.
• Distinguish between the concepts of heat and work and perform and explain basic calculations for these quantities for ideal gases under various conditions.
• Describe the essential assumptions and conclusions of the kinetic theory of ideal gases and apply these to problems involving ideal gases, including the Maxwell-Boltzmann speed distribution and its behaviour.
• Describe the difference between a macrostate and a microstate of a system and explain the links between multiplicity and the likelihood of a macrostate.
• State the thermodynamic and statistical definitions of entropy and explain the link between them, and relate changes in entropy to the reversibility of a process.
• Explain selected thermodynamic cycles, including the Carnot cycle and state an expression for the Carnot efficiency and the link between entropy and heat engines and refrigerators.

In addition, students taking Physics 2B should be able to

• Represent transverse and longitudinal waves and waves in one, two and three dimensions physically, mathematical and graphically and explain the connections between these representations.
• Explain similarities and differences between different types of mechanical waves, and between mechanical and electromagnetic waves.
• Use the concepts of wave interference, energy transport and the behaviour at boundaries to calculate wave properties.
• Compare and contrast classical and quantum descriptions of light and matter, give examples where one description or the other is valid, and summarise experimental evidence that support the use of either description.
• Use matrix algebra to describe two-level quantum systems, and to calculate probabilities for measurement outcomes.
• Solve the Schrödinger equation for simple 1-D systems, and use these wave functions to calculate expectation values and measurement probabilities for observables such as energy, position and momentum.
• State Coulomb’s Law and the Biot-Savart Law, Faraday’s Law and Lenz’s Law, the definitions of electric field, electric potential, capacitance, and inductance.
• Be able to use the above laws and definitions along with other physics and maths concepts to be able to model and solve a range of examples in electrostatics, magnetostatics, and electromagnetic induction.
• Be able to use the above ideas to justify aspects of DC circuit theory and apply this to solving simple electrical circuit problems.
• Be able to use the above definitions and laws to justify Gauss’ Law and Ampere’s Law, and use these two laws on a range of electrostatic and magnetostatic examples.
• Qualitatively describe how relativity and electrostatics can be brought together to explain electromagnetism.
• State descriptions of paramagnetism, diamagnetism, and ferromagnetism.
• Appreciate how the concepts in the electricity and magnetism course may be applied to particle accelerators, fusion tokomaks, atom traps, optical tweezers, modern electronics, and electrical engineering.
• State concepts of pn junctions, design circuits using AC circuit theory, build and investigate electronic circuits.
• Write and use computer code to run microcontrollers.

Physics 2A PH2011 (30 credits)

This module covers (i) mechanics – revision of Newton’s laws, force, energy, work and power, central forces, conservative forces, conservation laws, gravitational theory, rigid body dynamics, statics, and fluids in motion; (ii) oscillations in physics - simple harmonic motion, damped, forced and coupled harmonic oscillations; (iii) thermal physics – including elementary thermodynamics and the notion of entropy, (iv) the special theory of relativity – Einstein’s theory which unifies mechanics and electromagnetism and fundamentally modifies our notions of space and time, and (v) laboratory work.

Physics 2B PH2012 (30 credits)

This module comprises lectures on (i) quantum physics – the Schrödinger wave equation, and the solution of the energy eigenvalue equation for simple potentials in one dimension; (ii) electricity and magnetism – an elementary introduction to the electromagnetic field comprising electrostatics, magnetostatics, electromagnetic induction and DC circuit theory; (iii) waves in physics – waves on strings, energy flow, interference and beats, sound waves, Doppler effect, phase and group velocities, wave properties of light, including polarisation, interference and diffraction, and (v) laboratory work – includes theoretical and practical electronics, and programing microcontrollers.
Astronomy & Astrophysics 2 AS2001 (30 credits)

This module is designed to complement and extend the knowledge gained in the first level module in Astronomy and Astrophysics, and to prepare the way for the more advanced topics encountered in a study of the subject at honours level. All lectures are based on the principles of physics together with mathematical techniques acquired earlier. It is intended that students should gain

- a strengthening of the skills learned in AS1001/1101 and level 1 physics and mathematics modules,
- a deeper understanding of the structure and evolution of stars, the design of telescopes and instruments for astronomical observations over the entire electromagnetic spectrum, the dynamical interactions of stars in the Galaxy, and exoplanetary science.
- a greater ability to analyse astronomical data, including the use of image analysis tools in the Python language and other computer packages.

Astrophysics 2 AS2101 (15 credits)

This is as AS2001, but without the observational techniques lectures and the labs. This is normally taken only by accelerated entry students who are aiming for an astronomy degree, or by those who are more interested in theoretical aspects of astronomy and who take an additional level-two 15 credit maths module.

Entry Requirements

For entry to either of the second-level modules in Physics, it is normally necessary to have one of the following sets of qualifications:

(a) Passes in the first level modules

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH1011</td>
<td>Physics 1A</td>
</tr>
<tr>
<td>PH1012</td>
<td>Physics 1B</td>
</tr>
<tr>
<td>MT1002</td>
<td>Mathematics</td>
</tr>
</tbody>
</table>

It is expected that students will have a total of 120 credits in second year.

(b) School/college qualifications. Passes in Advanced Higher or A-Level Physics and Mathematics, both normally at grade A, or equivalent.

Note: these grade requirements are naturally consistent with those required for accelerated (direct) entry to second level – as discussed earlier. However, they may also be satisfied by a student who is not entering directly into second level, but wishes to take one or both of the level two physics modules in their first year of study. This possibility may be of particular interest to students taking certain joint-honours degrees for which the possibility of direct entry to second level does not arise.
For entry to the second level module in Astronomy & Astrophysics, an additional requirement is normally to have attended and passed the assessment in one of the first-level astrophysics modules AS1001 or AS1101.

Recommended Books

Physics
The introductory text for Physics 2A and 2B is Halliday, Resnick, and Walker, Principles of Physics, Extended 10th edition. This book does not go into as much depth as needed in some aspects of these modules, but is a useful reference and introduction. We recommend that this book should be purchased by all students on these modules. We recommend making this purchase at Blackwells bookshop in St Andrews, as doing so will give students for no additional charge access to the e-learning resources associated with this text. The ISBN number for the book with the "Wiley Plus" online resource is 9781118901601. This resource contains much useful stuff provided by the publisher, and may contain material tailored by us for use here. It is available only from Blackwell's bookshop in St Andrews, and is priced at £49.99. Given the large amount of online resource that comes with this purchase, this seems to us to be good value compared with buying the book elsewhere without the associated electronic resources. If you wish to reserve you may contact the shop on 01334 476367 or st.andrews@blackwell.co.uk. Students who bought this package for the 9th edition last session are invited to move to the electronic resource for the 10th edition at no charge. There are additional books that are recommended for consultation, and details of these can be accessed via the School’s Staff and Students web page.

Additional texts (available in the library) are:-
- *Physics for Scientists and Engineers: A Strategic Approach with Modern Physics* by R D Knight, Pearson, 2007,
- *Sears and Zemansky's University Physics* by H D Young and R A Freedman (12th edition, Addison-Wesley 2008 or other edition), and

These all provide wide coverage of the lecture courses, examples of how physics is applied in realistic situations, and many problems together with hints for solving them. However, neither these nor Halliday, Resnick and Walker go as deep into the topics as do some of the courses within our modules. We recommend the following additional books, but do not expect students to purchase them. There are multiple copies in the library.

Physics 2A

Physics 2B

Physics 2A and 2B
Useful reading for the labs is *Measurements and their Uncertainties: A Practical Guide to Modern Error Analysis* by I G Hughes and T P A Hase, Oxford (2010); though we do not recommend purchase as we think there are sufficient copies in the library to satisfy needs.

Astronomy and Astrophysics 2

Online Book Lists & Access to ebooks
Some books are available as ebooks to registered students. The links to booklists for AS and PH modules on the School’s staff and students web page will show you the full booklist, what is available online, and will provide links as appropriate.

Tutorials and Workshops
Tutorials form a valuable part of the learning process, help to develop communication skills and provide a forum in which to explore the "But what if...?" questions. In Physics 2A and 2B groups of about five students meet weekly with a tutor. These tutorials will provide an opportunity to discuss queries which arise on topics covered in the lectures. Students are expected to have attempted all designated tutorial problems in advance of the tutorial, and are required to bring their written solutions to the tutorial. They are also required, prior to the tutorial, to hand in a self-reporting form and answers to selected problems for marking. In addition, all students taking Physics 2A or Physics 2B will attend one workshop (problem solving class) each week, usually directly preceding their afternoon laboratory session.
Practical Work

The aims of the second level practical work in physics are to build on previously acquired experimental skills while at the same time provide the opportunity for students to:

- work toward desired experimental outcomes but with greater freedom to explore the relevant topic,
- broaden competences in the use of various forms of experimental and diagnostic instrumentation,
- explore subject matter covered in lectures and, particularly in electronics, new material as well,
- develop skills in scientific writing.

For the Physics 2A and 2B modules there will be one afternoon period of 2½ hours per week of practical work (groups will be arranged for Tuesday, Thursday and Friday at the start of the semester). We expect that most of the practical work should be completed within these normal laboratory hours, with just a little more time 'at home'. Prior to the start of a practical you should familiarise yourself with the upcoming work and attempt the set pre-lab questions, between lab afternoons you should produce graphs or complete other data analysis, and at the end you should finalise your analysis and write a short conclusion. At the start of 1st Semester (Physics 2A), the programme is slightly different for returning students and direct entry students, as direct entry students cover some of the lab work that has already been explored by our returning students, to gain a similar skill set and understanding of our expectations. In 2nd Semester (Physics 2B) all students will attempt the same programme of work. There is a choice of a physics experiment, followed by work in electronics and with microcontrollers. The module also includes a visit to our research laboratories and the opportunity to see how the skills being developed in the teaching laboratory are relevant to the experimental physics practitioner.

