Computer Science (CS) Modules

CS3050 Logic and Reasoning

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be confirmed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module covers the foundations of logic that are relevant to computer scientists, with an emphasis on automatic reasoning and decidability. Topics include propositional and predicate calculus, various proof techniques, and Gödel's incompleteness theorem.

Pre-requisite(s): Before taking this module you must pass CS2002 and (pass CS2101 or pass CS2001)

Anti-requisite(s): You cannot take this module if you take PY4612

Learning and teaching methods of delivery: Weekly contact: 2 lectures (x 10 weeks), 1 lab session (x 5 weeks)

Scheduled learning: 25 hours

Guided independent study: 121 hours

Assessment pattern: As defined by QAA:
Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%

As used by St Andrews:
40% Coursework, 60% Written Exam

Re-assessment pattern: 40% Coursework (using existing coursework), 60% Written Exam (using exam resit)

Module coordinator: Dr M J Nederhof

Module teaching staff: Dr Susmit Sarkar

CS3052 Computational Complexity

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module introduces Turing machines, non-determinism and pushdown automata, followed by study of decidability, simulation and the Halting problem. It builds upon finite state machines, context-free grammars and big-O notation from second year. The complexity classes P, NP, co-NP, NP-hard, etc., are described via analysis of SAT and graph isomorphism. Strengths and limitations of the abstract approach to complexity are discussed, followed by an in-depth introduction to practical complexity: flops, worst- and average-case analysis, approximate solutions, and case studies.

Pre-requisite(s): Before taking this module you must pass CS2002 and pass CS3050 and (pass CS2101 or pass CS2001)

Anti-requisite(s): You cannot take this module if you take MT3852

Learning and teaching methods of delivery: Weekly contact: 2 lectures (x 11 weeks) and fortnightly tutorial.

Scheduled learning: 28 hours

Guided independent study: 122 hours

Assessment pattern: As defined by QAA:
Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%

As used by St Andrews:
2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern: 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff: TBC

Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)
CS3099 Software Engineering Team Project

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>30</th>
<th>SCQF Level:</th>
<th>9</th>
<th>Semester:</th>
<th>Full Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not available to General Degree Students</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module gives a broad overview of software engineering, presenting the fundamental aspects as a collaborative professional activity including its concerns and approaches. Students apply these concepts and practices to a substantial software engineering project as part of a team. Each team specifies, plans, designs, implements, tests and documents a medium-sized software system, under the guidance of a member of staff. Cooperation within and between teams is essential in order to produce successful solutions. The module provides the background and practical experience for students to enter professional careers where they will be working on large-scale software projects in teams.

Pre-requisite(s): Before taking this module you must pass CS2002 and (pass CS2101 or pass CS2001)

Learning and teaching methods of delivery:
- **Weekly contact:** 1 lecture (x 10 weeks) and 4 seminars
- **Scheduled learning:** 34 hours
- **Guided independent study:** 266 hours

Assessment pattern:
- As defined by QAA:
 - Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%
- As used by St Andrews:
 - Coursework = 100%

Re-assessment pattern: No Re-assessment available

Module teaching staff: TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)

CS3101 Databases

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level:</th>
<th>9</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module introduces data models and modeling techniques, relational design and normalisation. It also examines a range of issues in database implementation, including indexing, query processing, transactions and recovery.

Pre-requisite(s): Before taking this module you must pass CS2002 and (pass CS2101 or pass CS2001)

Learning and teaching methods of delivery:
- **Weekly contact:** 2 lectures (x 11 weeks) and fortnightly tutorial.
- **Scheduled learning:** 28 hours
- **Guided independent study:** 122 hours

Assessment pattern:
- As defined by QAA:
 - Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
- As used by St Andrews:
 - 2-hour Written Examination = 60%, Existing Coursework = 40%

Re-assessment pattern:
- 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff: TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)
CS3102 Data Communications and Networks

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 9</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module covers the principles and practice of modern computer communications through studying network abstractions, protocols, architectures and technologies at all levels of the five-layer reference model.

Pre-requisite(s): Before taking this module you must pass CS2002 and pass CS2003 and (pass CS2101 or pass CS2001)

Anti-requisite(s): You cannot take this module if you take CS5020

Learning and teaching methods of delivery:

Weekly contact: 2 lectures (x 11 weeks) and fortnightly tutorial.

Assessment pattern:

- **As defined by QAA:**
 - Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
- **As used by St Andrews:**
 - 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:

- 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff:

TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)

CS3104 Operating Systems

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 9</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module examines the changing role of the operating system, the concept and implementation of process, the OS/hardware interface with regard to storage and protection, and the techniques developed to achieve safety and throughput in multitasking systems.

Pre-requisite(s): Before taking this module you must pass CS2002 and (pass CS2101 or pass CS2001)

Learning and teaching methods of delivery:

Weekly contact: 2 lectures (x 10 weeks) and fortnightly tutorial.

