Biology (BL) Modules

BL3000 Field Course

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level 9</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>1-week residential course in summer vacation normally just prior to Orientation week.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module involves field-based exercises in a range of aquatic and/or terrestrial habitats. Students will examine and measure biodiversity, ecophysiological adaptation, and community structure, with both plant and animal material. Class exercises are used to develop good sampling techniques and to generate and analyse large data sets. Students also work in small project groups to develop individual skills in experimental design, practical manipulations, time-management and personal initiative, and in verbal/written presentation of project results.

Pre-requisite(s):	Before taking this module you must pass BL2300 and (pass BL2307 or pass BL2310)
Anti-requisite(s)	You cannot take this module if you take BL3321 or take BL3322
Co-requisite(s):	In the same year as taking this module you should take BL3308 or take BL3309

| Learning and teaching methods of delivery: | Weekly contact: 6-day field course, 8-hours per day |
| | Scheduled learning: 48 hours | Guided independent study: 52 hours |

| Assessment pattern: | As defined by QAA: Written Examinations = 0%, Practical Examinations = 50%, Coursework = 50% |
| | As used by St Andrews: Coursework = 100% |

| Re-assessment pattern: | Resubmission of failed item(s) of coursework |

| Module coordinator: | Prof D M Paterson |

| Module teaching staff: | Team taught |

BL3301 Protein Structure and Function

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level 9</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>Lectures: 9.00 am Mon, Tue and Wed Practicals: to be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module builds an understanding of more advanced aspects of protein structure and enzymology. The module begins by considering the protein-folding problem. The energetics of protein folding and the dependence of structure on sequence are examined. Protein folding diseases like spongiform encephalopathies are used as examples to highlight the significance of protein folding. The molecular basis of prion diseases is discussed in detail. The second part of the module focuses on the mechanisms of enzymes. This in turn leads into the phenomena of allosteric regulation, signalling cascades and transporter systems and is followed by a consideration of enzymes as pharmaceutical targets. The third part of the module introduces the major techniques for protein structure determination that are at the heart of modern biochemistry, molecular biology and drug discovery. Strategies for obtaining three-dimensional images of macromolecules by electron microscopy, X-ray crystallography and nuclear magnetic resonance are discussed. The laboratory course associated with this module introduces the fundamentals of safe laboratory practice. It provides grounding in the basic laboratory techniques, including associated calculations, as well as those associated with the study of proteins and enzymes.

| Learning and teaching methods of delivery: | Weekly contact: 3 x 1-hour lectures (x 10 weeks) and 3 x 8-hour practicals, and 1 x 4-hour practical, split over several days, during the semester. |
| | Scheduled learning: 62 hours | Guided independent study: 138 hours |

| Assessment pattern: | As defined by QAA: Written Examinations = 66%, Practical Examinations = 0%, Coursework = 34% |
| | As used by St Andrews: 3-hour Written Examination = 66%, Coursework = 34% |

| Re-assessment pattern: | 3-hour Written Examination = 66%, Existing Coursework = 34% |

| Module coordinator: | Dr U Schwarz-Linek |

| Module teaching staff: | Team taught |
BL3302 Gene Regulation

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>Lectures: 10.00 noon Mon, Tue and Wed; Practicals: to be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module builds on material covered in BL1201 Molecular Biology and BL2104 Biochemistry and Molecular Biology. It first considers the structure of genes and the composition of genomes and then examines genetic activity in eukaryotes in relation to nuclear organisation, chromatin structure and epigenetic mechanisms. Regulation of expression at the levels of gene transcription, RNA processing, RNA stability and translation are next covered in detail, drawing particular attention to the nature of protein-nucleic acid interactions. Specific control mechanisms in different prokaryotic and eukaryotic systems, induced by environmental, cell cycle, and metabolic signals are highlighted.

Pre-requisite(s): Before taking this module you must pass BL2302 and (pass BL2306 or pass BL2309)

Learning and teaching methods of delivery:
- **Weekly contact:** 3 x 1-hour lectures (x 10 weeks) and 3 x 16-hour practicals, split over several days, during the semester.
- **Scheduled learning:** 78 hours
- **Guided independent study:** 122 hours

Assessment pattern:
- As defined by QAA:
 - Written Examinations = 66%, Practical Examinations = 0%, Coursework = 34%
- As used by St Andrews:
 - 3-hour Written Examination = 66%, Coursework = 34%

Re-assessment pattern:
- 3-hour Written Examination = 66%, Existing Coursework = 34%

Module coordinator: Dr S A MacNeill

Module teaching staff: Team taught

BL3303 Membranes and Cell Communication

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>Lectures: 9.00 am Mon, Tue and Wed; Practicals: to be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module looks at the various ways in which cells communicate with each other. Cell signalling not only involves the creation and reception of signals but also the mechanisms by which signals are transported across biological membranes. We will therefore consider the central role that biological membranes play in the regulation of the movement of molecules between different extracellular, intracellular and transcellular compartments. Also protein sorting and membrane trafficking will be studied. Using various examples of cell communication, the module will discuss both the molecular and the organismal implications of cell signalling. Topics covered include:(i) Lipids; (ii) Protein targeting and sorting; (iii) Membrane trafficking and transport; (iv) Wnt, Notch and Hedgehog signalling; (v) Plant cell signalling; (vi) Hippo signalling (vii) Ubiquitylation and SUMOylation.

Pre-requisite(s): Before taking this module you must pass BL2301 and (pass BL2305 or pass BL2306 or pass BL2309)

Learning and teaching methods of delivery:
- **Weekly contact:** 3 x 1-hour lectures (x 11 weeks) and 3 x 7-hour practicals, split over several days during the semester.
- **Scheduled learning:** 54 hours
- **Guided independent study:** 146 hours

Assessment pattern:
- As defined by QAA:
 - Written Examinations = 66%, Practical Examinations = 0%, Coursework = 34%
- As used by St Andrews:
 - 3-hour Written Examination = 66%, Coursework = 34%

Re-assessment pattern:
- 3-hour Written Examination = 66%, Existing Coursework = 34%

Module coordinator: Dr M Bischoff

Module teaching staff: Team taught
BL3307 Evolution

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level 9</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Planned timetable: Lectures: 11 am Mon, Tue and Wed Practicals: to be arranged.

Topics in this module will include: molecular variation and evolution, including phylogeny reconstruction; the evolution and maintenance of sex; the genetics of continuous traits, and the relative importance of continuous and discontinuous variation in evolution; evolutionary developmental biology; evolution of population genetic structure; the genetics of speciation, covering the evolution of pre- and post-zygotic isolation, and parapatric, sympatric and island speciation. Practicals will involve computer simulations to investigate a range of evolutionary phenomena, plus use of molecular markers to examine population structure and speciation.

Pre-requisite(s): Before taking this module you must pass BL2303

Learning and teaching methods of delivery:

- **Weekly contact:** 3 x 1-hour lectures (x 10 weeks) and 1 x 2-hour and 1 x 3-hour practical during the semester.
- **Scheduled learning:** 35 hours
- **Guided independent study:** 165 hours

Assessment pattern:

- As defined by QAA: Written Examinations = 66%, Practical Examinations = 0%, Coursework = 34%
- As used by St Andrews: 3-hour Written Examination = 66%, Coursework = 34%

Re-assessment pattern: 3-hour Written Examination = 66%, Existing Coursework = 34%

Module coordinator: Dr N W Bailey

Module teaching staff: Team taught

BL3308 Aquatic Ecology

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level 9</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Planned timetable: Lectures: 10.00 am Mon, Tue and Wed Practicals: residential field trip.

This module introduces the ecology of aquatic systems beginning with a description of the problems of life in a fluid medium. The module then considers the contrasting conditions that are inherent in freshwater, estuarine and marine systems. The influence of global climate variation and the close coupling between land and sea will be emphasised. Case studies will then be used to introduce the ecology of a variety of aquatic systems including tropical, temperate and polar systems. This module involves a residential field trip to Kindrogan field station in the Scottish Highlands.

Pre-requisite(s): Before taking this module you must pass BL2307

Co-requisite(s): You must also take BL3000

Learning and teaching methods of delivery:

- **Weekly contact:** 3 x 1-hour lectures (x 10 weeks) and 1 x 3-day residential field course
- **Scheduled learning:** 50 hours
- **Guided independent study:** 150 hours

Assessment pattern:

- As defined by QAA: Written Examinations = 66%, Practical Examinations = 14%, Coursework = 20%
- As used by St Andrews: 3-hour Written Examinations = 66%, Coursework = 34%

Re-assessment pattern: 3-hour Written Examination = 66%, Existing Coursework = 34%

Module coordinator: Dr I M Matthews

Module teaching staff: Team taught
BL3309 Ecosystems and Conservation

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>Lectures: 10.00 am Mon, Tue and Wed Practical: to be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module will examine how ecosystems function and how they provide services for humans: information which is essential for ecologists, conservationists and land managers. The module will consider examples of natural systems being altered by man to demonstrate how ecosystems function and the consequences of anthropogenic change. Disturbance and regulation in ecosystems, atmospheric and hydrological regulation, (including the green house effect and acidification), soil ecology, conservation and management of natural resources, agricultural and grazed ecosystems (including GMOs), urban ecosystems and aspects of sustainable development will also be discussed.