Astronomy & Astrophysics laboratory sessions are held from 3.00 - 5.30 pm on Tuesdays and Fridays, with students attending one or the other. There are optional evening meetings at the Observatory so that students may gain experience of observational work there. The aims of practical work in Astronomy & Astrophysics 2 are:

- to give confidence in working with and interpreting astronomical data,
- to instil an appreciation of the practicalities and excitement of making observations using research-grade telescopes,
- to enhance students' awareness of the ever-changing nature of the night sky.

In all second level modules where practical assignments are to be handed in for marking according to a specified timetable, penalties will be applied for lateness up to and including the loss of all marks in particularly serious cases. Please see later in this handbook under coursework penalties.
Mathematics revision

A good grasp of mathematics and its application to physics is essential for all students of physics and astrophysics. During the first few weeks of the Physics 2A module, some morning and afternoon sessions will be provided in which students will be given an opportunity systematically to revise and practise mathematical techniques which they have learned previously. In order to test for a good level of competence in these vital skills, students will have relevant mathematics questions in the Physics 2A exam. Mathematics tutorial exercises will continue through the session.

Monitoring and Assessment

The progress of students will be monitored in different ways. For Physics 2A and Physics 2B the weekly tutorials will entail some written work to be handed in for marking and feedback, and there will be a class test at about half way through the semester. Those taking Astrophysics 2 will be given a brief test on two occasions during the semester, intended to focus attention on material covered in recent lectures.

The examination for each module consists of one written paper of 3 hours at the end of the semester (2 hours for AS2101). The Physics 2A and Astronomy examination papers will continue to focus on material and techniques that should be familiar to students from the module’s work. The Physics 2B examination will contain a small amount of questioning that goes beyond the sort of things seen in tutorials and lectures, which is aimed at distinguishing between the very good and the truly excellent. This is a preface to the honours module examinations which routinely have a similar “sting in the tail” of the questions for the same reason. There will be no choice of questions within these papers.

Re-assessment (resit) examinations are held at the end of the summer. Resits are possible only for those who gain less than grade 7.0 but more than 4.0 in the module, and who have not been given a FINAL Academic Alert. The same exam may be taken as an honours entry exam for those who have obtained grades from 7.0 to 10.9. For any continuous assessment component specified in the reassessment below the mark is carried over from what was given during the semester.

A student who achieves grade 7.0 or better in both the practical component and in the examination will be awarded an overall grade for the module according to the formulae:

- **PH2011 & PH2012**: 60% examination, 10% class test, 25% labs, 5% active participation in lectures and pre-reading questions (Re-assessment same as above)
- **AS2001**: 60% examination, 15% class tests, 25% practicals (Re-assessment 75% examination, 25% practicals)
- **AS2101**: 80% exam, 20% continuous assessment (class tests) (Re-assessment 100% exam)
In modules that have both examination and continuously assessed components, a student who achieves grade 7.0 or better in one component but grade 6.9 or less in the other will be awarded an overall grade for the module which is determined by the formulae above but subject to a maximum grade 6.9.

Note that for honours entry for any degree in our School students will need good passes in PH2011 and PH2012, and also AS2*01 for astrophysics degrees. If a student for health or other reasons is permitted to defer an exam to the August diet, they may wish to note that should a resit be required this will normally be in the first examination diet for that module in the following session. There is more detail on these matters elsewhere in this handbook and on the University website.

Prizes and Medals

A medal is awarded in each module to the student who gains the highest grade. The J F Allen Prize is awarded to the most outstanding student (ie the highest mean module grade) in PH2011 and PH2012 taken together.

Academic Alerts

Academic Alerts are a way of helping students who are having trouble coping with their studies, such as missing deadlines for handing in work, or missing compulsory tutorials. The aim of the Alert system is to help students by flagging up problems before they seriously affect students’ grades. Academic Alerts will be issued by email from a member of staff within the School and will tell students what is wrong and what they are required to do (e.g. attend classes in future). The Alerts will also tell students what support the University can offer. If students do not take the action required they will get another Alert, and eventually will automatically get a grade of zero and will fail that module. The system is designed to help and support students in order to remedy any problems or issues before these lead to failing a module. Alerts will never appear on a student’s permanent transcript. For more information on Academic Alerts and details on how the categories work, see https://www.st-andrews.ac.uk/media/teaching-and-learning/policies/AcademicAlerts.pdf Guidance for students is available at http://www.st-andrews.ac.uk/media/teaching-and-learning/policies/AlertsStudentGuide.pdf

In all pre-honours modules in physics and astronomy, attendance at all classes (lectures, tutorials, workshops, and any specified practical work) is strongly recommended and in some cases is a requirement. In level two modules in this School, in order to avoid receiving a FINAL alert, a student must:

1. For Astronomy AS2001 and AS2101 attend a minimum of 75% of the tutorials.
2. For Astronomy AS2001 and AS2101 modules, achieve a grade of at least 4.0 in the combined score for the tests.
3. For Physics 2A and Physics 2B attend at least 7 of the 10 tutorials.
4. For Physics 2A and Physics 2B tutorials hand in on time the self-reporting form, and a serious attempt at the specified questions, for at least 7 of the 10 tutorials.

5. For Physics 2A and Physics 2B complete on time at least 8 sets of maths revision quiz responses with serious attempts.

6. For Physics 2A and Physics 2B, achieve a grade of at least 4.0 for the class tests.

7. For Physics 2A and Physics 2B, attend a minimum of 75% of the workshops.

8. Attend a minimum of 75% of any laboratory classes associated with the module, and achieve a grade of at least 7.0 for such laboratory work.

9. For all modules, achieve a grade of at least 4.0 in the final examination. (This includes the case of students who fail to attend the examination without a satisfactory reason.)

Any justifiable reasons for absence from tutorials, workshops, labs, tests and exams should be presented by a self-certificate of absence using the University’s systems. In such cases students should also immediately contact the member of staff concerned in order to arrange how and when the missed work should be undertaken. Late justifications of missing work will be accepted only in exceptional circumstances.
Physics and Astronomy, in common with most other worthwhile learning, needs study, practice, reflection, and further work in order for a student to come to terms with the material and gain the ability to use it (and to pass exams). In the same way that merely buying a textbook does not result in the owner being competent in using the material contained within it, merely turning up to lectures is not enough to understand and learn how to use ideas in physics and astronomy. There is a good deal of support available for learning here in terms of staff time, fellow students, online and paper-based resources, libraries and IT suites, teaching laboratories and lecture rooms, but it is up to every student to organise themselves to do what is necessary for their own learning.

We are aware that our students have all achieved great things in their previous studies. We are keen that such high achievement carries on here. Some students join us having not had to study particularly hard to pass their school exams; some of them may be at particular risk of not putting in the thought and effort needed in their university studies.

Keeping Up
Most lecture courses build concepts on top of understanding of previously described concepts. The most important thing in your study therefore may be to ensure that you keep up with the work covered. Lectures should be about listening, understanding, asking questions if necessary, and jotting down notes on what is happening. They should not deteriorate into a mere copying exercise! For that to be the case, you will need to be comfortable with the topics in one lecture before the next one occurs. At the end of each day of lectures, it is important to read over your notes, add additional comments where necessary when the ideas are still fresh in your mind, and sort out any difficulties you may have. Reading a textbook, discussing with a friend, or asking your tutor or lecturer can all help. As well as preparing you for the next lecture, this is likely to have the added benefit of aiding your memory of the topic for the end-of-module exams.

Please bear in mind that just because you have seen some topics before in previous study, you may not be as familiar with the ins and outs of the material as we would wish you to be. Here we are as much interested in where physical and mathematical relationships come from as in being able to use them. By understanding the ideas (and limitations) on which a relationship is built, we are better placed to know how and when to use it.

Practice
In a subject such as ours, memorising facts is not enough (though it is still important). We aim to develop an understanding of the subject, and how it can be applied. To help in this, we encourage you to try appropriate questions and problems that relate to the course. The questions in the tutorial sheets should help you practise your physics in the same way that any other skill has to be practised to improve it. Where you find difficulties, look again at the lecture notes, text books, or discuss with friends and tutors. Bring questions and queries to tutorials for discussion - that is what tutorials are provided for! Please make good use of
your tutors. If there are not enough questions on the tutorial sheets, then there are many more relevant questions in your course textbook.

We aim to teach our students to understand physics and astronomy, not just to pass exams. However, we realise that examination results are important, and it is useful to practice past exam questions. Students have access to past papers through iSaint. Example past exam solutions are available via the School’s website – Students and Staff page – Past Papers.

Responsibility
We hope you are here because you have an interest in physics and astronomy. There are many attractions to life as a student, but a sensible balance between study and recreation has to be found. To be a decent physicist or astronomer (even for those doing only one module) you will need to think about the science and get practice in applying it to different situations. The same comments apply to other subjects too.

Do you • like to be told exactly what to learn parrot-fashion
• read around the subject only in order to complete a particular assignment
• have more interest in getting a degree than in understanding the subject
• only attend tutorials because you get marked down if you don’t
• skip lectures if you’ve had a hard night?

or are you • trying to understand the material presented in your courses
• questioning what you are told and read
• enjoying having your understanding of the material challenged
• following up interesting topics
• preparing for tutorials, discussing and questioning what is being covered
• regularly attending lectures, asking questions when you feel appropriate?