Assessment pattern:

- **As defined by QAA:**
 - Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
- **As used by St Andrews:**
 - 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:

- 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff:

TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)
CS3105 Artificial Intelligence

SCOTCAT Credits:	15	SCQF Level 9	Semester	2
Academic year:	2019/0			
Planned timetable:	To be arranged.			

This module examines the general features of the A.I. problem solving process, and in particular the various forms of heuristic, together with their implementation and case studies of real systems.

Pre-requisite(s): Before taking this module you must pass CS2002 and (pass CS2101 or pass CS2001)

Anti-requisite(s): You cannot take this module if you take CS5010

Learning and teaching methods of delivery: Weekly contact: 2 lectures (x 11 weeks) and fortnightly tutorial.

Assessment pattern:
- As defined by QAA: Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
- As used by St Andrews: 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern: 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff: TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)

CS3106 Human Computer Interaction

SCOTCAT Credits:	15	SCQF Level 9	Semester	1
Academic year:	2019/0			
Planned timetable:	To be arranged.			

This module covers the main aspects of Human Computer Interaction. Design guidelines, structured design methods and standards are studied, and practice is given in implementation and evaluation. Students gain experience of current interactive audio, visual and manipulative technologies.

Pre-requisite(s): Before taking this module you must pass CS2002 and (pass CS2101 or pass CS2001)

Anti-requisite(s): You cannot take this module if you take CS5040

Learning and teaching methods of delivery: Weekly contact: 2 lectures (x 10 weeks) and fortnightly tutorial.

Assessment pattern:
- As defined by QAA: Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
- As used by St Andrews: 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern: 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff: TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)
CS3301 Component Technology

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 9</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module provides students with understanding of current and emerging component technologies, focusing on the major themes of object-oriented and message-oriented middleware. The first theme examines the evolution of object-oriented programming into component models such as CORBA, COM, RMI and Java Beans. The second theme explores the emerging field of message-oriented middleware and of service-oriented computing models such as SOAP and REST.

Pre-requisite(s): Before taking this module you must pass CS2002 and (pass CS2101 or pass CS2001)

Learning and teaching methods of delivery:
Weekly contact: 2 lectures (x 11 weeks) and fortnightly tutorial.
Scheduled learning: 28 hours
Guided independent study: 122 hours

Assessment pattern:
As defined by QAA:
Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
As used by St Andrews:
2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:
2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff: TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)

CS3302 Data Encoding

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 9</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module explains the techniques used to encode data, emphasising the ideas of security and secrecy, error correcting capabilities, and data compression.

Pre-requisite(s): Before taking this module you must pass CS2002 and (pass CS2101 or pass CS2001)

Learning and teaching methods of delivery:
Weekly contact: 2 lectures (x10 weeks) and fortnightly tutorial.
Scheduled learning: 26 hours
Guided independent study: 124 hours

Assessment pattern:
As defined by QAA:
Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
As used by St Andrews:
2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:
2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff: TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)
CS4052 Logic and Software Verification

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Building on earlier coverage of elementary logic, this module motivates the need for formal methods and software verification approaches as model checking for guaranteeing the correctness of software systems. The module covers modelling, system property specification using temporal logics, and more applied approaches to software specification and verification through the use of model checkers. Model checkers such as SPIN and UPPAAL are used both in lectures and in practical work. Petri nets and program semantics are also explored. Software correctness is thus presented as a matter not of testing but of pre-execution verification through model checking.

Pre-requisite(s): Before taking this module you must pass CS3052

Learning and teaching methods of delivery:
- **Weekly contact:** 2 lectures (x 10 weeks) and fortnightly tutorial.
- **Scheduled learning:** 26 hours
- **Guided independent study:** 124 hours

Assessment pattern:
- As defined by QAA:
 - Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
- As used by St Andrews:
 - 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:
- 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff:
- TBC
- Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)

CS4098 Minor Software Project

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>Full Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module has the same content as CS4099, but with reduced scope appropriate for Joint Honours students.

Pre-requisite(s):
- Before taking this module you must pass CS3099

Anti-requisite(s):
- You cannot take this module if you take CS4099 or take CS4796

Learning and teaching methods of delivery:
- **Weekly contact:** Individual supervision
- **Scheduled learning:** 68 hours
- **Guided independent study:** 82 hours

Assessment pattern:
- As defined by QAA:
 - Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%
- As used by St Andrews:
 - Coursework = 100%

Re-assessment pattern:
- No Re-assessment available

Module teaching staff:
- TBC
- Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)
CS4099 Major Software Project

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>30</th>
<th>SCQF Level</th>
<th>10</th>
<th>Semester</th>
<th>Full Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module allows students to undertake a substantial software engineering project using professional development techniques. Each student designs, specifies and constructs a medium-sized software system, or undertakes a formal development and proof of such a system, under the guidance of a member of staff. The syllabus is designed on an individual basis.