Pre-requisite(s): Before taking this module you must pass BL2307 and (pass BL2303 or pass BL2304 or pass BL2308)

Co-requisite(s): You must also take BL3000

Learning and teaching methods of delivery:
- **Weekly contact:** 3 x 1-hour lectures (x 11 weeks) and 2 x 3-hour practicals during the semester.
- **Scheduled learning:** 39 hours
- **Guided independent study:** 161 hours

Assessment pattern:
- As defined by QAA: Written Examinations = 66%, Practical Examinations = 0%, Coursework = 34%
- As used by St Andrews: 3-hour Written Examination = 66%, Coursework = 34%

Re-assessment pattern: 3-hour Written Examination = 66%, Existing Coursework = 34%

Module coordinator: Prof W R L Cresswell

Module teaching staff: Team taught

BL3310 Bioenergetics

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>Lectures: 12.00 noon Mon, Tue and Wed Practical: to be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The conversion of one form of energy into another by a biochemical process is at the centre of all life. This module studies the biological systems for conserving energy from food oxidation and light absorption (photosynthesis) and the conversion of the resulting redox energy into chemical energy in the pyrophosphate bonds of ATP. The module also considers electron transfer processes in biology and the energetics of transport processes. Chemiosmotic theory and the principles are considered in detail as are the structure and function of electron and proton transfer systems of energy transducing systems. Practical classes will introduce the student to the methods used in this field of study. The module will comprise twenty lectures, eight hours tutorials/seminars in total, and twelve hours in practical classes.

Pre-requisite(s): Before taking this module you must pass BL2302 or pass BL2306

Learning and teaching methods of delivery:
- **Weekly contact:** 3 x 1-hour lectures (x 11 weeks) and 2 x 6-hour practicals, split over 2 days, and 2 x 3-hour student presentation seminars, during the semester.
- **Scheduled learning:** 51 hours
- **Guided independent study:** 149 hours

Assessment pattern:
- As defined by QAA: Written Examinations = 66%, Practical Examinations = 0%, Coursework = 34%
- As used by St Andrews: 3-hour Written Examination = 66%, Coursework = 34%

Re-assessment pattern: 3-hour Written Examination = 66%, Existing Coursework = 34%

Module coordinator: Dr J Nairn

Module teaching staff: Team taught
BL3311 Infection and Disease

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level 9</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>Lectures: 10.00 am Mon, Tue and Wed, Practicals: to be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module has lectures in three component areas: parasite infections, viral disease, and pathogenicity of common bacterial infections, and will include consideration of host defences and effective treatment. In all three component areas the emphasis will be on understanding at the molecular level.

<table>
<thead>
<tr>
<th>Pre-requisite(s):</th>
<th>Before taking this module you must pass 2 modules from (BL2301, BL2302, bl2309).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Learning and teaching methods of delivery:</th>
<th>Weekly contact: 3 x 1-hour lectures (x 11 weeks) and 2 x 9-hour practicals and 1 x 12-hour practical, split over several days, during the semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scheduled learning: 63 hours</td>
</tr>
<tr>
<td></td>
<td>Guided independent study: 137 hours</td>
</tr>
</tbody>
</table>

Assessment pattern:

- **As defined by QAA:**
 - Written Examinations = 90%, Practical Examinations = 0%, Coursework = 10%
- **As used by St Andrews:**
 - 3-hour Written Examination = 66%, Coursework = 34%

Re-assessment pattern:

- 3-hour Written Examination = 66%, Existing Coursework = 34%

Module coordinator: Dr P J Coote

Module teaching staff: Team taught

BL3315 Developmental Biology

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level 9</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>Lectures: 11.00 am Mon, Tue and Wed, Practicals: to be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module deals with the fascinating and rapidly changing field of Developmental Biology. It examines how an organism develops from an egg to an adult (including instances of metamorphosis), as well as how lost or damaged body parts can be regenerated. Also the interactions between development and ecology and evolution will be considered. There will be a focus on some of the typical model species used in developmental biology, including fruit flies, nematodes, mice and frogs, but this will be expanded to include other valuable comparative models, such as sea squirts, annelids, cnidarians and flatworms. The course will encompass multiple biological levels, from molecules, through cells and embryos, to the environment and the organism's evolutionary history. As such this module is of wide relevance to a range of other biological disciplines.

<table>
<thead>
<tr>
<th>Pre-requisite(s):</th>
<th>Before taking this module you must pass 2 modules from (BL2301, BL2302, BL2304, BL2308)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Learning and teaching methods of delivery:</th>
<th>Weekly contact: 3 x 1-hour lectures (x 11 weeks) and 2 x 15-hour practicals, split over several days, during the semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scheduled learning: 63 hours</td>
</tr>
<tr>
<td></td>
<td>Guided independent study: 137 hours</td>
</tr>
</tbody>
</table>

Assessment pattern:

- **As defined by QAA:**
 - Written Examinations = 66%, Practical Examinations = 34%, Coursework = 0%
- **As used by St Andrews:**
 - 3-hour Written Examination = 66%, Coursework = 34%

Re-assessment pattern:

- 3-hour Written Examination = 66%, Existing Coursework = 34%

Module coordinator: Dr D E K Ferrier

Module teaching staff: Team taught
BL3316 Co-evolution: living together

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>Lectures: 12.00 noon Mon, Tue and Wed Practicals: to be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module considers coevolution: how organisms influence the evolution of other organisms around them. Some of the most exquisite and remarkable adaptations in the natural world are the products of coevolution, from the elaborate displays of birds-of-paradise to the sexual mimicry of orchids. We will consider coevolution within a species, focusing in particular on the interactions between males and females, and also coevolution between species, including animal-plant interactions, host-parasite interactions, and predator-prey interactions. Topics to be considered in detail will be sexual selection, pollination biology, herbivory, prey defences, the evolution of virulence, and the ecology of coevolution, focusing in particular on tritrophic interactions between animals, plants and fungi. Finally, we will consider broader themes in coevolution, including the geographic mosaic theory of coevolution and applied aspects of coevolution.

Pre-requisite(s):
Before taking this module you must pass BL2304 or pass BL2307 or pass BL2310

Learning and teaching methods of delivery:
Weekly contact: 3 x 1-hour lectures (x 11 weeks), 1 x 3-hour practical and 1 x 3-hour student presentation seminar during the semester.
Scheduled learning: 39 hours Guided independent study: 161 hours

Assessment pattern:
As defined by QAA:
- Written Examinations = 66%, Practical Examinations = 22%, Coursework = 12%
As used by St Andrews:
- 3-hour Written Examination = 66%, Coursework = 34%

Re-assessment pattern:
3-hour Written Examination = 66%, Existing Coursework = 34%

Module coordinator:
Dr D M Shuker

Module teaching staff:
Dr David Shuker

BL3318 Biology of Marine Organisms

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>Lectures: 12 noon Mon, Tue and Wed Practicals: to be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module will include lectures on the range of microbial and metazoan organisms and ecological systems in the marine environment. The coverage will range from bacteria, to algae, invertebrates and vertebrates (fish, birds, reptiles and mammals). The biology of marine organisms is considered in the context of both adaptations at the level of the individual and its expression in terms of large-scale latitudinal and depth-related variations in productivity and food web structure. Examples from the poles to the tropics and from shallow water to the deep ocean will be included. Practicals will be field- and laboratory-based and will provide an experimental introduction to both ecological and physiological problems in marine biology.

Pre-requisite(s):
Before taking this module you must pass 3 modules from {BL2304, BL2307, BL2308, BL2310}

Learning and teaching methods of delivery:
Weekly contact: 3 x 1-hour lectures (x 11 weeks), 2 x 3-hour practicals and 1 x 1-hour Museum quiz during the semester.
Scheduled learning: 40 hours Guided independent study: 160 hours

Assessment pattern:
As defined by QAA:
- Written Examinations = 66%, Practical Examinations = 0%, Coursework = 34%
As used by St Andrews:
- 3-hour Written Examination = 66%, Coursework = 34%

Re-assessment pattern:
3-hour Written Examination = 66%, Existing Coursework = 34%

Module coordinator:
Dr J N Oswald

Module teaching staff:
Team taught
BL3319 Animal Behaviour: A Quantitative Approach

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level:</th>
<th>9</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>Lectures: 9.00 am Mon, Tue and Wed; Practicals: to be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module is designed to provide a broad and multifaceted perspective on animal behaviour, emphasising contemporary theoretical, mathematical and statistical approaches to the discipline. Nobel-Prize-winning ethologist, Niko Tinbergen, pointed out that to understand behaviour fully researchers had to answer four types of questions, about its causation, function, development and evolution. All four areas are covered in the course, which includes lectures on the genetic, neural, physiological and experiential (i.e. learning) influences on behaviour; behavioural development; foraging; sexual behaviour, sexual selection and mate choice; communication, cooperation and culture. The course contains extensive material of a formal theoretical nature, and emphasises quantitative skills throughout. Students will be introduced to new mathematical and statistical approaches within the field.