We hope by this stage in your education you are moving strongly towards the latter.

Time Allocation
In addition to their attendance at scheduled classes, students are expected, through independent study, to work at augmenting their knowledge and understanding of the topics currently being taught in lectures. The QAA specifies that each unit of credit should correspond to 10 hours of study time for the average student at that level. This corresponds to a time commitment of around 40 hours per week for students taking the normal 120 credits per year. This means that the average student in the 20-credit level—one modules in the School should be allocating 13 hours a week to each module, and in the 30-credit level two modules 20 hours a week.

Forty hours a week of study should allow time for students to engage in other activities. While we realise that some students will wish or need to take paid employment, we suggest that during semester time this should not be so many hours that it impacts significantly on your abilities to study.
Self-directed Study

As one of the aims of our teaching programme is

“To develop the ability to be a self-directed learner, including fostering a healthy intellectual curiosity in this and other disciplines, and the ability to determine one’s own learning needs and to organise one’s own learning”

students are expected and encouraged to use information in the library and online to help their studies, as well as discussing physics with other students and with staff.

The School encourages students to form groups that can meet on a regular basis to discuss the work being covered in the teaching programme. The Group Study Area in the School is one place that may be used for such meetings.

If you encounter difficulties in understanding the lecture material which cannot easily be resolved, eg by reference to text books or discussion with a classmate or your tutor, you are encouraged to approach the lecturer concerned who will be pleased to deal with queries of this type.

GENERAL INFORMATION

Advisers of Studies

Your adviser of studies is available to be consulted on any academic queries which may arise during the year. They provide advice at the start of the session on selection of modules etc. Any subsequent change in module registration can only be done in consultation with your advisor and needs be completed within the first week from the start of term. Any changes thereafter would also need the permission of the pro-Dean.

Should you wish to see your adviser and they are not available, the School’s Director of Teaching may be able to assist with some queries.

Special Circumstances Affecting Assessment

Unfortunately, some students will suffer unavoidable circumstances that impede their academic performance. These may include illness or bereavement of a close family member. If you find yourself in this position, you should alert the School’s Director of Teaching as soon as possible. You can do this directly, or through Student Services. Depending on the circumstances it may be possible for the School to agree to defer a piece of assessment (including exams) to a later date. We give advice and links to University policies at http://www.st-andrews.ac.uk/physics/staff_students/illnessandexams.php
If an illness, for example, is expected to be longer term, it may be appropriate following a consultation with Student Services to apply to the relevant Registry Officer for a leave of absence and/or discounting of results from a semester or year.

Use of Calculators in Examinations

Students should note that the Senate has prohibited the use of certain calculators in examinations, ie those with programming, text, symbolic or graphical capabilities.

The 0-20 Grading Scale – Pre-Honours Physics and Astronomy

The University uses a 20-point Common Reporting Scale for module grades. Details of the Common Reporting Scale can be found at https://www.st-andrews.ac.uk/staff/teaching/examinations/scale/

The minimum grade for which credits for the modules are awarded (i.e. a bare pass) is 7.0. Please note that a grade of 7.0 is not regarded as a “good” grade, and this grade would not permit a level two student to progress into honours, and a set of grade sevens at honours level would not result in a student being awarded an honours degree. More details are provided by the University on its website.

In the School of Physics and Astronomy, normal practice is to assess submitted work such as answers to examination questions initially in terms of percentage marks. The module percentage mark is then calculated, and this is then converted to a grade by a mapping procedure.

The correspondence between percentages and grades, for all first and second level modules offered by the School of Physics and Astronomy, is as follows, though in principle this may be changed by the Module Board (including the external examiner) if necessary. We aim to avoid any need to change the mapping scheme used, and this happens relatively rarely. Please note that a different mapping is in place for honours modules).

Grade 5.0 corresponds to 40%. Between 0% and 40%, the grade is the percentage mark divided by 8, meaning that grade 7.0 (bare pass) corresponds to 45%.

Grade 17.0 corresponds to 70%. Between 40% and 70% there is a linear mapping of percentage marks onto grades. For example grade 11.0 corresponds to 55% and grade 15.0 to 65%. Grade 20.0 corresponds to 100%. Between 70% and 100% there is a linear mapping of percentage marks onto grades. For example grade 18.0 corresponds to 80%, and 19.0 to 90%.

This percentage to grade mapping for level one and two physics and astronomy is shown in a different format on the following page.
<table>
<thead>
<tr>
<th>%</th>
<th>Grade</th>
<th>Comment</th>
<th>%</th>
<th>Grade</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.3</td>
<td></td>
<td>55</td>
<td>11.0</td>
<td>Level 2 mean grades</td>
</tr>
<tr>
<td>15</td>
<td>1.9</td>
<td></td>
<td>56</td>
<td>11.4</td>
<td>needed for BSc Honours entry</td>
</tr>
<tr>
<td>16</td>
<td>2.0</td>
<td></td>
<td>57</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2.1</td>
<td></td>
<td>58</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2.3</td>
<td></td>
<td>59</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2.4</td>
<td></td>
<td>60</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2.5</td>
<td></td>
<td>61</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2.6</td>
<td></td>
<td>62</td>
<td>13.8</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2.8</td>
<td></td>
<td>63</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2.9</td>
<td></td>
<td>64</td>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3.0</td>
<td>Minimum for resit</td>
<td>65</td>
<td>15.0</td>
<td>Level 2 grades needed for MPhys Honours entry</td>
</tr>
<tr>
<td>25</td>
<td>3.1</td>
<td></td>
<td>66</td>
<td>15.4</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>3.3</td>
<td></td>
<td>67</td>
<td>15.8</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3.4</td>
<td></td>
<td>68</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3.5</td>
<td></td>
<td>69</td>
<td>16.6</td>
<td>Deans’ List threshold</td>
</tr>
<tr>
<td>29</td>
<td>3.6</td>
<td></td>
<td>70</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3.8</td>
<td></td>
<td>71</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3.9</td>
<td></td>
<td>72</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>4.0</td>
<td>Minimum for resit</td>
<td>73</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>4.1</td>
<td></td>
<td>74</td>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4.3</td>
<td></td>
<td>75</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>4.4</td>
<td></td>
<td>76</td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>4.5</td>
<td></td>
<td>77</td>
<td>17.7</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>4.6</td>
<td></td>
<td>78</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>4.8</td>
<td></td>
<td>79</td>
<td>17.9</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>4.9</td>
<td></td>
<td>80</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>5.0</td>
<td></td>
<td>81</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>5.4</td>
<td></td>
<td>82</td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>5.8</td>
<td></td>
<td>83</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>6.2</td>
<td></td>
<td>84</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>6.6</td>
<td></td>
<td>85</td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>7.0</td>
<td>Minimum for credit</td>
<td>86</td>
<td>18.6</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>7.4</td>
<td></td>
<td>87</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>7.8</td>
<td></td>
<td>88</td>
<td>18.8</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>8.2</td>
<td></td>
<td>89</td>
<td>18.9</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>8.6</td>
<td></td>
<td>90</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>9.0</td>
<td></td>
<td>91</td>
<td>19.1</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>9.4</td>
<td></td>
<td>92</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>9.8</td>
<td></td>
<td>93</td>
<td>19.3</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>10.2</td>
<td></td>
<td>94</td>
<td>19.4</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>10.6</td>
<td></td>
<td>95</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>11.0</td>
<td></td>
<td>96</td>
<td>19.6</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>20.0</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relevance of module grades

Although it is only honours module grades that contribute to the final degree classification, every module grade from level one onwards appears on a student’s transcript (the academic record sheet that potential employers or research supervisors will wish to see). It is thus clear to such people what level of attainment was achieved by an applicant in each year of their studies. The material covered in pre-honours maths and physics forms an essential foundation for honours physics. Thus you should aim for your learning and understanding of this material to be long term, and not a cram and forget. Fortunately, almost all students in this School work hard and aim for as high a grade as possible, and can show this to people in the future with satisfaction. Beware, however, that such good intentions are not uniformly present in students across the University.

For progression from level one to level two students on the traditional programme need to gain at least grade 7.0 in all their modules. Progression to honours is covered in a following paragraph.

Progression to Honours Physics and Astronomy

Entry to the physics honours degree programme requires good passes in level two physics and maths; for the astrophysics programme a good pass in level two astronomy is an additional requirement. 240 credits in pre-honours modules are normally required.

More details are given in appendix E of this handbook, but in general terms, those wishing to join the physics or astronomy honours programmes need to obtain level two grades in physics and maths modules of 11 or better at first sit for entry to BSc honours and 15 or better for entry to MPhys honours. Those who need exams from the resit/honours entry diet to reach the necessary grades to be permitted to gain qualified entry to BSc honours will need grades of 13.5 there. More details are available in Appendix E, the School’s Honours Handbook, and on the University website.

Deans’ List

The University has an annual award for academic excellence, promoted by the Deans of the University. Undergraduate students who achieve an outstanding overall result in the course of an academic year have their names inscribed on the Deans’ List, an honour which will also appear on their University transcript.

A student who meets all the criteria and who obtains a credit-weighted mean grade of 16.5 or above for the year will be recorded on the Deans’ List. The rules will be adapted for part-time students. Full details of all the criteria and conditions for the Deans’ List are available at: www.st-andrews.ac.uk/students/academic/awards/universityprizes/deanslist/
Absence from Classes or Examinations

If, for any reason, you are absent from a module, you should complete as soon as possible a Self Certificate for Absence (through e-Vision). There is usually no need to self-certify for missing a lecture, but any illness etc that affects assessed work or compulsory activity (e.g., tutorial, lab work, class test) must be noted. If you are absent from a small-group teaching session it is polite also to inform the tutor or demonstrator directly, please. If you miss assessed work or a compulsory activity you should communicate as soon as possible with the responsible person to determine what you should do to try to fill the learning or assessment objectives. You should be aware of and act upon the University policies on Academic Alerts and on Student Absence.