Pre-requisite(s): Before taking this module you must pass CS3099

Anti-requisite(s): You cannot take this module if you take CS4098 or take CS4796

Learning and teaching methods of delivery: Weekly contact: Individual supervision.

Scheduled learning: 68 hours

Guided independent study: 232 hours

Assessment pattern:
- As defined by QAA: Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%

As used by St Andrews:
- Coursework = 100%

Re-assessment pattern: No Re-assessment available

Module teaching staff: TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)

CS4102 Computer Graphics

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>10</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module covers the fundamental concepts of computer graphics, and develops the ability to apply the concepts to the generation of realistic, synthetic images of 3D objects and scenes. On completion of the module, students should be competent to undertake many tasks in computer graphics, and should have an understanding of the theory underlying many of the relevant techniques.

Pre-requisite(s): Before taking this module you must pass CS2002 and (pass CS2001 or pass CS2101)

Learning and teaching methods of delivery: Weekly contact: 2 lectures (x 11 weeks) and fortnightly tutorial.

Scheduled learning: 28 hours

Guided independent study: 122 hours

Assessment pattern:
- As defined by QAA: Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%

As used by St Andrews:
- 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern: 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff: TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)
CS4103 Distributed Systems

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module covers the fundamentals of distributed systems, with reference to system models, programming languages, algorithmic techniques, concurrency and correctness.

Pre-requisite(s): Before taking this module you must pass CS3102

Learning and teaching methods of delivery: Weekly contact: 2 lectures (x 11 weeks) and fortnightly tutorial.

Assessment pattern:
- As defined by QAA: Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
- As used by St Andrews: 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern: 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff: TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord@st-andrews.ac.uk)

CS4105 Advanced Communication Networks and Systems

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>Lecture (Monday), Practical (Friday)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Students will be exposed to advanced topics at the forefront of computer networks and digital communication systems. The aim is to help students to understand, analyse, and critique state-of-the-art and emerging topics in communication systems such as the Internet, sensor networks, data centres, web applications, new/emerging architectures, and mobile/wireless systems. Topics covered on the course will include performance & measurement, operational aspects, deployment, systems development, security & privacy, evolution of technology.

Pre-requisite(s): Before taking this module you must pass CS3102 (or be able to demonstrate equivalent knowledge, understanding and experience).

Learning and teaching methods of delivery: Weekly contact: 2x lectures (10 weeks in S1, excluding ILW), 1x "other" (discussion, Q&A, lab sessions, etc, as appropriate to the topic area, 8 weeks)

Assessment pattern:
- As defined by QAA: Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
- As used by St Andrews: 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern: 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff: Prof Saleem Bhatti
CS4201 Programming Language Design and Implementation

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module studies the design and implementation of programming languages. Topics include language design principles, abstract syntax, evaluation mechanisms, binding, type systems, polymorphism, data encapsulation, exceptions, formal definition of programming languages, compiling techniques, abstract machine design, run-time systems and garbage collection.

Pre-requisite(s):
Before taking this module you must pass CS2002 and (pass CS2001 or pass CS2101)

Learning and teaching methods of delivery:
Weekly contact: 2 lectures (x 10 weeks) and fortnightly tutorial.

Assessment pattern:
As defined by QAA:
- Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%

As used by St Andrews:
- 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:
- 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff:
TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)

CS4202 Computer Architecture

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module studies the principles and technology of modern computer architectures, with particular emphasis on performance and acceleration. Topics include the CPU, memory, interconnect architectures, performance concepts and programming models.

Pre-requisite(s):
Before taking this module you must pass CS3104

Learning and teaching methods of delivery:
Weekly contact: 2 lectures (x 10 weeks) and fortnightly tutorial.

Assessment pattern:
As defined by QAA:
- Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%

As used by St Andrews:
- 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:
- 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff:
TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)
CS4203 Computer Security

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module introduces the basic concepts of computer security and cryptography, common attacks and defences against them, and relevant legal and policy frameworks.

Pre-requisite(s): Before taking this module you must pass CS2002 and (pass CS2001 or pass CS2101)

Learning and teaching methods of delivery:

- **Weekly contact:** 2 lectures (x 10 weeks) and fortnightly tutorial.
- **Scheduled learning:** 26 hours
- **Guided independent study:** 124 hours

Assessment pattern:

- **As defined by QAA:**
 - Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%

- **As used by St Andrews:**
 - 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:

- 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff:

TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)

CS4204 Concurrency and Multi-Core Architectures

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module presents the key concepts of programming multi-core/many-core and other parallel architectures, ranging from the identification and use of parallel patterns; the use of structured parallelism to implement task and data parallelism; key implementation issues, including task identification, granularity, scheduling, threads, garbage collection, task placement, locality; performance monitoring and debugging.