Pre-requisite(s): Before taking this module you must pass BL2303 or pass BL2307 or pass BL2310

Learning and teaching methods of delivery:
- **Weekly contact:** 3 x 1-hour lectures (x 11 weeks), 3 x 1-hour mini-project group meetings during the semester.
- **Scheduled learning:** 36 hours
- **Guided independent study:** 164 hours

Assessment pattern:
- **As defined by QAA:**
 - Written Examinations = 66%, Practical Examinations = 7%, Coursework = 27%
- **As used by St Andrews:**
 - 3-hour Written Examination = 66%, Coursework = 34%

Re-assessment pattern:
- 3-hour Written Examination = 66%, Existing Coursework = 34%

Module coordinator: Dr M M Webster

Module teaching staff: Team taught

BL3320 Statistical and Quantitative Skills for Biologists

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level:</th>
<th>9</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Few biologists are statisticians or mathematicians, but all biologists use statistics and mathematics. This series of workshops is designed to build confidence in organising and analyzing data to address biological questions efficiently. The module will help you learn how to identify statistical and quantitative approaches, and how to manage and analyse data in a code driven statistical programming package. An introductory workshop will cover basic concepts and practical training that will be used in a choice of specific workshops that cover applications across the range of Biology.

Pre-requisite(s): The pre-requisite of BL2300 is waived for bsc neuroscience students. Before taking this module you must pass BL2300

Learning and teaching methods of delivery:
- **Weekly contact:** Varied weekly contact, but to include 1 full-day of lectures in Pre-sessional week (8-hours), plus 2 x 3-hour introductory workshops and 5 x 3-hour practical workshops during the semester.
- **Scheduled learning:** 29 hours
- **Guided independent study:** 71 hours

Assessment pattern:
- **As defined by QAA:**
 - Written Examinations = 80%, Practical Examinations = 0%, Coursework = 20%
- **As used by St Andrews:**
 - 2-hour Written Examination = 80%, Coursework = 20%

Re-assessment pattern:
- 2-hour Written Examination = 66%, Existing Coursework = 34%

Module coordinator: Prof W R L Cresswell

Module teaching staff: Team taught
BL3322 Basic Biochemistry Laboratory

SCOTCAT Credits: 10
SCQF Level: 9
Semester: 1
Academic year: 2019/0
Planned timetable: 1 week in summer vacation just prior to Orientation week

This module aims to provide students with the basic skills for independent laboratory work and an opportunity to develop academic skills such as: the design of experiments; logistic planning; the gathering and assessment of data; and the presentation of results. In addition, transferable skills such as group work, working to deadlines, numeracy, critical reading of peer-reviewed literature, and presenting material (oral and written) will be developed. Importantly, the course will also be an opportunity to meet and work with others in the honours cohort. The practical element will emphasise techniques in protein biochemistry.

Pre-requisite(s): Before taking this module you must pass BL2301 or pass BL2302 or pass BL2306

Anti-requisite(s): You cannot take this module if you take BL3000 or take PN3321

Learning and teaching methods of delivery:
Weekly contact: 5-day laboratory course, 8-hours per day
Scheduled learning: 40 hours
Guided independent study: 60 hours

Assessment pattern:
As defined by QAA: Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%
As used by St Andrews: Coursework = 100%

Re-assessment pattern: Coursework = 100%

Module coordinator: Dr R Guimaraes da Silva

Module teaching staff: Dr Rafael Guimaraes da Silva

BL3323 Terrestrial Zoology

SCOTCAT Credits: 20
SCQF Level: 9
Semester: 1
Academic year: 2019/0
Planned timetable: 9.00 am Mon, Tue, Wed. Practicals: to be arranged.

This module covers the biology of land animals, including their early evolution, their strategies to cope with unusual terrestrial habitats (extremes of hot, arid and cold, urban life, island life, etc, including climate change effects), and their special problems with reproduction and locomotion. It then looks at insights gained from modern techniques, including molecular, bioinformatics and bar-coding approaches, bio-logging and tracking, and developmental adaptations. It concludes with special topics on particular animals or groups that have improved our understanding of terrestrial peculiarities, whether behavioural, sensory, physiological, mechanical, metabolic or ecological; and of threats to terrestrial diversity for certain groups.

Pre-requisite(s): Before taking this module you must pass BL2310 and (pass BL2304 or pass BL2308)

Learning and teaching methods of delivery:
Weekly contact: 3 x 1-hour lectures (x 10 weeks); 1 x 3-hour and 1 x 4-hour practicals.
Scheduled learning: 37 hours
Guided independent study: 163 hours

Assessment pattern:
As defined by QAA: Written Examinations = 66%, Practical Examinations = 14%, Coursework = 20%
As used by St Andrews: 3-hour Written Examination = 66%, Coursework = 34%

Re-assessment pattern: 3-hour Written Examination = 66%, Existing Coursework = 34%, module grade capped at 7.

Module teaching staff: Team taught
This project will involve an extensive literature review to investigate a defined hypothesis or problem within the field of biology, appropriate to the degree programme being studied by each student. The project will involve diligence, initiative and independence in pursuing the literature, and the production of a high-quality dissertation that demonstrates a deep understanding of the chosen area of research. Students will be allocated to a member of staff who will guide and advise them in research activities throughout the academic year. The project will be written up in the form of a research dissertation.

BL4200 Literature-based Research Project

- **SCOTCAT Credits:** 30
- **SCQF Level:** 10
- **Semester:** Full Year
- **Academic year:** 2019/0
- **Availability restrictions:** Not automatically available to General Degree students
- **Planned timetable:** To be arranged.

This project will involve an extensive literature review to investigate a defined hypothesis or problem within the field of biology, appropriate to the degree programme being studied by each student. The project will involve diligence, initiative and independence in pursuing the literature, and the production of a high-quality dissertation that demonstrates a deep understanding of the chosen area of research. Students will be allocated to a member of staff who will guide and advise them in research activities throughout the academic year. The project will be written up in the form of a research dissertation.

Pre-requisite(s): Permission of biology honours adviser required

Learning and teaching methods of delivery: Weekly contact: 1 dedicated meeting with supervisor per week, students should expect to spend the equivalent of 8 weeks full-time on this research project.

Assessment pattern:

- **As defined by QAA:** Written Examinations = 0%, Practical Examinations = 20%, Coursework = 80%
- **As used by St Andrews:** Coursework = 100% (10% - Thesis outline and resource list 1,000 words 70% - Written thesis 15,000 words 20% - Viva (20 minutes))

Re-assessment pattern: Resubmission of failed item(s) of Coursework

Module coordinator: Prof S D Healy

Module teaching staff: Individual Supervisors across the School of Biology

This project will involve extensive laboratory or field research to investigate a defined problem within biology, appropriate to the degree programme being studied by each student. The project will involve diligence, initiative and independence in pursuing the literature, good experimental design, good experimental and/or analytical technique either in the field or the laboratory, and excellent record keeping. The project will culminate in the production of a high-quality report that demonstrates a deep understanding of the chosen area of research. Students will be allocated to a member of staff within the School of Biology who will guide and advise them in research activities throughout the academic year.

BL4201 Experimental Research Project

- **SCOTCAT Credits:** 60
- **SCQF Level:** 10
- **Semester:** Full Year
- **Academic year:** 2019/0
- **Availability restrictions:** Not automatically available to General Degree students
- **Planned timetable:** To be arranged.

This project will involve extensive laboratory or field research to investigate a defined problem within biology, appropriate to the degree programme being studied by each student. The project will involve diligence, initiative and independence in pursuing the literature, good experimental design, good experimental and/or analytical technique either in the field or the laboratory, and excellent record keeping. The project will culminate in the production of a high-quality report that demonstrates a deep understanding of the chosen area of research. Students will be allocated to a member of staff within the School of Biology who will guide and advise them in research activities throughout the academic year.

Pre-requisite(s): Permission of biology honours adviser required

Learning and teaching methods of delivery: Weekly contact: 1 dedicated meeting with supervisor per week. Students should expect to spend the equivalent of 1 semester full-time conducting supervised research and completing the associated assessments. This time is either condensed into 1 semester or spread out over the whole year.

Assessment pattern:

- **As defined by QAA:** Written Examinations = 0%, Practical Examinations = 20%, Coursework = 80%
- **As used by St Andrews:** Coursework = 100%

Re-assessment pattern: Resubmission of failed item(s) of Coursework

Module coordinator: Prof S D Healy

Module teaching staff: Individual Supervisors across the School of Biology
BL4210 Practical Skills for Molecular Biology and Biochemistry

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level: 10</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td>Planned timetable:</td>
</tr>
</tbody>
</table>

Practical skills are the core of research in biochemistry and molecular biology. This module is designed to prepare students for laboratory research projects in internationally competitive research. The module is designed to foster skills such as experimental design, core practical skills, data analysis and excellent record keeping. Each practical requires some prior theoretical familiarity. Emphasis is placed upon experimental design - notably anticipation of experimental outcomes and the choice of appropriate experimental controls. This planning phase is followed by execution of the experiment and analyses of the data.