Absence from Examinations, which is a serious matter, due to illness or any other unavoidable reason should be reported by submitting a Self Certificate of Absence form (through e-Vision) as soon as you are able to do so, preferably before the examination is due to take place, and in any case no later than three days after the examination. You must also contact the School responsible for the module being examined in order to let them know and to request alternative arrangements. For this School please contact both physics@st-andrews.ac.uk and b.d.sinclair@st-andrews.ac.uk, or speak with one of the office staff on the phone 01334 463111.

Penalties for late submission and Word/Space Limit Issues

In those cases where work requires to be handed in for marking, a deadline will be defined in advance and one of a defined range of penalties will be applied for late submission, as per the University policy at the link below.

If no specific penalty is noted, then the “default” penalty of the School will be used, i.e., penalty A stated in the University policy. If you are unclear about the penalties associated with the late submission of any piece of assessed work, please contact the member of staff concerned.

Where word or page limits apply to a piece of work to be submitted, any penalties for not satisfying the criteria will be published to students in advance. If no specific penalty is noted, then the “default” penalty for this School is penalty A in the University policy.

www.st-andrews.ac.uk/media/teaching-and-learning/policies/penalties.pdf

For the case of laboratory work in Physics 1A, Physics 1B, Physics 2A, and Physics 2B, you are encouraged to manage your time effectively and ensure that all continuously assessed work is submitted for marking by stated deadlines. Lab books are normally expected to be handed in by the 5 pm on the day following the end of the set of lab afternoons. Marks will be deducted under a modified version of Scheme B of the University’s policy on late submission of work, where a valid explanation for failing to submit on time is not forthcoming. Scheme B as written will apply except in the cases of a
paper submission being due, or already overdue, for submission at 17:00 on a Friday. Where such a piece of work is submitted on the subsequent Monday before 10:00 (Physics 2 and Astro 2) or 12:00 (Physics 1) a 10% penalty (in addition to any penalties accrued before 17:00 on Friday) will be applied; this being largely consistent with a missed deadline on any other weekday. Submission after those times on the Monday will result in the application of the full penalty applicable under Scheme B, inclusive of Saturday and Sunday, i.e. 45% in addition to any penalties incurred before 17:00 on the Friday and subsequent to 17:00 on the Monday.

For the case of laboratory work in AS1X01 and AS2X01 lab books are normally expected to be submitted at the end of the lab session. Marks will be deducted under a modified version of Scheme B of the University’s policy on late submission of work, where a valid explanation for failing to submit on time is not forthcoming. Scheme B will apply except in the cases of a paper submission being due, or already overdue, for submission at 17:30 on a Friday. Where such a piece of work is submitted on the subsequent Monday before 09:30 there will be a 10% penalty, a 15% penalty for work submitted up until 17:30, and so on, on top of any penalty already gained by the Friday afternoon.

The Gateway modules PH1501, PH1502, PH1503 will all use University scheme B for any work that is submitted late.

Students are expected to be at written exams, class tests, and similar scheduled assessments, and will be given a zero if they do not attend without good reason.

Good Academic Practice, and Academic Misconduct

Academic integrity is fundamental to the values promoted by the University. It is important that all students are judged on their ability and performance, and no student will be allowed unfairly to take an advantage over others, to affect the security and integrity of the assessment process, or to diminish the reliability and quality of a University of St Andrews degree. All students are encouraged to exhibit good academic practice.

Academic misconduct includes the presentation of material as one’s own when it is not one’s own; the presentation of material whose provenance is academically inappropriate; and academically inappropriate behaviour in an examination or class test. Any work that is submitted for feedback and evaluation is liable for consideration under the University’s Good Academic Practice policy irrespective of whether it carries credit towards your degree. All work submitted by students is expected to represent good academic practice. “Not knowing” the regulations is not regarded as an acceptable excuse for academic misconduct.

You should be aware that the University takes academic misconduct offences extremely seriously, and penalties even for first offences can be severe.

All students should familiarise themselves with the University’s policy document at
Students who are unsure about the correct presentation of academic material should approach their tutors or lecturers, and may also contact CAPOD (learning@st-andrews.ac.uk) for advice and training.

Examples of academic misconduct at first and second level include the copying of part of another student's laboratory report or essay and passing it off as one's own work, copying material off the web without full acknowledgement, or copying someone else’s tutorial work and submitting it as your own.

If you ever need to use textual material verbatim from another source, its appearance in your work MUST be within inverted commas, and the source attributed beside that appearance. If you use a picture or diagram produced by someone else you must acknowledge the source in the caption to that picture.

The University’s procedure will be applied when instances of this or similar practices are detected. However students should carefully distinguish plagiarism from the assistance which they derive by discussing their work with others and, in some approved cases, carrying out their work in collaboration with others. The latter has genuine and legitimate value to the student and is encouraged, whereas plagiarism is at best “poor practice” and at worst “cheating”.

Feedback, and Access to Examination Scripts

You should be able to receive feedback on any piece of work that you are asked to submit. Part of the learning process is reflecting on this feedback, and making note of what aspects of your work process you wish to repeat in future assignments, and what improvements you should strive for in the future. If you are not clear from any written or oral comments what are the issues involved, please discuss this with the person who marked the work, or if this is not possible then with the relevant year coordinator. Work that is handed in for tutorials may be discussed in the relevant tutorial. Generic feedback to students after an exam is often posted on Moodle.

The policy of the University is that students may see their examination scripts after the assessment process has been completed, but only in the presence of a member of staff. The School aims to ensure that a staff member is present who can provide some feedback to student queries about the exam script. Students wishing to do this should contact their year coordinator in the first instance. Some groups within the School may have scheduled sessions for this to take place, and this will be announced to the classes concerned. Students are not allowed to take away an examination script, but may have a photocopy on payment of a fee to the University. Requests for this should be made to the School Office.
 Appeals and Complaints

The University is committed to ensuring as high a quality student experience as possible while studying at St Andrews. Occasionally things may go wrong and if you are experiencing a difficulty, or are dissatisfied with your academic experience, you should raise concerns as soon as possible. This allows effective resolutions to be worked out quickly. The University web site gives full information on how students should pursue a complaint or appeal, whether this concerns an academic or non-academic issue. One guiding principle is that students should attempt first to resolve the issue by an informal approach to the member of staff most directly concerned. If that fails, there are available further stages by which the matter may be pursued.

Within the School of Physics and Astronomy, any complaint or appeal should be addressed (after the informal approach has been tried) to the Director of Teaching or, if the Director of Teaching has already been involved, to the Head of School. Academic issues which could be the subject of an appeal or complaint include the marks awarded to assessed work, module grades, degree classification, or any allegation of harassment or bullying. www.st-andrews.ac.uk/students/rules/appeals/policy/

The Students' Association provides independent and confidential help and advice for students who are contemplating submitting an academic appeal, complaint or are having discipline proceedings taken against them. The Students' Association employs Iain Cupples, the Student Advocate (Education), whose job it is to ensure that you receive help with writing and submitting a submission. Iain can also accompany you to any hearing. He should be your first point of contact as soon as you feel you need help. Contact:- Iain Cupples, Student Advocate (Education) Telephone: 01334 462700 Email: inc@st-andrews.ac.uk

J F Allen Library

The JF Allen Library is a new and modern Library situated in the Physics and Astronomy building. It has a large number of comfortable, bright and quiet spaces for individual study, seven PCs and two rooms for group work.

There is a wide variety of up-to-date books available in both print and electronic format. Most books can be borrowed for 3, 7 or 28 days. It should be noted that the 28-day loan books are subject to a 7-day recall in the case of someone else wanting to borrow them. There is a self-issue and return machine which allows users to take out books themselves. If you have suggestions for additional physics and astronomy books that you think should be in the Library, please contact Dr Charles Baily (crb6@st-andrews.ac.uk) or email morebooks@st-andrews.ac.uk.

The Library’s online reading list service enables you to find and access the books, journal articles, and other resources you are expected to use for your module. By clicking links in online reading lists you can see straight away the location and availability of books in the
Library and get direct access to online resources. By logging in you can use the features which allow you to record what resources you’ve used, plan ahead, and create personal study notes. You can also export citations to Endnote from reading lists.

The Library subscribes to a large number of journals, most of which are available electronically. There are two printer/photocopier/scanners in the Library, operated by your matric card. You can make payments to your account online or by cash at the print credit money-loader located at the entrance to the Library.

To find out if your module has a reading list check the module in MMS or Moodle, or check the Online Reading List page on the Library website www.st-andrews.ac.uk/library/information/subjectguides/readinglists/

Online resources and information about books available can be searched for through the Library’s Physics & Astronomy page: http://libguides.st-andrews.ac.uk/panda. Past examination questions for the last few years are available via iSaint, and tutorial sheets and solutions for some modules are available on Moodle or MMS.

Library staff are present to deal with enquiries, Monday to Friday, between the hours of 10am and 2pm, though the library space is open until 8.30pm, Monday to Friday, with extended opening hours during revision weeks. Outside staffed hours Main Library staff can offer assistance by email, phone or chat http://www.st-andrews.ac.uk/library/contact/. Vicki Cormie (vhc1@st-andrews.ac.uk) is the Academic Liaison Librarian for Physics & Astronomy and is happy to be contacted for any help in using Library resources.