Pre-requisite(s):

Before taking this module you must pass CS3052 and pass CS3104

Learning and teaching methods of delivery:

- **Weekly contact:** 2 lectures (x 11 weeks) and fortnightly tutorial.
- **Scheduled learning:** 28 hours
- **Guided independent study:** 122 hours

Assessment pattern:

- **As defined by QAA:**
 - Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%

- **As used by St Andrews:**
 - 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:

- 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff:

TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)
CS4302 Signal Processing: Sound, Image, Video

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module covers the fundamentals of signal processing and perception: investigating how sounds, images and videos can be processed and analysed alongside the fundamentals of how the human auditory and visual perception system functions (e.g., how your eyes and ears work with your brain). Concepts such as data encoding and compression are provided with practical application of understanding signals in terms of their frequency components, relating to their time and spatial components (e.g., audio frequency components or the spatial frequency of an image). Using a programming language regularly used in image and signal processing, students will gain practical skills in applying concepts to real-world problems, including using Fourier transforms, to calculate the frequency distribution in audio files, and undertake tasks such as reducing noise from signals. This module is useful for those wanting to move into the fields of computer vision or data analysis.

<table>
<thead>
<tr>
<th>Learning and teaching methods of delivery:</th>
<th>Weekly contact: 2 lectures (x 10 weeks) and fortnightly tutorial.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scheduled learning: 26 hours Guided independent study: 124 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment pattern:</th>
<th>As defined by QAA: Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As used by St Andrews: 2-hour Written Examination = 60%, Coursework = 40%</td>
</tr>
</tbody>
</table>

| Re-assessment pattern: | 2-hour Written Examination = 60%, Existing Coursework = 40% |

| Module teaching staff: | TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk) |

CS4303 Video Games

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module builds on the general-purpose programming abilities acquired earlier, introducing games-specific techniques and material. Computer games are now a bigger industry than films, yet they are continuing to develop. While the budget for a new game may rival that of a Hollywood blockbuster, there is also a growing demand for lower octane coffee-break games that can be accessed for short periods in a browser, and for games that can be played on-the-go with a mobile device. Games programming skills are developed through lectures and laboratories, culminating in the creation of actual games.

<table>
<thead>
<tr>
<th>Pre-requisite(s):</th>
<th>Before taking this module you must pass CS2002 and (pass CS2001 or pass CS2101)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Learning and teaching methods of delivery:</th>
<th>Weekly contact: 2 lectures (x 10 weeks) and fortnightly tutorial.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scheduled learning: 26 hours Guided independent study: 124 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment pattern:</th>
<th>As defined by QAA: Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As used by St Andrews: Coursework = 100%</td>
</tr>
</tbody>
</table>

| Re-assessment pattern: | Oral Examination = 100% |

| Module teaching staff: | TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk) |
CS4402 Constraint Programming

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module introduces constraint-based reasoning as a powerful mechanism for knowledge representation and inference. It provides a thorough grounding in the constraint satisfaction/constrained optimisation problem formalism, and covers both basic techniques for implementing constraint solvers and the use of advanced techniques with a modern solver.

Pre-requisite(s): Before taking this module you must pass CS2002 and (pass CS2001 or pass CS2101)

Learning and teaching methods of delivery:

- Weekly contact: 2 lectures (x 11 weeks) and fortnightly tutorial.
- Scheduled learning: 28 hours
- Guided independent study: 122 hours

Assessment pattern:

- As defined by QAA: Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
- As used by St Andrews: 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern: 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff: TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)

CS4499 Computer Science (Special Subject)

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module is a guided reading module on any aspect of Computer Science not covered by other available modules, intended only for students in the School of Computer Science for whom exceptional timetable arrangements (such as a semester or year of absence) unduly restrict the availability of modules.

Pre-requisite(s): Consent from the head of school required.

Learning and teaching methods of delivery:

- Weekly contact: 1-hour supervision meeting.
- Scheduled learning: 11 hours
- Guided independent study: 139 hours

Assessment pattern:

- As defined by QAA: Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%
- As used by St Andrews: Coursework = 100%

Re-assessment pattern: No Re-assessment available

Module teaching staff: TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)
CS4796 Joint Project (30cr)

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>30</th>
<th>SCQF Level: 10</th>
<th>Semester</th>
<th>Full Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Available only to students in the Second year of the Honours Programme, who have completed the Letter of Agreement, downloadable from https://www.st-andrews.ac.uk/coursecatalogue). No student may do more than 60 credits in Dissertation or Project modules.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The aim of the project is to develop and foster the skills of experimental design, appropriate research management and analysis. The topic and area of research should be chosen in consultation with the supervisors in order to determine that the student has access to sources as well as a clear plan of preparation.