- **Pre-requisite(s):** Permission of biology honours adviser required
- **Learning and teaching methods of delivery:**
 - **Weekly contact:** Occasional seminars and 3 blocks of practicals conducted over several days.
 - **Scheduled learning:** 35 hours
 - **Guided independent study:** 115 hours
- **Assessment pattern:**
 - As defined by QAA:
 - Written Examinations = 30%, Practical Examinations = 0%, Coursework = 70%
 - As used by St Andrews:
 - 1-hour Written Examination = 30%, Coursework = 70%
- **Re-assessment pattern:**
 - 1-hour Written Examination = 30%, Existing Coursework = 70%
- **Module coordinator:** Dr M M Nevels
- **Module teaching staff:** Dr M Nevels, Prof M White

BL4211 Antimicrobials - Mode of Action and Resistance

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level: 10</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td>Planned timetable:</td>
</tr>
</tbody>
</table>

This module will commence by establishing the fundamental basis of antimicrobial efficacy in terms of selective toxicity, with a brief history of antimicrobials and factors that make the ideal antimicrobial. This will be followed by study of the known inhibitory action of antibacterial and antifungal drugs at the molecular level, and study of the molecular basis of microbial resistance to these drugs. Lastly, potential new sources of antimicrobials will be considered, particularly antimicrobial peptides and ‘natural’ antimicrobials.

- **Pre-requisite(s):** Before taking this module you must pass BL3311
- **Learning and teaching methods of delivery:**
 - **Weekly contact:** 2 x 1-hour seminars (x 9 weeks).
 - **Scheduled learning:** 18 hours
 - **Guided independent study:** 132 hours
- **Assessment pattern:**
 - As defined by QAA:
 - Written Examinations = 50%, Practical Examinations = 20%, Coursework = 30%
 - As used by St Andrews:
 - 1-hour Written Examination = 50%, Coursework = 50%
- **Re-assessment pattern:**
 - 1-hour Written Examination = 50%, Existing Coursework = 50%
- **Module coordinator:** Dr P J Coote
- **Module teaching staff:** Dr P Coote
BL4212 How Enzymes Work

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All cells depend on enzymes to catalyse the reactions that produce the energy required for life and that make and repair DNA, proteins and lipids. Understanding enzymes and their regulation underpins research on, for example, drug development. This module will study how the structures and molecular functions of selected examples enable the biological roles. Topics will include flavoproteins, DNA repair enzymes, nitric oxides synthases and other enzymes depending on the research interests of the academic staff. It will develop deductive skills, literature research, and communication of specific knowledge from reviews and primary research articles, and will encourage integration of previous basic knowledge of bioenergetics, protein structure and function, gene expression and metabolic regulation into the exploration of the cellular roles of enzymes.

Pre-requisite(s): Before taking this module you must pass BL3301

Assessment pattern:

As defined by QAA:
- Written Examinations = 66%, Practical Examinations = 0%, Coursework = 34%

As used by St Andrews:
- 2-hour Written Examination = 66%, Coursework = 34%

Re-assessment pattern:
- 2-hour Written Examination = 66%, Existing Coursework = 34%

Module coordinator: Dr R Guimaraes da Silva

Module teaching staff: Team taught

BL4213 Molecular Virology

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Viruses as a group include many important human and veterinary pathogens such as influenza virus, hepatitis C virus, foot and mouth disease virus as well as emerging viruses like Ebola virus, and remain a continuing threat to human and animal welfare. This module will consist of a mixture of lectures, tutorials and personal-based learning on aspects of RNA virus host interactions. The topics covered will include comparison of the molecular mechanisms employed by enveloped and non-enveloped viruses to enter and exit from cells, discussion of how small RNA viruses maximise their coding capacity, comparison of the replication of positive and negative strand RNA viruses, discussion of how selected viruses reprogram the host cell to ensure their own replication, description of how RNA viruses intercede with innate immune responses, and understanding of how selected viruses interact with their vectors. In addition, discussion of virus-related topics that have made headline news in recent years will be addressed, and an understanding of the more commonly used molecular techniques to study viruses will be expected.

Pre-requisite(s): Before taking this module you must pass BL3311

Assessment pattern:

As defined by QAA:
- Written Examinations = 60%, Practical Examinations = 0%, Coursework = 40%

As used by St Andrews:
- 3-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:
- 3-hour Written Examination = 60%, Existing Coursework = 40%

Module coordinator: Dr J Tilsner

Module teaching staff: Team taught
In order to establish an infection in a host, pathogenic bacteria rely on mechanisms to adhere to host tissue, gain entry into cells, escape the host’s immune response and spread and survive within or on the host. These processes are mediated by bacterial virulence factors, i.e. proteins and other bacterial products that utilise and subvert diverse host cellular processes for the benefit of the pathogen. In this module students will explore how structural biology has led to significant breakthroughs in understanding the molecular bases of some important bacterial infections.

Pre-requisite(s): Before taking this module you must pass BL3301

Learning and teaching methods of delivery:
Weekly contact: 2 x 1-hour lecture (x 5 weeks), 3 x 3-hour student talks
Scheduled learning: 19 hours Guided independent study: 131 hours

Assessment pattern:
As defined by QAA:
Written Examinations = 40%, Practical Examinations = 30%, Coursework = 30%

As used by St Andrews:
1.5-hour Written Examination = 40%, Coursework = 60%

Re-assessment pattern:
1.5-hour Written Examination = 40%, Existing Coursework = 60%

Module coordinator:
Dr U Schwarz-Linek
BL4222 Metabolic and Clinical Biochemistry

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>10</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module extends the students’ knowledge of human metabolism and applies it to pathologies. The syllabus includes: a study of the integration of whole body metabolic processes, discussion of the role of biochemistry in investigating and monitoring human disease, the methods of diagnosing and treating some common diseases. Topics will cover integration of whole body metabolism, starvation processes, diabetes, metabolic variability, inborn errors of metabolism, endocrinology, homeostasis, plasma protein metabolism, muscle and hepatic metabolism, drug disposition and metabolism, and defects in glucose and lipid metabolism.

Pre-requisite(s): Permission of biology honours adviser required

Learning and teaching methods of delivery: Weekly contact: 1 x 2-hour seminar (x 9 weeks), 2 x 3-hour students presentations for 1 week

Assessment pattern:
- As defined by QAA: Written Examinations = 30%, Practical Examinations = 35%, Coursework = 35%
- As used by St Andrews: 1.5-hour Written Examination = 30%, Coursework = 70%

Re-assessment pattern: 1.5-hour Written Examination = 30%, Existing Coursework = 70%

Module coordinator: Dr G R Prescott

Module teaching staff: Dr G Prescott and invited NHS staff

BL4223 Molecular and cell biology of eukaryotic DNA replication

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>10</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Highly-efficiently chromosomal DNA replication is essential for all forms of cellular life on Earth and requires the complex interplay of a large range of protein factors in a temporally- and spatially-coordinated manner. In humans, defects in the replication process may lead to genetic disease or cancer. This module will summarise current knowledge of the enzymes and mechanisms of chromosomal DNA replication in bacterial, archaeal and eukaryotic cells with particular emphasis on exploring the diverse range of experimental systems and techniques used in the laboratory to probe the structure, function and regulation of the replication apparatus. Similarities and differences between cellular and viral DNA replication strategies will be explored and diverse aspects of the evolution of the replication machinery highlighted.

Pre-requisite(s): Before taking this module you must pass BL3301 and pass BL3302

Learning and teaching methods of delivery: Weekly contact: 1 x 2-hour seminar (x 10 weeks)

Assessment pattern:
- As defined by QAA: Written Examinations = 40%, Practical Examinations = 20%, Coursework = 40%
- As used by St Andrews: 1.5-hour Written Examination = 40%, Coursework = 60%

Re-assessment pattern: 1.5-hour Written Examination = 40%, Coursework = 60%

Module coordinator: Dr S A MacNeill
Biology - Honours Level - 2019/0 - September - 2019

<table>
<thead>
<tr>
<th>BL4224 Molecular Mechanisms of Membrane Trafficking</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOTCAT Credits: 15</td>
</tr>
<tr>
<td>Academic year: 2019/0</td>
</tr>
<tr>
<td>Planned timetable: To be arranged.</td>
</tr>
</tbody>
</table>

Membrane trafficking mediates the transport of substances between different cellular organelles and the secretion of substances from cells. As such, regulation of membrane trafficking is applicable to all cell types, but especially to specialised secretory cells such as neurons, which secrete neurotransmitters and pancreatic beta-cells which secrete insulin. This module will consider how molecules control the movement of substances through the secretory pathway, but will focus on how cells regulate the release of contents. Within the module you will look at the proteins involved, the different experiments used to study the process and how model organisms are enhancing our understanding.

| **Pre-requisite(s):** Before taking this module you must pass BL3303 |
| **Learning and teaching methods of delivery:** Weekly contact: 1 x 2-hour seminar (x 11 weeks) |
| **Scheduled learning:** 22 hours | **Guided independent study:** 128 hours |
| **Assessment pattern:** As defined by QAA: Written Examinations = 25%, Practical Examinations = 20%, Coursework = 55% |
| **As used by St Andrews:** 2-hour Written Examination = 50%, Coursework = 50% |
| **Re-assessment pattern:** 2-hour Written Examination = 50%, Existing Coursework = 50% |
| **Module coordinator:** Dr G R Prescott |
| **Module teaching staff:** Dr G Prescott, Dr J Tilsner |

<table>
<thead>
<tr>
<th>BL4225 Advanced Microscopy and Image Analysis - Seeing is Believing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOTCAT Credits: 15</td>
</tr>
<tr>
<td>Academic year: 2019/0</td>
</tr>
<tr>
<td>Planned timetable: To be arranged</td>
</tr>
</tbody>
</table>