Work Spaces

The library is one obvious space in the building in which students may study; this it is intended to be a quiet area. The main concourse has group-study tables behind the cafeteria. These are equipped with large screen computer monitors, and it is hoped that groups of students may find this space useful for collaborative working and/or as a noisy self-study space. The main part of the concourse may be used as a study and/or social area. If seminar/tutorial rooms in the building are not booked out for teaching or meetings, it is normally possible to use these for work. The School office staff can provide information on availability.

Computing Facilities

The PC classroom next to the main entrance contains 34 PCs, data projection facilities, scanners and printers. All entrant students are encouraged to attend a familiarisation session on these facilities during the first weeks of the teaching year. Computers with large screens are available particularly for group-based work in the group study area behind the new cafeteria serving area. IT services operate many other clusters of computers and provide training in the use of hardware and software as well as the username and password required to log on the computers and for email.
Student-Staff Council, and School President

The Student-Staff Council has representatives for students in each level of study, postgraduate representatives, and members of staff. Its primary purpose is to serve as a forum for the discussion of academic issues, but it also oversees some of the social facilities available in the building and some student activities. The Council normally meets twice per semester. Meeting minutes, etc., may be accessed from the School’s Students and Staff web page. The Council is chaired by the School Student President, who is elected by students at the end of the previous session. For 2016-17 the School President is John Weaver. He may be contacted by email at physicspresident@st-andrews.ac.uk.

Student representatives are elected from honours year and subject groups, and normally hold office for the whole academic year. Representatives discuss teaching matters with the Year Co-ordinator, and report to meetings of the Council on the issues raised and the action taken. Although all students are welcome to discuss any issues directly with the relevant module coordinators or other members of teaching staff, they may also raise concerns or comments with their class reps or the School President for transmission to the relevant member of staff and/or Student Staff Council.

The Vacation Awards Committee disburses grants to students studying in the School who wish to pursue worthwhile projects during the Summer vacation. The Social Committee is responsible for the organisation of the Student/Staff dinner-dance and for some other social events which may take place during the year.

Diversity, Respect, Community

“The University of St Andrews is fully committed to respect and fair treatment for everyone, eliminating discrimination and actively promoting equality of opportunity and delivering fairness to all.”

www.st-andrews.ac.uk/hr/edi/equalityschemeandpolicies/equalitypolicy/

We are keen that this School continues to be a place where we all value and respect each other, and that we continue to have here a community of scholars that includes students and staff. The School’s Equality and Diversity Committee, which includes the School President, actively promotes this endeavour. Its web pages are linked to from the School’s Students and Staff web page. We are pleased to have “Juno Practitioner” status from the UK Institute of Physics following submission to them of details of our activities aiming to provide a workplace that is good for all. We are working towards Juno Champion status. Students with concerns or suggestions about equality or diversity are asked to speak to one of the committee.
Advice and Support

If you need advice, then you should feel free to contact any member of academic or secretarial staff in the School; they may be able to help you directly or should be able to tell you who to contact for particular advice. Please feel free to ask questions of your lecturers, tutors, lab demonstrators, or advisers of studies. For general academic and other queries your Adviser of Studies and the School’s Director of Teaching may both be good people to start with.

If you wish to speak with your Adviser of Studies and they are not available, the School’s Director of Teaching would be an appropriate alternative.

The professional staff in the Advice and Support Centre (Student Services) may be accessed via the reception desk at the ASC in North Street or by email at theasc@st-andrews.ac.uk. They are particularly well placed to help with problems affecting your studies or personal life, including problems with your course work, money, accommodation, health and disability, relationships, stress or anxiety. They also offer special help for international students. The majority of students seek advice from this service during their time in St Andrews. For more information see www.st-andrews.ac.uk/students/advice/

The School also provides advice on “Who can advise or help me?” on particular issues. This is on the main academic notice board and online via the student section of the School’s Students and Staff web page.

If there is a problem, please talk with the School or Student Services sooner rather than later if possible.

Information for students

Our School’s “Students and Staff” web page links to a range of useful information, including this pre-honours handbook, timetables, the student astronomical and physical societies, booklists, internship and career information, and academic issues that are influenced by both School and University policy. The online managed learning environments supported by the University and used in this School are MMS and Moodle.

The University’s “Current Students” page linked to the Home page of the University’s web site contains information on a wide variety of issues of interest to students. It includes for example details on academic regulations, codes of practice, employment, financial information, health, Library Services, student organisations, student services, student support and guidance, and access to the pre-advising system, previous examination papers and examination timetables.

If you are not sure, if you are worried, if you have any question, please ask a member of staff; we are happy to help.
Disabilities

If for disability reasons you require support for example; teaching and exam arrangements, please contact the Disability Team from the link below. Student Services provides support for a wide range of disabilities such as learning difficulties, visual and hearing impairments, mobility difficulties, Aspergers, mental health, long standing medical conditions and much more. www.st-andrews.ac.uk/students/advice/disabilities/

The School’s disabilities coordinator (Dr Bruce Sinclair) will liaise with any user of the building who has a disability. All those with a disability are requested to register with the University’s Student Services. Our aim is to try to make the same or equivalent facilities and experiences available to all. The School should be notified by Student Services of any recommended actions. However, this cannot always be immediate, and students are welcome to contact Dr Sinclair directly to advise him of their situation.

Most of the School is accessible to wheelchair users via the main entrance and the lift. If a person who is unable to use the stairs is on level three when there is a fire or other emergency, they should know that there is an evacuation chair in the stairwell outside room 301. They may be able to make their presence known to the janitor or the emergency services using the telephone there.

CAPOD Resources

The University’s Centre for Academic, Professional and Organisational Development (CAPOD) can provide additional input to help students develop the skills they need for their academic studies and beyond. There are three main ways:

1. Academic skills: You can book a 1:1 appointment with one of the CAPOD PhD tutors to help you improve your study skills (e.g. note-taking, time management, essay writing) or mathematics and statistics skills. Over 300 students make use of this service each year. There is also a drop-in pod for study skills in the Library every Thursday afternoon.

2. Professional skills: CAPOD runs the Professional Skills Curriculum (PSC) which is a development programme open to all students. It comprises over 30 skills topics which employers value. The topics are delivered via online workshops, lunchtime and evening lectures, and practical skills sessions. There is everything from leadership to resilience; influencing skills to public speaking; project management to networking. You are welcome to dip in and out of the programme as you wish, but if you complete a skills analysis, engage with 8 or more topics over an academic year and submit a reflective essay, you receive a certificate and your achievement is listed on your degree transcript. The PSC is endorsed by the Institute of Leadership and Management.
3. IT skills: CAPOD runs a programme of IT workshops for undergraduate students, including sessions on digital wellbeing, using apps to help you learn, and curating digital content. You also have the opportunity to self-study and sit exams for a Microsoft Office Specialist (MOS) certificate which is a globally recognised IT qualification. Taking part in MOS is free of charge for students at St Andrews.

There is more information on the CAPOD webpages www.st-andrews.ac.uk/capod/students or in the CAPOD office (Hebdomadar’s Block, St Salvator’s Quad).

English Language Support

The In-sessional English Language Service (iELS) offers free language development to matriculated students. The language development is offered in a number of forms, ranging from one-to-one tutorials to workshop programmes on, for example, writing, presenting, pronunciation, and grammar. We also have a wide range of online resources that you can study at your own pace. Further information is available on the iELS website and self-enrol Moodle page:
www.st-andrews.ac.uk/elt/iels/
moodle.st-andrews.ac.uk/moodle/course/view.php?id=241

If you would like further information, please contact us at iels@st-andrews.ac.uk.

Fees

There are no extra fees for labs and similar in the School. In line with University policy, the School expects students to purchase a number of textbooks as part of their study.

Health and Safety

The Head of the School of Physics and Astronomy, as part of his responsibilities for safety within the School and its buildings, requires all persons who enter the buildings for any purpose to take reasonable care of the health and safety of themselves and of others. The School’s safety policy is available via the “Students and Staff” page of the School website. The School Safety Officer is Mr Derek Milroy, ext 3198, dm219.

Anyone requiring First Aid during normal hours should contact one of the School first aiders: Mr Mark Clifford, Mrs Linda Cousins, Mr Paul Donaldson, Mr Steve King, Mr Mark Robinson, Mrs Sarah Webster, or ask any member of staff to do this for them.

First aid boxes are located at the main entrance, outside room 301, and at the lift entrances. An emergency evacuation chair for those with mobility difficulties is located in the corridor outside room 301.
Academic Session

The dates for the session, including examination periods, are published on the University’s web pages. Orientation Week is an integral part of the University semester, and students are expected to devote some time in this period to their studies. Many classes will run on the Thursday and Friday of Orientation Week in the same slots as timetabled in the rest of the semester. Independent Learning Week has no scheduled classes, but is a good chance to spend time consolidating your studies in the semester up to this time. There may also be work set to be done over that week. Students are expected to be available for the entire examination period.