Pre-requisite(s): Student must have a letter of agreement. Before taking this module you must pass CS3099

Learning and teaching methods of delivery:
- **Weekly contact:** As per Letter of Agreement.
- **Scheduled learning:** 68 hours
- **Guided independent study:** 232 hours

Assessment pattern:
- **As defined by QAA:** Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%
- **As used by St Andrews:** Coursework = 100%

Re-assessment pattern: No Re-assessment available

Module teaching staff: TBC

CS5010 Artificial Intelligence Principles

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level: 11</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module covers foundational knowledge of Artificial Intelligence (AI). The module gives an overview of AI and its philosophy. It covers fundamental principles in AI: logical reasoning, reasoning in the presence of uncertainty, and machine learning. It shows how search is used to solve a variety of problems in AI. Notions such as agency and uncertainty in AI are covered. Finally, the philosophy of AI in practice and the philosophical problems in AI are shown.

Pre-requisite(s):
- Ug: before taking this module you must (pass CS2001 or pass CS2101) and pass CS2002

Anti-requisite(s):
- Ug: you cannot take this module if you take CS3105

Learning and teaching methods of delivery:
- **Weekly contact:** Lectures, seminars, tutorials and practical classes.
- **Scheduled learning:** 25 hours
- **Guided independent study:** 125 hours

Assessment pattern:
- **As defined by QAA:** Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
- **As used by St Andrews:** 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:
- 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff: TBC

TBC Module coordinator(s): Honours Coordinator - Computer Science (hons-coord-cs@st-andrews.ac.uk)
CS5011 Artificial Intelligence Practice

SCOTCAT Credits:	15	SCQF Level: 11	Semester: 1
Academic year:	2019/0		
Availability restrictions:	Not automatically available to General Degree students		
Planned timetable:	To be arranged.		

This module covers practical design and implementation of Artificial Intelligence (AI). It provides grounding in AI technique, covering techniques in the areas of AI reasoning, planning, doing, and learning. Finally, it is shown how to implement AI ideas in software and how to evaluate such implementation.

Pre-requisite(s):
- Ug: before taking this module you must pass CS3105 or pass CS5010

Co-requisite(s):
- Pgt: you must also take CS5001 and take CS5010

Learning and teaching methods of delivery:
- Weekly contact: Lectures, seminars, tutorials and practical classes.
- Scheduled learning: 25 hours
- Guided independent study: 125 hours

Assessment pattern:
- As defined by QAA: Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%
- As used by St Andrews: Coursework = 100%

Re-assessment pattern:
- No Re-assessment available

Module teaching staff:
- TBC Module coordinator(s): Director of Postgraduate Teaching - Computer Science
dopgt-cs@st-andrews.ac.uk

CS5012 Language and Computation

SCOTCAT Credits:	15	SCQF Level: 11	Semester: 2
Academic year:	2019/0		
Availability restrictions:	Not automatically available to General Degree students		
Planned timetable:	To be arranged.		

This module covers the major aspects of natural language processing and speech understanding, including computational syntax, computational semantics, discourse processing, machine translation and speech recognition.

Pre-requisite(s):
- Before taking this module you must pass CS5010 or pass CS3052

Learning and teaching methods of delivery:
- Weekly contact: Lectures, seminars, tutorials and practical classes.
- Scheduled learning: 25 hours
- Guided independent study: 125 hours

Assessment pattern:
- As defined by QAA: Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
- As used by St Andrews: 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:
- 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff:
- TBC Module coordinator(s): Director of Postgraduate Teaching - Computer Science
dopgt-cs@st-andrews.ac.uk
CS5014 Machine Learning

- **SCOTCAT Credits:** 15
- **SCQF Level:** 11
- **Semester:** 2
- **Academic year:** 2019/0
- **Availability restrictions:** There are 80 spaces available on this module. If necessary, a ballot will be held to select students for the module.
- **Planned timetable:** To be arranged.

Machine Learning enables computers to improve automatically with experience. A growing number of algorithms are being used to predict outcomes using patterns in collected data. This module covers the essential theory and algorithms, including mathematical foundations, and methodological approaches. It covers a variety of regression, classification and unsupervised approaches. It consists of lectures, and practical components with unassessed exercises and assessed practical coursework assignments with a final exam.

- **Anti-requisite(s):** You cannot take this module if you take ID5059

Learning and teaching methods of delivery:
- **Weekly contact:** 2 lectures (x 11 weeks), 1 lab session (x 5 weeks).
- **Guided independent study:** 127 hours
- **Scheduled learning:** 27 hours

Assessment pattern:

- **As defined by QAA:** Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
- **As used by St Andrews:**
 - 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:

- 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff:

TBC Module coordinator(s): Director of Postgraduate Teaching - Computer Science (dopgt-cs@st-andrews.ac.uk)

CS5020 Principles of Computer Communication Systems

- **SCOTCAT Credits:** 15
- **SCQF Level:** 11
- **Semester:** 1
- **Academic year:** 2019/0
- **Availability restrictions:** Not automatically available to General Degree students
- **Planned timetable:** To be arranged.