This module will introduce you to advanced imaging techniques, such as Confocal, Super-resolution, TIRF and Electron Microscopy and how these techniques have been utilised to address fundamental questions in Cell and Developmental Biology. You will get the opportunity to research techniques that are at the forefront of modern Biology and to develop skills in ImageJ analysis of imaging data, a skill that will be central to the advancement of bioscience in the coming years. Activities will be supplemented with research talks from academics at the cutting edge of their field and the opportunity to see advanced imaging techniques in practice.

| **Pre-requisite(s):** Before taking this module you must pass BL3303 or pass BL3315 |
| **Anti-requisite(s):** You cannot take this module if you take BL5420 |
| **Learning and teaching methods of delivery:** Weekly contact: 1 x 2-hour seminar (x 11 weeks) |
| **Scheduled learning:** 22 hours | **Guided independent study:** 133 hours |
| **Assessment pattern:** As defined by QAA: Written Examinations = 20%, Practical Examinations = 30%, Coursework = 50% |
| **As used by St Andrews:** 1.5-hour Written Examination = 20%, Coursework = 80% |
| **Re-assessment pattern:** 1.5-hour Written Examination = 20%, Existing Coursework = 80% |
| **Module coordinator:** Dr M Bischoff |
BL4226 Chromatin and Genome Stability

SCOTCAT Credits: 15 SCQF Level 10 Semester 2

Academic year: 2019/0
Availability restrictions: Not automatically available to General Degree students
Planned timetable: To be arranged

This module will introduce the fundamental concepts of chromatin structure and function and how this affects genome stability. DNA repair and telomere maintenance are perhaps the most significant factors affecting genome stability and these processes are central to the understanding of cancer cell biology. Indeed, most existing anticancer agents induce DNA damage and current efforts to target chromatin factors therapeutically are showing promise. You will have the opportunity to independently research and present seminars on the applied biology of chromatin and DNA repair within model organisms such as budding yeast, Caenorhabditis elegans and Drosophila melanogaster. Students will also have the opportunity to engage in research debates on topics at the forefront of modern cancer biology. Importantly, you will be expected to design and defend a research proposal that addresses an unsolved question of your choice within the field of genome stability.

Pre-requisite(s): Before taking this module you must pass BL3302

Anti-requisite(s) You cannot take this module if you take BL5421

Learning and teaching methods of delivery: Weekly contact: 1 x 2-hour seminar (x 11 weeks)
Scheduled learning: 22 hours Guided independent study: 146 hours

Assessment pattern: As defined by QAA: Written Examinations = 20%, Practical Examinations = 0%, Coursework = 80%
As used by St Andrews: 1.5-hour Written Examination = 20%, Coursework = 80%

Re-assessment pattern: 1.5-hour Written Examination = 20%, Existing Coursework = 80%

Module coordinator: Dr H C Ferreira

Module teaching staff: Dr H Ferreira

BL4249 Scientific Diving

SCOTCAT Credits: 15 SCQF Level 10 Semester 2

Academic year: 2019/0
Availability restrictions: Not automatically available to General Degree students
Planned timetable: Full Time 2-3 weeks in January/February

This module will provide both theoretical and practical experience of the techniques used by scientific divers. The module is restricted to students who have an existing diving qualification (PADI Advanced Open Water Diver or BSAC Sports Diver or equivalent). Seminars during the field trip will cover diving safety, dive project planning, management, risk assessment and the theory behind underwater surveying techniques. Abroad, students will receive training in underwater marine identification, construction and deployment of underwater surveys and sampling techniques, gaining practical experience of recording, analysing and interpreting survey data. Then they conduct a mini-research project using suitable survey techniques and present their findings through a report and a presentation. There are additional costs attached to this module which the student will be expected to meet.

Pre-requisite(s): “permission of biology honours adviser required, padi advanced open water diver or bsac sports diver (or equivalent)”. Before taking this module you must pass BL4251

Learning and teaching methods of delivery: Weekly contact: 8 hours per day for 2 weeks.
Scheduled learning: 96 hours Guided independent study: 54 hours

Assessment pattern: As defined by QAA: Written Examinations = 0%, Practical Examinations = 45%, Coursework = 55%
As used by St Andrews: Coursework = 100%

Re-assessment pattern: Resubmission of failed item(s) of Coursework

Module coordinator: Dr M M Borges Da Costa Guint Barbosa

Module teaching staff: Team taught
BL4251 Tropical Marine Biology

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The goal of this module is to examine the ecological and biological principles underpinning the major tropical marine ecosystems. The module provides an understanding of the ecological processes that control tropical marine ecosystems, and considers the organisms that are characteristic of each. All the major tropical marine habitats will be considered, but with a focus on coral reef, seagrass and mangrove ecosystems. The module also tackles topical research areas on the subject through student-led seminars, which will vary depending on the latest scientific research and the specific interests of participants. On completion of the module, students will have an understanding of coral reef, mangrove and seagrass ecology. They will understand the biology and physiology of corals and be able to identify the major phyla associated with tropical marine ecosystems. The module will also provide an understanding of the threats to tropical marine habitats, current research trends on tropical marine systems, and the scientific approaches and techniques used tackle scientific questions relating to tropical marine biology.

Learning and teaching methods of delivery:

- Weekly contact: Lectures and seminars.
- Scheduled learning: 21 hours
- Guided independent study: 129 hours

Assessment pattern:

- As defined by QAA:
 - Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%
- As used by St Andrews:
 - Coursework = 100%

Re-assessment pattern: Resubmission of failed item(s) of Coursework

Module coordinator: Dr M M Borges Da Costa Guint Barbosa

BL4254 Fisheries Research

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module will provide an introduction to the utilisation of fish stocks in a sustainable way. It will focus on how the status of these stocks can be assessed, the problems associated with determining catch limits, and how advice from fisheries scientists is communicated to managers. There will be a mixture of dedicated lectures (including talks from outside experts), student-led seminars, tutorials and practical computer sessions.

Pre-requisite(s): Before taking this module you must pass BL3309

Learning and teaching methods of delivery:

- Weekly contact: 1 x 2-hour seminar (x 11 weeks)
- Scheduled learning: 22 hours
- Guided independent study: 128 hours

Assessment pattern:

- As defined by QAA:
 - Written Examinations = 30%, Practical Examinations = 45%, Coursework = 25%
- As used by St Andrews:
 - 1.5-hour Written Examination = 30%, Coursework = 70%

Re-assessment pattern: 1.5-hour Written Examination = 30%, Existing Coursework = 70%

Module coordinator: Dr C G M Paxton

Module teaching staff: Dr C Paxton
BL4256 Marine Bioacoustics

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module will provide seminar- and practical-based instruction on sound propagation in the ocean, use of sound by marine mammals for communication, orientation, and foraging (as monitored by humans using techniques to record sound). It will also examine sound-based conflicts between humans and marine organisms.

Pre-requisite(s): Permission of biology honours adviser required

Learning and teaching methods of delivery: Weekly contact: 7 x 2-hour seminars, 8 x 1-hour seminars and 2 x 3-hour practical over a 4 week period

Assessment pattern:
- As defined by QAA: Written Examinations = 75%, Practical Examinations = 25%, Coursework = 0%
- As used by St Andrews: 2-hour Written Examination = 50%, Coursework = 50%

Re-assessment pattern: 2-hour Written Examination = 50%, Existing Coursework = 50%

Module coordinator: Prof P L Tyack

Module teaching staff: Prof P Tyack, Prof V Janik

BL4258 Foraging in Marine Mammals

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module will provide primarily seminar and practical-based analysis of the life-history requirements of foraging in marine mammals, geographical and physiological constraints on finding food, food and feeding with a focus on types of prey and adaptations by the prey, adaptations for marine mammals feeding in the marine environment, optimal foraging theory, and optimal diving theory. Initial lectures will focus on theoretical issues and description of methods to study foraging. Students will then conduct case-studies of marine-mammal foraging, which will be presented in a seminar format as a group. Some practical work will also be included.

Pre-requisite(s): Before taking this module you must pass BL3319

Learning and teaching methods of delivery: Weekly contact: Introductory lecture plus 3 x 1-hour lectures (x 3 weeks), 2 x 2-hour student-led seminars (x 4 weeks)

Assessment pattern:
- As defined by QAA: Written Examinations = 40%, Practical Examinations = 20%, Coursework = 40%
- As used by St Andrews: 2-hour Written Examination = 40%, Coursework = 60%

Re-assessment pattern: 2-hour Written Examination = 40%, Existing Coursework = 60%

Module coordinator: Prof P Miller

Module teaching staff: Prof P Miller, Dr S Smout, Dr D Thompson
BL4259 Marine Mammals and Man

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marine mammals interact with human activities in a variety of ways and are frequently the focus of more general concerns about the health and exploitation of marine ecosystems. This module explores the impact of these activities on individuals and populations of seals and cetaceans, and vice versa. Most marine mammals species are long-lived and slow reproducing and the impacts of unmanaged human activities can be severe; a number of species or populations are threatened as a result. The module explores how best to provide robust scientific advice to inform conservation and management at local, national and international level.