Finding Referees

Students are likely to wish to use members of academic staff as referees in applications for summer work experience, etc. To this end, they are advised to cultivate a professional relationship with appropriate staff members. The more a member of staff knows about a student, the more useful a reference they can write. A student’s tutor may be in a good position to write a reference. Students should seek the permission of staff members to use them as referees before naming them. As staff members are not permitted to disclose information about students without explicit permission, potential referees may ask for written statements from students authorizing disclosure. It may be worth noting that student attitude and attainment through their time at St Andrews can be relevant, which may be another reason for working hard throughout the degree programme.
Appendix A: Some Staff Members

<table>
<thead>
<tr>
<th>Lecturing Staff</th>
<th>Room</th>
<th>ext</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baily Dr C</td>
<td>310</td>
<td>3127</td>
<td>crb6</td>
</tr>
<tr>
<td>Bonnell Prof I A</td>
<td>312</td>
<td>3140</td>
<td>iab1</td>
</tr>
<tr>
<td>Braunecker Dr B</td>
<td>336</td>
<td>1673</td>
<td>bhb</td>
</tr>
<tr>
<td>Brown Dr C T A</td>
<td>216</td>
<td>3129</td>
<td>ctab</td>
</tr>
<tr>
<td>Cameron Prof AC</td>
<td>315</td>
<td>3147</td>
<td>acc4</td>
</tr>
<tr>
<td>Cassettari Dr D</td>
<td>218</td>
<td>3109</td>
<td>crb6</td>
</tr>
<tr>
<td>Cornwell Prof J F</td>
<td>340</td>
<td>1676</td>
<td>jfc</td>
</tr>
<tr>
<td>Cruickshank Dr P</td>
<td>305</td>
<td>3296</td>
<td>pasc</td>
</tr>
<tr>
<td>Cyganowski, Dr C</td>
<td>335</td>
<td>1672</td>
<td>cc243</td>
</tr>
<tr>
<td>Dholakia Prof K</td>
<td>217</td>
<td>3184</td>
<td>kd1</td>
</tr>
<tr>
<td>Di Falco Dr A</td>
<td>342</td>
<td>3165</td>
<td>adf10</td>
</tr>
<tr>
<td>Dominik Dr M</td>
<td>242</td>
<td>3068</td>
<td>md35</td>
</tr>
<tr>
<td>Dunn Prof M H</td>
<td>214</td>
<td>3119</td>
<td>mhd</td>
</tr>
<tr>
<td>Gather Prof M</td>
<td>207B</td>
<td>3108</td>
<td>mcf6</td>
</tr>
<tr>
<td>Gillies Dr A D</td>
<td>231</td>
<td>3179</td>
<td>adg1</td>
</tr>
<tr>
<td>Hadfield Dr L J</td>
<td>304</td>
<td>3144</td>
<td>lj11</td>
</tr>
<tr>
<td>Helling Dr Ch</td>
<td>313</td>
<td>1666</td>
<td>ch80</td>
</tr>
<tr>
<td>Hooley Dr C A</td>
<td>206</td>
<td>3171</td>
<td>cah19</td>
</tr>
<tr>
<td>Horne Prof K D</td>
<td>315A</td>
<td>3322</td>
<td>kdh1</td>
</tr>
<tr>
<td>Jardine Prof M M</td>
<td>318</td>
<td>3146</td>
<td>mmj</td>
</tr>
<tr>
<td>Keeling Dr JMJ</td>
<td>213</td>
<td>3121</td>
<td>jmjk</td>
</tr>
<tr>
<td>Kemp Dr J</td>
<td>Music</td>
<td>2145</td>
<td>jk50</td>
</tr>
<tr>
<td>King Dr P D C</td>
<td>333</td>
<td>3067</td>
<td>pdk6</td>
</tr>
<tr>
<td>Koenig Dr F</td>
<td>204</td>
<td>3128</td>
<td>fewk</td>
</tr>
<tr>
<td>Kohne Dr A S</td>
<td>314</td>
<td>3195</td>
<td>ak81</td>
</tr>
<tr>
<td>Korolkova Dr N</td>
<td>311</td>
<td>3139</td>
<td>nvk</td>
</tr>
<tr>
<td>Lee Prof S L</td>
<td>318A</td>
<td>3143</td>
<td>sl10</td>
</tr>
<tr>
<td>Leonhardt Dr I</td>
<td>210</td>
<td>3103</td>
<td>i4</td>
</tr>
<tr>
<td>Lovett Dr B</td>
<td>205</td>
<td>3107</td>
<td>bwl4</td>
</tr>
<tr>
<td>Lovett Dr J</td>
<td>243</td>
<td>3120</td>
<td>jcl20</td>
</tr>
<tr>
<td>Mazilu Dr M</td>
<td>337</td>
<td>3210</td>
<td>mm17</td>
</tr>
<tr>
<td>Mortier Dr A</td>
<td>255</td>
<td>3053</td>
<td>am352</td>
</tr>
<tr>
<td>O’Faolain Dr L</td>
<td></td>
<td></td>
<td>jww1</td>
</tr>
<tr>
<td>Penedo Dr C</td>
<td>285</td>
<td>3106</td>
<td>jcp10</td>
</tr>
<tr>
<td>Rae Dr C F</td>
<td>132C3</td>
<td>7314</td>
<td>cfr</td>
</tr>
<tr>
<td>Samuel Prof IDW</td>
<td>207A</td>
<td>3114</td>
<td>idws</td>
</tr>
<tr>
<td>Scholz Dr A</td>
<td>311</td>
<td>1668</td>
<td>as110</td>
</tr>
<tr>
<td>Sicilia-Aguilar Dr A</td>
<td>255</td>
<td>3053</td>
<td>asa5</td>
</tr>
<tr>
<td>Sinclair Dr B D</td>
<td>221</td>
<td>3118</td>
<td>b.d.sincl</td>
</tr>
<tr>
<td>Smith Dr G M</td>
<td>219</td>
<td>2669</td>
<td>gms</td>
</tr>
<tr>
<td>Tojeiro Dr R</td>
<td>317</td>
<td>3115</td>
<td>rmfr</td>
</tr>
<tr>
<td>Turnbull Dr G A</td>
<td>215</td>
<td>7330</td>
<td>gat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecturing Staff</th>
<th>Room</th>
<th>ext</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahl Dr P</td>
<td>208</td>
<td>3122</td>
<td>gpw2</td>
</tr>
<tr>
<td>Wan Dr K K</td>
<td>340</td>
<td>1676</td>
<td>kw</td>
</tr>
<tr>
<td>Weijmans Dr A-M</td>
<td>334</td>
<td>2823</td>
<td>amw23</td>
</tr>
<tr>
<td>Wild Dr V</td>
<td>308</td>
<td>1680</td>
<td>vv8</td>
</tr>
<tr>
<td>Woitke, Dr P</td>
<td>306</td>
<td>1681</td>
<td>pw31</td>
</tr>
<tr>
<td>Wood Dr K</td>
<td>316</td>
<td>3116</td>
<td>kw25</td>
</tr>
<tr>
<td>Zhao Dr H</td>
<td>316A</td>
<td>3135</td>
<td>hz4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Office Staff</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aitken Ms L M</td>
<td>211</td>
<td>3100</td>
<td>lma1</td>
</tr>
<tr>
<td>Vithanage Dr D</td>
<td>211</td>
<td>1682</td>
<td>da16</td>
</tr>
<tr>
<td>Cousins Mrs L J</td>
<td>211</td>
<td>3111</td>
<td>ljc21</td>
</tr>
<tr>
<td>Nicholson Mrs P</td>
<td>210</td>
<td>3103</td>
<td>pkwm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Building, Safety and Technical Manager</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Milroy Mr D</td>
<td>232</td>
<td>3198</td>
<td>dm219</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching Laboratory Technicians</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Donaldson Mr P</td>
<td>324</td>
<td>3132</td>
<td>pt1</td>
</tr>
<tr>
<td>Clifford Mr M</td>
<td>324</td>
<td>3148</td>
<td>mac5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Head Janitor</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Muir Mr G J</td>
<td>3136</td>
<td>3136</td>
<td>jan-phys</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Aiders</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clifford Mr M</td>
<td>324</td>
<td>3132</td>
<td>mac5</td>
</tr>
<tr>
<td>Cousins Mrs L J</td>
<td>211</td>
<td>3111</td>
<td>ljc21</td>
</tr>
<tr>
<td>Donaldson Mr P</td>
<td>324</td>
<td>3148</td>
<td>pt1</td>
</tr>
<tr>
<td>King Mr S</td>
<td>132c2</td>
<td>7309</td>
<td>sk18</td>
</tr>
<tr>
<td>Robertson Mr M</td>
<td>130</td>
<td>3276</td>
<td>msfr</td>
</tr>
<tr>
<td>Webster Mrs S J</td>
<td>207</td>
<td>7332</td>
<td>sjw25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generic School Contact Details</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>School Office</td>
<td>211</td>
<td>3111</td>
<td>physics</td>
</tr>
</tbody>
</table>

School Office opening hours
Monday-Friday 08.45 – 13.00, 13.30 – 17.00

Photos of most staff members are available on the School’s web pages and on a poster board by the Main Entrance to the School
Key Contacts

<table>
<thead>
<tr>
<th>School Level</th>
<th>Name</th>
<th>Room</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head of School</td>
<td>Prof Graham Turnbull</td>
<td>215</td>
<td>hospanda</td>
</tr>
<tr>
<td>Deputy Head of School</td>
<td>Prof Ifor Samuel</td>
<td>209</td>
<td>idws</td>
</tr>
<tr>
<td>Director of Teaching</td>
<td>Dr Bruce Sinclair</td>
<td>221</td>
<td>b.d.sinclair</td>
</tr>
<tr>
<td>Director of Research</td>
<td>Prof Ifor Samuel</td>
<td>209</td>
<td>idws</td>
</tr>
<tr>
<td>Director of Postgrad Study</td>
<td>Dr Jonathan Keeling</td>
<td>213</td>
<td>physdopg</td>
</tr>
<tr>
<td>Secretary (teaching matters)</td>
<td>Mrs Linda Cousins</td>
<td>211</td>
<td>physics</td>
</tr>
<tr>
<td>School Senior Secretary</td>
<td>Ms Lesley Aitken</td>
<td>211</td>
<td>physics</td>
</tr>
<tr>
<td>01334 463100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advisers of Study