This module aims to equip students with a deep knowledge of fundamental concepts and terminologies of computer communication systems (CCS). It will illustrate fundamental principles with reference to widely-used systems and technologies for CCS and enable students to use high level tools for networked systems configuration, exploration and management of CCS. Students will also be made aware of security and privacy principles and how they are used in CCS.

Pre-requisite(s):

- Undergraduate - before taking this module you must pass CS2002 and (pass CS2001 or pass cs2101)

Anti-requisite(s):

- You cannot take this module if you take CS3102

Learning and teaching methods of delivery:

- **Weekly contact:** 2 lectures (x 10 weeks), 1 tutorial (x 6 weeks)
- **Guided independent study:** 121 hours
- **Scheduled learning:** 26 hours

Assessment pattern:

- **As defined by QAA:** Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
- **As used by St Andrews:**
 - 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:

- 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff:

TBC Module coordinator(s): Director of Postgraduate Teaching - Computer Science (dopgt-cs@st-andrews.ac.uk)
CS5030 Software Engineering Principles

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level:</th>
<th>11</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module examines the key concepts in small and large-scale software development. Project management is explored, along with the processes involved in developing system requirements, functionality and high-level descriptions necessary to guide the development of, and assess, a working system.

Pre-requisite(s): Undergraduate - undergraduate - before taking this module you must pass CS2002 and (pass CS2001 or pass cs2101)

Learning and teaching methods of delivery: Weekly contact: Lectures, seminars, tutorials and practical classes.

Assessment pattern: As defined by QAA: Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%

As used by St Andrews: 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern: 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff: TBC Module coordinator(s): Director of Postgraduate Teaching - Computer Science (dopgt-cs@st-andrews.ac.uk)

CS5031 Software Engineering Practice

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level:</th>
<th>11</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module introduces advanced software engineering methods supporting the development of complex, composite software systems with an emphasis on software configuration management, reuse and test-driven development practices. It examines software reuse at different levels of scale, from software libraries and components to service-oriented architectures and discusses how reuse presents both challenges and opportunities for the development of quality software. A key process in today's software engineering practice is testing; the module introduces testing methods that complement the different scales of reuse-oriented development, from unit-level testing to integration testing and system-level testing. Students work on a project to design, implement and test a complex, distributed application to put the content of the lectures into practice. Reference is made to the content of the co-requisite Software Engineering Principles module where appropriate, so that students learn how the practices studied fit into a larger software engineering lifecycle.

Pre-requisite(s): Undergraduate - before taking this module you must pass CS2002 and (pass CS2001 or pass cs2101). Postgraduate: you must pass CS5001 and CS5030

Anti-requisite(s): You cannot take this module if you take CS3099

Co-requisite(s): Pgt: you must also take CS5030 and take CS5001

Learning and teaching methods of delivery: Weekly contact: Weekly lectures, seminars, tutorials and practical classes.

Assessment pattern: As defined by QAA: Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%

As used by St Andrews: Coursework = 100%

Re-assessment pattern: No Re-assessment available

Module teaching staff: TBC Module coordinator(s): Director of Postgraduate Teaching - Computer Science (dopgt-cs@st-andrews.ac.uk)
<table>
<thead>
<tr>
<th>Module Name</th>
<th>SCOTCAT Credits</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>Academic year</th>
<th>Availability restrictions</th>
<th>Planned timetable</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS5032 Critical Systems Engineering</td>
<td>15</td>
<td>SCQF Level 11</td>
<td>1</td>
<td>2019/0</td>
<td>Not automatically available to General Degree students</td>
<td>To be arranged.</td>
</tr>
<tr>
<td>CS5033 Software Architecture</td>
<td>15</td>
<td>SCQF Level 11</td>
<td>2</td>
<td>2019/0</td>
<td>Not automatically available to General Degree students</td>
<td>To be arranged.</td>
</tr>
</tbody>
</table>

The aim of this module is to provide students with an understanding of the concepts and development techniques used for critical, socio-technical systems. When students have completed this module they will: understand the notion of system dependability and the key characteristics of dependable systems; understand the specialised software engineering techniques that may be used to ensure dependable system operation; have practical experience of applying some of these techniques in systems specification, design or implementation.