Pre-requisite(s):
Before taking this module you must pass BL3318

Learning and teaching methods of delivery:

- **Weekly contact:** 12 x 2-hour seminars over two weeks followed by 4 x 3-hour presentation assessment sessions at the end of the semester.
- **Scheduled learning:** 36 hours
- **Guided independent study:** 114 hours

Assessment pattern:

- **As defined by QAA:**
 - Written Examinations = 0%, Practical Examinations = 50%, Coursework = 50%
- **As used by St Andrews:**
 - Coursework = 100%

Re-assessment pattern:
Resubmission of failed item(s) of Coursework

Module coordinator:
Prof P S Hammond

Module teaching staff:
Prof P S Hammond, Dr S Northridge, Dr A Hall, Dr Gordon

BL4260 Biological Oceanography

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module will provide primarily seminar-based instruction on the fundamentals of Biological Oceanography (BO). A few introductory lectures will focus on basic principles in BO and oceanography, including physical and geochemical principles as they apply to biological oceanography. Students will present seminars on particular focus areas within each lecture topic, based upon reading primary literature. BO is a broad field, so the module will provide an overview of the field with depth in a few chosen areas. At least one practical will be offered on the use of remote-sensing data for ocean observation, and we hope to develop a practical of zooplankton sampling. This module should coordinate especially well with marine acoustics and scientific diving.

Pre-requisite(s):
Before taking this module you must pass BL3318

Learning and teaching methods of delivery:

- **Weekly contact:** 10 x 2-hour seminars (x 6 weeks)
- **Scheduled learning:** 0 hours
- **Guided independent study:** 0 hours

Assessment pattern:

- **As defined by QAA:**
 - Written Examinations = 0%, Practical Examinations = 0%, Coursework = 0%
- **As used by St Andrews:**
 - 2-hour Written Examination = 40%, Coursework = 60%

Re-assessment pattern:
2-hour Written Examination = 40%, Existing Coursework = 60%

Module coordinator:
Prof P Miller
BL4262 Environmental Drivers of Marine Habitats

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level: 10</th>
<th>Semester: 1</th>
</tr>
</thead>
</table>

Academic year: 2019/0
Availability restrictions: Not automatically available to General Degree students
Planned timetable: To be arranged.

This module aims to give a broad overview of the different environmental drivers of marine ecosystems. Shorter term processes in the ocean and atmosphere as well as climate define marine habitats and a series of lectures will be provided to assure that students have the broad background required to tackle primary literature in this field and can apply their knowledge within different fields of marine science. Students will present on particular focus areas within each lecture topic, based upon reading primary literature.

Pre-requisite(s): Permission of biology honours adviser required

Learning and teaching methods of delivery:
- **Weekly contact:** 2 x 2-hour seminar or lecture (x 5 weeks)
- **Scheduled learning:** 20 hours
- **Guided independent study:** 130 hours

Assessment pattern:
As defined by QAA:
- Written Examinations = 60%, Practical Examinations = 40%, Coursework = 0%

As used by St Andrews:
- 2-hour Written Examination = 60%, Coursework = 40%

Re-assessment pattern:
- 2-hour Written Examination = 60%, Existing Coursework = 40%

Module coordinator: Dr L Boehme

BL4263 The Question of Culture in Animals

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level: 10</th>
<th>Semester: 2</th>
</tr>
</thead>
</table>

Academic year: 2019/0
Availability restrictions: Not automatically available to General Degree students
Planned timetable: To be arranged.

The existence and extent of social learning and cultural transmission in non-humans is a very active area of current research, as well as of controversy, with vigorous ongoing debate. The aim of this module is to provide an introduction to this area through considering the conceptual issues and direct and indirect evidence for cultural transmission in a range of non-human animals, including insects, fish, birds, primates and cetaceans. We will consider what is meant by the term ¿culture¿, how it is used and studied in the human context, how it can be studied in non-humans, and the evidence for and against such processes being present in a range of non-human societies.

Pre-requisite(s): Before taking this module you must pass BL3319

Learning and teaching methods of delivery:
- **Weekly contact:** 10 x 2 hour class meetings, supported by extensive independent study
- **Scheduled learning:** 20 hours
- **Guided independent study:** 130 hours

Assessment pattern:
As defined by QAA:
- Written Examinations = 40%, Practical Examinations = 10%, Coursework = 50%

As used by St Andrews:
- 100% Coursework

Re-assessment pattern:
- 100% Coursework

Module coordinator: Dr L E Rendell
Module teaching staff: Dr Luke Rendell, Dr Michael Webster, Prof Christian Rutz, Dr Ellen Garland, Dr Catherine Hobaiter
BL4266 Conservation Research Methods

SCOTCAT Credits: 15
SCQF Level 10
Semester 1

Academic year: 2019/0

Availability restrictions: Not automatically available to General Degree students

Planned timetable: To be arranged.

The conservation of animal and plant populations relies initially on information of population sizes and trends. This information can only be collected by fieldwork. This module teaches the basic field techniques that underpin the monitoring of populations. Each week the theory behind a different technique is introduced, then the technique is practiced in the field, and finally data collected by the technique are analysed and discussed in a workshop at the end of the week, so that a full understanding of a technique and its proper application is gained. The module ends with students carrying out a project applying and integrating the techniques they have learnt.

Pre-requisite(s): Before taking this module you must pass BL3309

Learning and teaching methods of delivery: Weekly contact: Variable combination of lectures, field practicals, data collection in the field and analysis workshops per week for 10 weeks

Scheduled learning: 40 hours
Guided independent study: 110 hours

Assessment pattern:

- **As defined by QAA:**
 - Written Examinations = 0%, Practical Examinations = 25%, Coursework = 75%
- **As used by St Andrews:**
 - Coursework = 100%

Re-assessment pattern: Resubmission of failed item(s) of Coursework

Module coordinator: Prof W R L Cresswell

Module teaching staff: Prof W Cresswell

BL4268 Science Communication of Biodiversity and Conservation

SCOTCAT Credits: 15
SCQF Level 10
Semester 2

Academic year: 2019/0

Availability restrictions: Not automatically available to General Degree students

Planned timetable: To be arranged.

This module will focus on the scientific problems associated with the conservation and sustainable use of animals and plants, and on the way in which scientific advice on these issues is provided. Initial lectures will cover sustainable development and the precautionary principle; the causes of extinction; the economics of conservation; management of exploitation; and estimating species richness. After this student-led seminars will cover a range of more specialist issues of current concern. Practical work on population viability analysis, classifying populations using the IUCN criteria, and species richness estimation may be included.

Pre-requisite(s): Before taking this module you must pass BL3309

Learning and teaching methods of delivery: Weekly contact: 1 x 2-hour seminar (x 11 weeks) plus 6 additional 2-hour lectures during the semester

Scheduled learning: 34 hours
Guided independent study: 116 hours

Assessment pattern:

- **As defined by QAA:**
 - Written Examinations = 0%, Practical Examinations = 40%, Coursework = 60%
- **As used by St Andrews:**
 - Coursework = 100%

Re-assessment pattern: Resubmission of failed item(s) of Coursework

Module coordinator: Dr M A Azeredo de Dornelas

Module teaching staff: Dr M Dornelas
BL4270 Plant-environment Interactions

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module will provide an analysis of the ways in which plants interact with their physical, chemical and biological environments. This is a wide-ranging course which will bring together current knowledge of the physiological and molecular responses of plants within the wider context of how whole organisms and communities respond to the environment. Topics include: parasitism, plant pathogens and diseases, symbioses, plant stress responses, and human influences such as pollution, bioremediation and genetic modification.

Pre-requisite(s): Permission of biology honours adviser required

Learning and teaching methods of delivery:

- **Weekly contact:** 1 x 2-hour seminar (x 11 weeks), plus 1 x additional seminar
- **Scheduled learning:** 24 hours
- **Guided independent study:** 126 hours

Assessment pattern:

- As defined by QAA: Written Examinations = 0%, Practical Examinations = 34%, Coursework = 66%
- As used by St Andrews:
 - Coursework = 100%

Re-assessment pattern: Resubmission of failed item(s) of Coursework

Module coordinator: Prof J Jones

BL4274 Evolutionary Developmental Biology

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evolution of new morphologies involves changes to the development of organisms. The field of evolutionary developmental biology is thus becoming established as a major and essential component of any comprehensive understanding of evolutionary biology. This module aims to cover some of the main, current themes in evolutionary developmental biology. Since animal life evolved in the sea, much of what we can learn about the major events in animal evolution can be obtained from studying marine invertebrates. Consequently the examples covered in this module will tend to be drawn from these organisms.

Pre-requisite(s): Permission of biology honours adviser required

Learning and teaching methods of delivery:

- **Weekly contact:** 1 x 2-hour seminar (x 10 weeks).
- **Scheduled learning:** 20 hours
- **Guided independent study:** 130 hours

Assessment pattern:

- As defined by QAA: Written Examinations = 0%, Practical Examinations = 50%, Coursework = 50%
- As used by St Andrews:
 - Coursework = 100%

Re-assessment pattern: Resubmission of failed item(s) of Coursework

Module coordinator: Dr D E K Ferrier

Module teaching staff: Dr D Ferrier, Dr I Somorjai
BL4275 Evolution in Action

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level: 10</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module will focus on recent developments relating to evolutionary biology, placing particular emphasis on research related to medical or societal application or public policy. Examples of topics to be covered include: emergent diseases, biodiversity policy, conservation management, biological impacts of climate change, and public understanding of science.

Pre-requisite(s): Permission of biology honours adviser required

Learning and teaching methods of delivery:

Weekly contact: 1 x 2-hour seminar (x 10 weeks) plus an additional 2 x 2-hour seminars.