<table>
<thead>
<tr>
<th>Level</th>
<th>Name</th>
<th>Room</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-honours</td>
<td>Prof Moira Jardine</td>
<td>318</td>
<td>physadvs1</td>
</tr>
<tr>
<td></td>
<td>Dr Friedrich Koenig</td>
<td>210</td>
<td>physadvs3</td>
</tr>
<tr>
<td></td>
<td>Dr Graham Smith</td>
<td>219</td>
<td>gms</td>
</tr>
<tr>
<td>Junior Honours</td>
<td>Prof Ian Bonnell</td>
<td>312</td>
<td>physadvjh</td>
</tr>
</tbody>
</table>

Module and programme coordinators

<table>
<thead>
<tr>
<th>Programme</th>
<th>Coordinator</th>
<th>Room</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 1A</td>
<td>Dr Peter Woitke</td>
<td>306</td>
<td>pw31</td>
</tr>
<tr>
<td>Physics 1B</td>
<td>Dr Peter Wahl</td>
<td>208</td>
<td>gpw2</td>
</tr>
<tr>
<td>Gateway modules</td>
<td>Dr Lucy Hadfield</td>
<td>304</td>
<td>ljh11</td>
</tr>
<tr>
<td>Astronomy AS1001</td>
<td>Dr Aleks Scholz</td>
<td>331</td>
<td>as110</td>
</tr>
<tr>
<td>Astronomy AS1101</td>
<td>Dr Anne-Marie Weijmans</td>
<td>334</td>
<td>amw23</td>
</tr>
<tr>
<td>Physical Universe AS1002</td>
<td>Dr Martin Dominik</td>
<td>242</td>
<td>md35</td>
</tr>
<tr>
<td>Physical Universe AS1901</td>
<td>Dr HongSheng Zhao</td>
<td>316a</td>
<td>hz4</td>
</tr>
<tr>
<td>Physics 2A and 2B</td>
<td>Dr Paul Cruickshank</td>
<td>305</td>
<td>pasc</td>
</tr>
<tr>
<td>Astronomy AS2001 & 2101</td>
<td>Prof Andrew Cameron</td>
<td>315</td>
<td>acc4</td>
</tr>
</tbody>
</table>

Exam Office

<table>
<thead>
<tr>
<th>Role</th>
<th>Person</th>
<th>Room</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination Officer</td>
<td>Prof Steve Lee</td>
<td>318a</td>
<td>sl10</td>
</tr>
<tr>
<td>Disabilities Coordinator</td>
<td>Dr Bruce Sinclair</td>
<td>221</td>
<td>b.d.sinclair</td>
</tr>
<tr>
<td>Health and Safety Officer</td>
<td>Mr Derek Milroy</td>
<td>207</td>
<td>dm219</td>
</tr>
<tr>
<td>First Aid</td>
<td>Mrs Linda Cousins</td>
<td>211</td>
<td>physics</td>
</tr>
<tr>
<td>Deferred exams etc requests</td>
<td>Dr Bruce Sinclair</td>
<td>221</td>
<td>b.d.sinclair</td>
</tr>
<tr>
<td>Library rep</td>
<td>Dr Charles Baily</td>
<td>207</td>
<td>crb6</td>
</tr>
<tr>
<td>Study Abroad Adviser</td>
<td>Dr Charles Baily</td>
<td>207</td>
<td>crb6</td>
</tr>
<tr>
<td>Equality & Diversity Chair</td>
<td>Dr Vivienne Wild</td>
<td>308</td>
<td>vw8</td>
</tr>
<tr>
<td>School Student President</td>
<td>Mr John Weaver</td>
<td></td>
<td>physicspresident</td>
</tr>
</tbody>
</table>

48
APPENDIX B: SYLLABUSES OF FIRST LEVEL MODULES

PH1011 Physics 1A

Mechanics I (10 lectures) Dr Peter Woitke

Kinematics: Vectors and scalars. Motion with constant acceleration in a straight line and in two dimensions. Motion under gravity. Calculation of projectile trajectories, including maximum height, time of flight, range etc.

Dynamics: Newton’s laws of motion, force, mass, and acceleration, inertial reference frames. Work and energy, including potential energy, kinetic energy, and energy conservation.

Momentum: conservation of momentum in the absence of external forces, impulse of a force

Waves and Optics (16 lectures) Dr Bruce Sinclair

What is Light? Ideas of waves and particles, and how light is generated.

Ray Optics: Snell's law, and the use of a lens for imaging. Thin lens formula.

Properties of Matter (18 lectures) Prof Malte Gather

Atomic basis of matter: Atoms and molecules, Dalton's and Avogadro's hypotheses, atomic weight, the mole, Avogadro's number.

The condensed state: Estimates of atomic size and spacing. Interatomic forces. Elasticity: stress, strain, Hooke's law, Young's modulus, stored energy.

The nucleus: radioactivity, α, β and γ rays, exponential decay, half life, nuclear size. Isotopes, radioactive series. Protons and neutrons.

Particle physics: Accelerators and detectors. Classification of particles. Quarks, baryons, mesons and leptons.

Laboratory work and maths workshops

PH1012 Physics 1B

Mechanics II (9 lectures)

Circular motion: uniform circular motion, angular velocity, angular acceleration, centripetal acceleration

Newton's universal law of gravity: Analysis of satellite orbits, escape velocity, gravitational potential energy.

Rigid Bodies: Centre of mass, torque, angular momentum

Quantum Phenomena (16 lectures)

de-Broglie's matter waves: Diffraction of electrons, neutrons, etc. Wave function, probability and uncertainty. Heisenberg's uncertainty principle. Conceptual problems in quantum theory.

Schrödinger's Equation: Introduction and examples of its applications

Lasers and Optoelectronics (7 lectures)

Optoelectronic devices: transmitter and receiver system for optical communications.

Group Discovery Project (7 lectures equivalent)

In groups of typically four, students will explore a real-world problem applying and extending their knowledge of physics. Students will work self-guided in groups with introductory whole-class sessions and individual group facilitator sessions to review and aid their progress. At the end of the project, each group will give a brief presentation of their results to a panel and submit a written report.

Laboratory work
PH1501 Gateway - Maths for Physicists

This module aims to provide an introduction to a range of mathematical techniques required for physics and engineering degrees. Practice in the use of these techniques, and to demonstrate the application of these techniques to problems in physics and astronomy.

The topics covered include basic algebra (inequalities, functions, coordinate systems, algebraic manipulation, partial fractions), geometric sequences and series, techniques of differentiation and integration, and an introduction to solving differential equations. This module will also include a small computing component.

PH1502 & 1503 Gateway – Physics Skills 1A & 1B

Study Skills:
- An introductory overview of general study skills including time management, study and note taking, literature retrieval and evaluation, critical reading, effective revision skills, personal development and reflective feedback.

Physics skills:
- Including unit conversion, estimating and order of magnitude calculations, dimensional analysis, scientific writing, planning and execution of practical work.

Physics in context:
- General problem-solving in physics, numerical and analytical reasoning.

Astronomy Short Course:
- Solar System: structure, evolution and origin.
- Planets and life: Detection and properties of extrasolar planets: bias introduced by detection methods, introduction to astrobiology.
- Galaxies: Structure of the Milky Way galaxy; galaxy classification; galaxy formation and evolution.
- Stellar evolution: Stars and the Hertzsprung-Russell diagram; mass-luminosity relation; stellar evolution for high and low mass stars; stellar nucleosynthesis.
AS1001 Astronomy & Astrophysics 1

The Solar System (11 lectures)
Prof Moira Jardine

Brief historical introduction including basic observations and the calendar, leading to Kepler's laws of planetary motion and Newton's law of gravitation. Modern exploration of the Solar System and the study of the physical properties of the planets and their satellites - interior structure, atmosphere and climate, magnetospheres and interactions with the solar wind; physical properties of comets, meteors. The atmosphere of the Sun - photosphere, chromosphere, corona and the solar wind. Origin of the Solar System.

Stars and Elementary Astrophysics (11 lectures)
Dr Aleks Scholz

The Galaxy (11 lectures)
Dr Claudia Cyganowski

Cosmology (11 lectures)
Dr Rita Tojeiro

Practical Work

AS1101 Astrophysics 1 (condensed)
Dr Anne-Marie Weijmans

This module provides a streamlined (condensed) introduction to the science of astrophysics for students who have taken direct entry to Second level and who are planning to take level two astrophysics in the second semester of the same academic year. We will cover the essential items of observational astrophysics, and how radiation that we detect on Earth can be used to develop physical models of planets, stars, the Milky Way, other galaxies, and the Universe as a whole. Topics will include stellar evolution, composition and dynamics of galaxies, black holes, the need for dark matter, the expanding Universe, and the discovery of dark energy.
AS1002: The Physical Universe

Concepts in Astronomy (20 lectures) Dr HongSheng Zhao

The development of astronomy - the day and night sky, seasons, time and the calendar. The Copernican revolution. An inventory of the Solar System (planets, moons, comets, meteors, aurorae).

The stars as distant sources of light. The development of astrophysics - the properties of stars; stellar evolution and ages - red giants, white dwarfs, supernovae and black holes. The formation of stars, and planetary systems; modern searches for extra-solar planets.

An inventory of the Milky Way Galaxy - stars, gas and dust clouds; the size and age of the Galaxy. Other galaxies, their distances and distributions in space - clusters and voids. Peculiar galaxies and quasars. Nonluminous matter.