Pre-requisite(s):
Undergraduate - before taking this module you must pass CS3099

Learning and teaching methods of delivery:
Weekly contact: Weekly lectures, seminars, tutorials and practical classes.
Scheduled learning: 25 hours
Guided independent study: 125 hours

Assessment pattern:
As defined by QAA:
Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
As used by St Andrews:
2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:
2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff:
TBC Module coordinator(s): Director of Postgraduate Teaching - Computer Science (dopgt-cs@st-andrews.ac.uk)

<table>
<thead>
<tr>
<th>Module Name</th>
<th>SCOTCAT Credits</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>Academic year</th>
<th>Availability restrictions</th>
<th>Planned timetable</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS5032 Critical Systems Engineering</td>
<td>15</td>
<td>SCQF Level 11</td>
<td>1</td>
<td>2019/0</td>
<td>Not automatically available to General Degree students</td>
<td>To be arranged.</td>
</tr>
<tr>
<td>CS5033 Software Architecture</td>
<td>15</td>
<td>SCQF Level 11</td>
<td>2</td>
<td>2019/0</td>
<td>Not automatically available to General Degree students</td>
<td>To be arranged.</td>
</tr>
</tbody>
</table>

The aim of this module is to provide students with an understanding of the concepts and development techniques used for critical, socio-technical systems. When students have completed this module they will: understand the notion of system dependability and the key characteristics of dependable systems; understand the specialised software engineering techniques that may be used to ensure dependable system operation; have practical experience of applying some of these techniques in systems specification, design or implementation.

Pre-requisite(s):
Undergraduate - ug: before taking this module you must pass CS3099

Learning and teaching methods of delivery:
Weekly contact: Lectures, seminars, tutorials and practical classes.
Scheduled learning: 25 hours
Guided independent study: 125 hours

Assessment pattern:
As defined by QAA:
Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
As used by St Andrews:
2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:
2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff:
TBC Module coordinator(s): Director of Postgraduate Teaching - Computer Science (dopgt-cs@st-andrews.ac.uk)
CS5040 Human Computer Interaction Principles and Methods

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 11</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module provides a grounded introduction to the principles of human computer interaction in the context of evaluation paradigms. Material includes: history of interfaces and interaction; the human (vision, perception, memory, hearing); the computer (from existing to next generation ubiquitous computing systems); paradigms of interaction; evaluation paradigms in HCI; guidelines and heuristics; experimental design and hypothesis testing in HCI; quantitative evaluation methods in HCI; qualitative evaluation methods in HCI.

Pre-requisite(s): Undergraduate - before taking this module you must pass CS2002 and (pass CS2001 or pass cs2101)

Anti-requisite(s): You cannot take this module if you take CS3106

Learning and teaching methods of delivery:

- Weekly contact: Lectures, practical classes and tutorials.
- Scheduled learning: 41 hours
- Guided independent study: 109 hours

Assessment pattern:

As defined by QAA:
- Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%

As used by St Andrews:
- 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:
- 2-hour Written Examination = 60%, Existing Coursework = 40%

Module teaching staff:

TBC Module coordinator(s): Director of Postgraduate Teaching - Computer Science (dopgt-cs@st-andrews.ac.uk)

CS5041 Interactive Software and Hardware

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 11</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>The module is available to all students enrolled on the MSc in Human Computer Interaction Programme. A ballot for students on other MSc programmes and final year MSci students wishing to take the module may be necessary due to lab equipment constraints.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module develops prototype-building skills for a wide range of interactive technologies. Students learn how to create interactive hardware and software using technologies such as tangible programming kits, mobile devices, microprocessor kits and depth cameras. There is a strong emphasis on practical assignments.

Pre-requisite(s): Undergraduate - before taking this module you must pass CS2002 and (pass CS2001 or pass cs2101)

Learning and teaching methods of delivery:

- Weekly contact: Lectures, practical classes and tutorials.
- Scheduled learning: 66 hours
- Guided independent study: 84 hours

Assessment pattern:

As defined by QAA:
- Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%

As used by St Andrews:
- Coursework = 100%

Re-assessment pattern:
- No Re-assessment available

Module teaching staff:

TBC Module coordinator(s): Director of Postgraduate Teaching - Computer Science (dopgt-cs@st-andrews.ac.uk)
CS5042 User-Centred Interaction Design

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 11</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>The module is available to all students enrolled on the MSc in Human Computer Interaction Programme. A ballot for students on other MSc programmes and final year MSci students wishing to take the module may be necessary due to lab equipment constraints.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module studies methodologies in interaction design that are at the core of current practice for user interface engineering and application development. Students work towards creating designs of interactive systems that are based on human, group and organisation needs rather than on technical constraints. The module does not involve a great deal of programming.

Pre-requisite(s):	Undergraduate - before taking this module you must pass CS2002 and (pass CS2001 or pass cs2101)	
Learning and teaching methods of delivery:	Weekly contact: 2 lectures, 3 practicals and 1 tutorial.	
	Scheduled learning: 66 hours	Guided independent study: 84 hours
Assessment pattern:	As defined by QAA: Written Examinations = 0%, Practical Examinations = 15%, Coursework = 85%	
	As used by St Andrews: Coursework = 85%, Presentation = 15%	
Re-assessment pattern:	No Re-assessment available	
Module teaching staff:	TBC Module coordinator(s): Director of Postgraduate Teaching - Computer Science (dopgt-cs@st-andrews.ac.uk)	

CS5044 Information Visualisation

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 11</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module provides an introduction to information visualisation. It focuses on the question of how to utilise visual representations to make information accessible for exploration and analysis. The module covers basic principles of visualisation design and interaction principles. It introduces a range of visualisation techniques and tools, and discusses how these can be effectively applied in various scenarios for communication, exploration and analysis, and how to evaluate information visualisations in different contexts. Skills in designing, developing, and evaluating information visualisations are reinforced through practical assignments.