Scheduled learning: 24 hours
Guided independent study: 126 hours

Assessment pattern:

As defined by QAA:
Written Examinations = 0%, Practical Examinations = 20%, Coursework = 80%

As used by St Andrews:
Coursework = 100%

Re-assessment pattern: Resubmission of failed item(s) of Coursework

Module coordinator: Prof T R Meagher

BL4278 Biology of Dinosaurs and Other Extinct Vertebrates

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level: 10</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It seems natural to use our understanding of extant biology to make inferences about the past. This allows us to test ideas about evolution and biodiversity in a wider context. Additionally, rewilding is an active but controversial strand of conservation biology that suggests that where keystone species have gone extinct, we should introduce an analogous species. Vertebrates fossilise well, and so offer a good foundation of source material. They are generally large and complex organisms, and we particularly focus on the large representatives of each taxonomic group; this allows us to explore the physical constraints on the functioning of organisms.

Pre-requisite(s): Permission of biology honours adviser required

Learning and teaching methods of delivery:

Weekly contact: 1 x 2-hour seminar (x 10 weeks).

Scheduled learning: 20 hours
Guided independent study: 130 hours

Assessment pattern:

As defined by QAA:
Written Examinations = 50%, Practical Examinations = 35%, Coursework = 15%

As used by St Andrews:
2-hour Written Examination = 50%, Coursework = 50%

Re-assessment pattern: 2-hour Written Examination = 50%, Existing Coursework = 50%

Module coordinator: Prof G D Ruxton

Module teaching staff: Prof G Ruxton
BL4279 The CRISPR system for Antiviral Defence and Genome Engineering

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
</table>

Academic year: 2019/0
Availability restrictions: Not automatically available to General Degree students
Planned timetable: To be arranged

The discovery of the CRISPR system, which provides adaptive antiviral immunity in prokaryotes, has made facile genome engineering a reality. This has resulted in an ongoing revolution in molecular biology and opened the door to a wide variety of applications in healthcare, agriculture and biotechnology. It also raises many ethical considerations. In this module, students will study the molecular biology of the CRISPR system in prokaryotes in depth, touching on the history of discovery, biological mechanisms and the context of antiviral defence systems. Building on this, students will gain an appreciation of the potential applications of this technology in biotechnology and healthcare, and develop a proposal for a novel application, taking into account the practical and ethical considerations.

Pre-requisite(s): Before taking this module you must pass BL3302
Learning and teaching methods of delivery:
Weekly contact: 2 lectures (x 5 weeks), 3 seminars (x 3 weeks)
Scheduled learning: 19 hours
Guided independent study: 132 hours

Assessment pattern:
As defined by QAA: Written Examinations = 40%, Practical Examinations = 0%, Coursework = 60%
As used by St Andrews: Coursework = 60%, 1.5-hour Written Examination = 40%

Re-assessment pattern: Coursework = 60%, 1.5-hour Written Examination = 40%
Module coordinator: Prof M F White
Module teaching staff: Prof M White

BL4280 Evolution and Human Behaviour

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
</table>

Academic year: 2019/0
Availability restrictions: Not automatically available to General Degree students
Planned timetable: To be arranged.

Evolutionary biologists, anthropologists and psychologists have taken evolutionary principles and used them to explain a range of human characteristics, such as homicide, religion and sex differences in behaviour. Other researchers are sceptical of these interpretations, and critical of the methods. Moreover, researchers disagree as to the best ways to use evolution to explore humanity, and a number of schools of thought have emerged. This module will introduce and critically evaluate the main evolutionary approaches currently being used, including socio-biology, evolutionary psychology, behavioural ecology and gene-culture co-evolution.

Pre-requisite(s): Permission of biology honours adviser required
Learning and teaching methods of delivery:
Weekly contact: 1 x 2-hour seminar (x 10 weeks).
Scheduled learning: 20 hours
Guided independent study: 130 hours

Assessment pattern:
As defined by QAA: Written Examinations = 40%, Practical Examinations = 20%, Coursework = 40%
As used by St Andrews: 1.5-hour Written Examination = 40%, Coursework = 60%

Re-assessment pattern: 1.5-hour Written Examination = 40%, Existing Coursework = 60%
Module coordinator: Dr M M Webster
Module teaching staff: Dr M Webster, Dr K Cross, Dr L Dean, Dr C Evans, Dr A Navarrete
BL4281 Animal Communication and Cognition

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning to produce sounds is a particularly interesting subject as far as humans are concerned because it is such a notable feature of our own species. Why do we show it, and how did it evolve? As there is little evidence of it in any other primates we need to look further afield for clues. It is found in several other mammalian orders and in three orders of birds, and the evidence for it and nature of it will be examined in these examples. We will discuss why selection may have favoured it in each case. We will also consider vocal learning in a broader sense, including its use in animals that do not themselves produce sounds.

Pre-requisite(s): Permission of biology honours adviser required

Learning and teaching methods of delivery: Weekly contact: 1 x 2-hour seminar (x 10 weeks).

<table>
<thead>
<tr>
<th>Assessment pattern:</th>
<th>As defined by QAA: Written Examinations = 0%, Practical Examinations = 0%, Coursework = 0%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As used by St Andrews: 2-hour Written Examination = 50%, Coursework = 50%</td>
</tr>
</tbody>
</table>

Re-assessment pattern: 2-hour Written Examination = 50%, Existing Coursework = 50%

Module coordinator: Prof V Janik

Module teaching staff: Prof V Janik, Dr T Gotz, Dr J Oswald

BL4282 Biology and Behaviour of Social Insects

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module will examine and compare the biology of the four main groups of social insects: termites, ants, wasps and bees. Sociality in other groups (aphids, beetles) will also be considered briefly. Topics will include the evolution of sociality, social organisation and social control systems, reproductive strategies, and diverse communication modes including pheromonal systems, acoustic systems, and 'bee dances'. Aspects of foraging behaviour and learning abilities will also be considered, particularly for ants (leaf cutter ants, army ants, slave-making ants) and for bees both eusocial and semi-social. There will be strong evolutionary, ecological and behavioural themes, and relevance also to conservation issues.

Pre-requisite(s): Permission of biology honours adviser required

Learning and teaching methods of delivery: Weekly contact: 1 x 3-hour seminar (x 11 weeks).

<table>
<thead>
<tr>
<th>Assessment pattern:</th>
<th>As defined by QAA: Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As used by St Andrews: Coursework = 100%</td>
</tr>
</tbody>
</table>

Re-assessment pattern: Resubmission of failed item(s) of Coursework

Module coordinator: Prof P G Willmer

Module teaching staff: Team taught
BL4285 Complex Systems in Animal Behaviour

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Behaving animals form complex systems, and can create complicated and beautiful phenomena, such as flocks of birds, termite nests, and patterns of army ant swarms. This course will look at research that examines animal behaviour from a complex systems perspective, where analyses range from captive housing of entire bird flocks, computer simulation, and use of robots to interact with the animals. Introductory lectures will be followed by seminar-style discussion of the primary literature, computer practicals, and hands-on practicals where students will identify complex systems in animal behaviour around St Andrews.

Pre-requisite(s): Permission of biology honours adviser required

Learning and teaching methods of delivery: Weekly contact: 14 x 1-hour seminars plus 4 x 2-hour computer-based practical classes over 8 weeks

Scheduled learning: 22 hours Guided independent study: 128 hours

Assessment pattern: As defined by QAA:
Written Examinations = 25%, Practical Examinations = 0%, Coursework = 75%

As used by St Andrews:
2-hour Written Examination = 25%, Coursework = 75%

Re-assessment pattern: 2-hour Written Examination = 25%, Existing Coursework = 75%

Module coordinator: Dr V A Stokes
Module teaching staff: Dr V A Stokes

BL4286 Advanced Topics in Evolution

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this module, we will consider outstanding questions in modern Evolutionary Biology to develop a detailed understanding of research issues in this field. Both molecular and whole organismal approaches will be addressed. Topics will be based on classic papers in the literature raising theoretical questions about the origin of species, adaptation, genetic drift and natural and sexual selection. Each classic paper will be combined with a recently published study addressing one of these theoretical topics. We will use tutorials and student-led seminars to address the topics in detail. The result will be an exciting opportunity to tackle classic topics in evolution and learn how the very latest research addresses these issues.

Learning and teaching methods of delivery: Weekly contact: 1 x 2-hour seminar (x 10 weeks).

Scheduled learning: 20 hours Guided independent study: 130 hours

Assessment pattern: As defined by QAA:
Written Examinations = 50%, Practical Examinations = 50%, Coursework = 0%

As used by St Andrews:
2-hour Written Examination = 50%, Coursework = 50%

Re-assessment pattern: 2-hour Written Examination = 50%, Existing Coursework = 50%

Module coordinator: Prof M G Ritchie
Module teaching staff: Dr N Bailey, Prof M Ritchie
BL4288 Major Review Paper in Evolutionary Biology

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Students will prepare a major review paper, reviewing a current topic in evolutionary biology. Extensive one-to-one work with staff will afford students the opportunity to produce a highly polished article. The paper will be submitted for peer (classmate) review, and will receive editorial guidance on changes from staff before a final version is submitted.