Cosmology. Olber's paradox. The redshifts of galaxies and Hubble's Law. The origin and evolution of the Universe, the formation of galaxies - big bang cosmology and problems. The formation and evolution of the chemical elements. Links between cosmology and particle physics.

Concepts in Physics (20 lectures) Dr Martin Dominik

The evolution of the scientist's view of the physical universe from a classical (19th century) to a quantum (20th century) perspective. The physics and philosophy of particle-wave duality, the limitations of the Uncertainty Principle and the role of Relativity.

The interplay of electronic and structural properties of materials. From semi-conductors to superconductors, and magnetism.

Concepts of nuclear physics. Fission and fusion and their peaceful and non-peaceful uses.

Particle physics and its links to cosmology. The fundamental particles and the "glue" that holds them together.

Physics in everyday life. The applications of physics from medicine to archaeology and from information technology to transport.

AS1901: The Physical Universe (Evening Degree)

Same syllabus as AS1002.
APPENDIX C: SYLLABUSES OF SECOND LEVEL MODULES

PH2011 Physics 2A

Mechanics (18 lectures) Prof Steve Lee

Gravitation: Newton's gravitational force law, potential energy for point source. Kepler's laws for planetary motion.

Statics: conditions for equilibrium. Indeterminate structures. Elasticity – Young’s modulus, shear modulus, bulk modulus.

Oscillations in Physics (7 lectures) Dr Graham Smith

Thermal Physics (12 lectures) Dr Paul Cruickshank

Special Relativity (9 lectures) Dr Charles Baily

Mathematics Revision Lectures, Workshops, and Practice Dr Irina Leonhardt

Trigonometry, dimensional analysis, complex numbers, vectors, functions, graphs, differentiation and integration, differential equations, and Taylor series.

Laboratory work Dr Cameron Rae

Explore aspects of physics in a practical manner, broaden competence in experimental and diagnostic instrumentation.

PH2012 Physics 2B

Electricity and Magnetism (21 lectures) Dr Bruce Sinclair

Basic electrostatics: Coulomb’s Law, electric field E, electric field from discrete and continuous distributions. Electric potential V, relation between E and V, examples.

Gauss’ law and capacitors: electric flux, Gauss’ law, use to solve fields around high-symmetry charge distributions, electrostatic shielding, capacitors, role of dielectric materials in capacitors.

Magnetic effects of currents: forces on charges moving in a magnetic field, Biot-Savart law and application to long straight wire and coil, force between two current carrying wires and the definition of the units of current, Ampere’s law and examples.

Electromagnetic Induction: Faraday’s law, Lenz’s law, induced electric fields, self and mutual inductance.

Electricity and magnetism unified via relativity (qualitative). Magnetic materials.

Classical Waves (12 lectures) Dr Paul Cruickshank

Quantum Physics (18 lectures) Dr Charles Baily

Infinite and finite depth square well. Extension of these ideas to quantum structure and spectra of atoms. Tunelling and alpha-decay.

Laboratory work including practical electronics
Dr Cameron Rae

Explore aspects of physics in a practical manner, broaden competence in experimental and diagnostic instrumentation. Explore the science and develop practical skills in electronics, develop computational skills through work with microcontrollers.

AS2001 Astronomy & Astrophysics 2

Stellar Structure and Evolution (12 lectures)
Dr Christiane Helling

The determination and distribution of stellar masses, radii and luminosities; the Hertzsprung-Russell diagram, mass-luminosity law and Vogt-Russell theorem. Sources of stellar energy, nucleosynthesis of hydrogen, helium and carbon. Star formation and evolution; the ages of star clusters; supernova events and the synthesis of heavy elements. Final states - white dwarfs, neutron stars (pulsars) and black holes. The evolution of binary stars - Roche lobe overflow, accretion discs and novae.

Exoplanetary Science (12 lectures)
Prof Andrew Cameron

Building on earlier work in the module, this course looks at the formation of planets in circumstellar accretion discs and the implication for internal structures of gas-giant and terrestrial-like planets. Theoretical models and observational techniques are discussed.

Galactic Astronomy (12 lectures)
Prof Keith Horne

This course will investigate the distribution and motions of stars, gas and dust within our own galaxy in order to determine its dimensions and overall properties. Properties of other galaxies will be discussed. Topics include: galactic coordinate systems; the solar motion and distribution of stellar velocities; differential galactic rotation, the rotation velocity at the Sun and the distance to the Galactic Centre; rotation curves of the Milky Way and other galaxies; galaxy masses and "dark" matter.

Observational Techniques (12 lectures)
Dr Claudia Cyganowski

Optical systems – images, aberrations, telescope designs. Atmospheric seeing; active and adaptive optics. Optical detectors – photomultipliers and CCDs.

Multiwavelength astronomy – infrared techniques, radio aperture synthesis, ultraviolet techniques. X-ray and gamma-ray detectors, instruments and telescopes.

Laboratory work

AS2101 Astronomy & Astrophysics 2 (condensed)

As AS2001, but without the laboratory work and the Observational Techniques lectures
APPENDIX D: TIMETABLE

Lectures are given at the times shown in the following table. All modules involve at least some additional activities such as laboratories, tutorials and workshops, the times of which will be announced.

First (Martinmas) Semester

<table>
<thead>
<tr>
<th>First level</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AS1001/1101</td>
<td>Astronomy and Astrophysics</td>
<td>11-12</td>
</tr>
<tr>
<td>PH1011</td>
<td>Physics 1A</td>
<td>12-1</td>
</tr>
<tr>
<td>PH1501, 1502</td>
<td>Gateway Modules</td>
<td>9-12, some afternoons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second level</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PH2011</td>
<td>Physics 2A</td>
<td>10-11</td>
</tr>
</tbody>
</table>

Second (Candlemas) Semester

<table>
<thead>
<tr>
<th>First level</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PH1012</td>
<td>Physics 1B</td>
<td>12-1</td>
</tr>
<tr>
<td>PH1503</td>
<td>Gateway Skills 1B</td>
<td>10-12, some afternoons</td>
</tr>
<tr>
<td>AS1002</td>
<td>The Physical Universe</td>
<td>11-12</td>
</tr>
<tr>
<td>AS1901</td>
<td>The Physical Universe (evening)</td>
<td>Evening</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second level</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PH2012</td>
<td>Physics 2B</td>
<td>10-11</td>
</tr>
<tr>
<td>AS2001/2101</td>
<td>Astronomy and Astrophysics 2</td>
<td>11-12</td>
</tr>
</tbody>
</table>
APPENDIX E: HONOURS DEGREE PROGRAMMES
The honours degrees currently available are set out below. Several of these are taught wholly within the School of Physics and Astronomy, the others being given jointly with the other Schools concerned. Full details of the content and structure of these honours programmes are contained in the separate booklet for Honours students.

BSc degrees
- Single Honours: Astrophysics, Physics
- Joint Honours: Physics and *one* of Computer Science, Philosophy, Mathematics

MSci degree
- Joint Honours: Physics and Chemistry

MPhys degrees
- Single Honours: Astrophysics, Physics, Theoretical Physics
- Joint Honours: Theoretical Physics and Mathematics

To obtain any one of these degrees it is necessary to include at second level PH2011 Physics 2A, PH2012 Physics 2B, MT2501 and MT2503 Mathematics and (for those wishing to do the Astrophysics degree) AS2001 or AS2101 Astrophysics 2. Those proceeding to a joint honours degree must also satisfy the requirements of the other subject.

The grades required in these modules for admission to each degree programme are set out in the Honours booklet and in the section below. Those wishing to join the physics or astronomy honours programmes need to be aware throughout level two of the need to obtain good grades in modules in order to be allowed to progress to an honours programme (as well as to get good understanding and knowledge to serve as a good foundation for advanced study).

After the end of the second semester, an offer of a place in one or more of the honours programmes will normally be made to those who have achieved the required grades in the relevant second level subjects. In most cases, a final decision by a student regarding choice of honours degree need not be made until the start of the third level or even later.
Honours Entry Requirements

Students entering honours are expected to have 240 pre-honours credits (for accelerated-entry students 120 of these may be “advanced standing” credits”).

Honours entry based on first assessment in modules - For entry based on first sitting of module exams the requirements are as follows:-

BSc Honours Programmes

Passes at mean grade 11 or better in PH2011 and PH2012 and
Passes at mean grade 11 or better in MT2501 and MT2503

For the BSc in Astrophysics, a grade 11 or better is also required in AS2001 or AS2101
For the joint degree programmes, also the requirements of the other School.

MPhys and MSci Programmes

Passes at mean grade 15 or better in PH2011 and PH2012 and
Passes at mean grade 15 or better in MT2501 and MT2503

For the MPhys in Astrophysics, a passing grade in AS2001 or AS2101 is included in the calculated mean with PH2011 and PH2012.
For the joint degree programmes, also the requirements of the other School.

Qualified honours entry (based on resit or honours entry exams late summer)
For qualified entry those who are eligible for reassessment with a grade in the required module(s) between 4.0 and 10.9 may take the module exam(s) in the late summer diet. If they then satisfy the University requirements (roughly - achieve a grade of 13.5 or more in each) then they may have qualified entry to BSc honours. Subsequent progression thresholds are the same as for automatic entry to honours.

There is no qualified entry to the MPhys honours programme, but those in the BSc honours cohort who achieve particularly well in JH may be permitted to move to the MPhys cohort (see the honours handbook).

Please see the University regulations at http://www.st-andrews.ac.uk/media/teaching-and-learning/policies/honsentry.pdf

DISCLAIMER

Some of the arrangements detailed in this booklet may have to be changed, and there may be errors. The School will endeavour to notify registered students of significant updates to this document.