Pre-requisite(s):	Undergraduate - before taking this module you must pass CS2002 and (pass CS2001 or pass cs2101). Pgt: CS5001 or CS5002	
Learning and teaching methods of delivery:	Weekly contact: 3-hour lecture (x 11 weeks), 1-hour seminar (x 8 weeks)	
	Scheduled learning: 41 hours	Guided independent study: 109 hours
Assessment pattern:	As defined by QAA: Written Examinations = 40%, Practical Examinations = 0%, Coursework = 60%	
	As used by St Andrews: 2-hour Written Examination = 40%, Coursework = 60%	
Re-assessment pattern:	2-hour Written Examination = 60%, Existing Coursework = 40%	
Module teaching staff:	TBC Module coordinator(s): Director of Postgraduate Teaching - Computer Science (dopgt-cs@st-andrews.ac.uk)	
CS5052 Data-Intensive Systems

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level: 11</th>
<th>Semester: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The era of big data is upon us - the volume, velocity and variety of enterprise and scientific data are growing at an exponential rate and will continue to do so for the foreseeable future. This module presents the programming paradigms, algorithmic techniques and design principles for large-scale distributed systems, such as those utilised by companies such as Google, Amazon and Facebook. This module is different in scope from CS4103 (distributed systems) as it focuses primarily on building and utilising large-scale clusters. The module will cover: distributed systems architecture, replication and fault tolerance, storage, coordination, scheduling algorithms, cluster computing, cloud computing, virtualisation, programming models (e.g., MapReduce), stream processing, decentralised systems (e.g., Chord), incentive-based systems (e.g., BitTorrent), and social computing (e.g., crowd sourcing techniques). This module will draw from the latest research in both academia and industry.

Pre-requisite(s): Undergraduate students must have passed CS2002 and (cs2001 or cs2101). Postgraduate students must pass CS5001 before taking this module.

Assessment pattern:
- As defined by QAA: Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%
- As used by St Andrews: 2-hour Written Examination - 60%, Coursework = 40%

Module teaching staff: TBC Module coordinator(s): Director of Postgraduate Teaching - Computer Science (dopgt-cs@st-andrews.ac.uk)

CS5055 Data Ethics and Privacy

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level: 11</th>
<th>Semester: Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>40 places in each semester allocated by ballot. During 2019/20, places will be allocated to other students by ballot after all Data-Intensive Analysis MSc students funded by the Data Lab have been assigned places.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There is much interest in both academic research and the mass media about the potential effects of algorithmic decision-making and bias, with stories about manipulation of news feeds affecting elections, discriminatory adverts or search engine results, companies using big data to subvert regulators, and so forth. The aims of this module are to introduce students to the various ethical dilemmas that are arising in our “data-driven society”, with an emphasis on the ethics of using data science, data protection and privacy, and algorithmic governance.

Assessment pattern:
- As defined by QAA: Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%
- As used by St Andrews: Coursework = 100%

Module teaching staff: TBC Module coordinator(s): Director of Postgraduate Teaching - Computer Science (dopgt-cs@st-andrews.ac.uk)

Additional information from Schools: This module runs in both semesters with a cap with effect from 2019/20. There is reassessment in the form of an oral examination.
<table>
<thead>
<tr>
<th>CS5199 Individual Masters Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOTCAT Credits: 60</td>
</tr>
<tr>
<td>Academic year: 2019/0</td>
</tr>
<tr>
<td>Availability restrictions: Not automatically available to General Degree students</td>
</tr>
<tr>
<td>Planned timetable: Full-time for one semester.</td>
</tr>
<tr>
<td>This module allows students to undertake a major software engineering or research project, under the guidance of an individual supervisor. The project builds on experience gained in previous years, although the topic must differ significantly from any 4000-level project.</td>
</tr>
<tr>
<td>Pre-requisite(s): Before taking this module you should pass CS3099 and be enrolled on the msci honours computer science</td>
</tr>
<tr>
<td>Learning and teaching methods of delivery: Weekly contact: Individual supervision. Scheduled learning: 45 hours Guided independent study: 555 hours</td>
</tr>
<tr>
<td>Assessment pattern: As defined by QAA: Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%</td>
</tr>
<tr>
<td>As used by St Andrews: Coursework = 100%</td>
</tr>
<tr>
<td>Re-assessment pattern: No Re-assessment available</td>
</tr>
<tr>
<td>Module teaching staff: TBC</td>
</tr>
</tbody>
</table>