Pre-requisite(s): Before taking this module you must pass BL3307

Anti-requisite(s): You cannot take this module if you take BL5440

Learning and teaching methods of delivery:

Weekly contact:	2-hour seminar (x 5 weeks), 1-hour tutorial (week 3,4,6)
Scheduled learning:	13 hours
Guided independent study:	138 hours

Assessment pattern:

As defined by QAA:
- Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%

As used by St Andrews:
- Coursework = 100%

Re-assessment pattern:

Coursework = 100%

Module coordinator: Dr M B Morrissey

Module teaching staff: Dr M Morrissey, Dr A Gardner, Prof O Gaggiotti

BL4289 Animal Cognition

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this module we will investigate the cognitive abilities of animals, with particular interest in understanding the adaptive value of those abilities. This means that although we will develop an understanding of animal cognition based on standard animal models (typically rats and pigeons), we will extend those principles to addressing cognitive abilities in 'real' animals behaving in the 'real' world. We will use Shettleworth's book, already the key animal cognition text, as our starting point with student-led seminars providing breadth by presenting examples from the recent burgeoning of literature on non-model animals. The result will be a stimulating opportunity to develop a critical understanding of how animals perceive their world, how their cognitive abilities are shaped by that world and how those abilities lead to reproductive success.

Pre-requisite(s): Before taking this module you must pass BL3319

Anti-requisite(s): You cannot take this module if you take BL5441

Learning and teaching methods of delivery:

Weekly contact:	2-hour seminar (x 10 weeks)
Scheduled learning:	20 hours
Guided independent study:	133 hours

Assessment pattern:

As defined by QAA:
- Written Examinations = 50%, Practical Examinations = 0%, Coursework = 50%

As used by St Andrews:
- 2-hour Written Examination = 50%, Coursework = 50%

Re-assessment pattern:

2-hour Written Examination = 100%

Module coordinator: Prof S D Healy

Module teaching staff: Prof S Healy
BL4301 Polar Ecology: A field course in Antarctica

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>Full Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>To be confirmed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module will provide a theoretical and practical introduction to the marine ecology of Antarctica with emphasis on marine top predators (sea birds and marine mammals), ecosystem functionality and conservation issues. Students will participate in a two-week vessel-based expedition to Antarctica during the austral summer (northern winter). This field trip involves traveling to southern Argentina, conducting at-sea surveys of whales, seals and sea birds during transit to/from the Antarctic Peninsula, participating in shore-based activities (e.g. observations at penguin colonies, visit to active research station), and exploring Antarctic coastal waters from small boats and the ice-strengthened vessel. Through a series of lectures, workshops, on-board practicals and field excursions, students will gain appreciation of and insights into the diversity, complexity, scientific and management challenges of the Antarctic ecoregion. Participating students will need to cover all logistic expenses via payment of a substantial expedition fee.

Pre-requisite(s): You must have a medical certificate documenting fit for travel to remote antarctic. Before taking this module you must pass BL2307 or pass BL3308 or pass BL3318

Learning and teaching methods of delivery:
- **Weekly contact:** 2.5-week field trip involving extensive travel and 100 hours of contact time on the ship
- **Scheduled learning:** 100 hours
- **Guided independent study:** 50 hours

Assessment pattern:
- **As defined by QAA:** Written Examinations = 0%, Practical Examinations = 50%, Coursework = 50%
- **As used by St Andrews:** Coursework = 100%

Re-assessment pattern: Resubmission of failed item(s) of Coursework

Module coordinator: Dr S Heinrich

Module teaching staff: Dr S Heinrich, Dr L Boehme

BL4603 External Research Placement

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>90</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>Full Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Only available to students on MBiochem, MBiol or MMarBiol programmes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The module constitutes an independent 7-12 month external research placement hosted by an independent institute/company. The project will be fully supervised at the host institute/company and student performance will be assessed jointly by the immediate supervisor and a member of staff in the School of Biology. During the module students will have the opportunity to practise and learn a range of scientific and generic skills, including an element of independent working, in a working environment outside St Andrews. Ultimately, the module will allow students to gain substantial research experience and work experience thus enhancing their future employability.

Anti-requisite(s) You cannot take this module if you take BL4602

Learning and teaching methods of delivery: This is a Study Abroad or External Placement module

Assessment pattern:
- **As defined by QAA:** Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%
- **As used by St Andrews:** Coursework = 100%

Re-assessment pattern: Coursework = 100%

Module coordinator: Dr J Nairn
BL4797 Joint Honours Project

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>60</th>
<th>SCQF Level 10</th>
<th>Semester</th>
<th>Full Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Available to students only on approved Joint Honours BSc degrees, in the second year of the Honours Programme.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>tbc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This project will involve extensive research to investigate a defined problem within the intersection of biology and the joint degree subject, appropriate to the degree programme being studied by each student. The project will involve diligence, initiative and independence in pursuing the literature, good experimental design, good experimental and/or analytical technique, and excellent record keeping. The project will culminate in the production of a high-quality report that demonstrates a deep understanding of the chosen area of research. Students will be allocated to a member of staff within the School of Biology and their joint School who will guide and advise them in research activities throughout the academic year.

<table>
<thead>
<tr>
<th>Pre-requisite(s):</th>
<th>Permission of biology honours adviser required; joint project letter of agreement must be signed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-requisite(s)</td>
<td>You cannot take this module if you take another project or dissertation module.</td>
</tr>
</tbody>
</table>

Learning and teaching methods of delivery:

- **Weekly contact:** 1 lecture (2 weeks), 2 tutorials (1 week), 1 one-to-one submission (22 weeks)
- **Scheduled learning:** 33 hours
- **Guided independent study:** 567 hours

Assessment pattern:

- **As defined by QAA:** Written Examinations = 0%, Practical Examinations = 0%, Coursework = 80%
- **As used by St Andrews:** Coursework = 100%

Re-assessment pattern: Coursework = 100%

<table>
<thead>
<tr>
<th>Module coordinator:</th>
<th>Prof S D Healy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module teaching staff:</td>
<td>Professor Susan Healy</td>
</tr>
</tbody>
</table>

BL5000 Research Project Development and Methodology

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>30</th>
<th>SCQF Level 11</th>
<th>Semester</th>
<th>Full Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Only available to students on the MBiochem, MBiol and MMarBiol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This distance learning module will look in detail at the processes involved in creating a scientific research project. The aim of the module is for the students to develop independent thought in experimental design. While on placement a series of online assessments will test the students' ability to critically analyse research literature identify core and specialised techniques in the biosciences design experiments for specific research questions quantitatively and statistically analyse data and publish research in the appropriate manner. The students should ultimately gain valuable skills necessary for successful independent research careers.

<table>
<thead>
<tr>
<th>Anti-requisite(s)</th>
<th>You cannot take this module if you take BL4601</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning and teaching methods of delivery:</td>
<td>This is a Study Abroad or External Placement module</td>
</tr>
<tr>
<td>Weekly contact:</td>
<td>5 hours of tutorials over the semester</td>
</tr>
</tbody>
</table>

Assessment pattern:

- **As defined by QAA:** Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%
- **As used by St Andrews:** Assessment consists of 100% coursework

Re-assessment pattern: Re-assessment consists of 100% coursework. Resubmission of failed item(s) of Coursework

<table>
<thead>
<tr>
<th>Module coordinator:</th>
<th>Dr J Nairn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module teaching staff:</td>
<td>Dr Jacqueline Nairn, Dr Gerald Prescott, Dr Ulrich Schwarz-Linek, Dr V Anne Smith, Prof Martin Ryan</td>
</tr>
</tbody>
</table>
BL5411 Advanced Topics in Biology

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>30</th>
<th>SCQF Level 11</th>
<th>Semester</th>
<th>Full Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Enrolment is restricted to students on the MMarBiol and MBiol programmes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module will allow you to develop advanced skills in data analysis and academic writing. You will have the opportunity to develop your 4th year placement research into a publication standard primary research article, mentored by a member of academic staff. You will then consider how to develop your research area into a funding application. Your learning throughout the module will be supported by 1:1 tutorials that will guide the development of your research article and research proposal.

Pre-requisite(s): Null

Learning and teaching methods of delivery:

Weekly contact: 2 x 2-hour seminars (x 6 weeks), 1-hour tutorial (x 6 week), 1-hour seminar (x 22 weeks)

Scheduled learning: 52 hours Guided independent study: 253 hours

Assessment pattern:

As defined by QAA: Written Examinations = 0%, Practical Examinations = 0%, Coursework = 100%

As used by St Andrews:
Coursework = 100%

Re-assessment pattern:
Coursework = 100%

Module coordinator: Dr G R Prescott

Module teaching staff: Team Taught

BL5421 Chromatin and Genome Stability

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 11</th>
<th>Semester</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2019/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Not automatically available to General Degree students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>To be arranged</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module will introduce you to the fundamental concepts of chromatin structure and function and how this affects genome stability. DNA repair and telomere maintenance are perhaps the most significant factors affecting genome stability and these processes are central to the understanding of cancer cell biology. Indeed, most existing anti-cancer agents induce DNA damage and current efforts to target chromatin factors therapeutically are showing promise. You will have the opportunity to independently research and present seminars on the applied biology of chromatin and DNA repair within model organisms such as budding yeast, Caenorhabditis elegans and Drosophila melanogaster. The seminars and student presentations will be supplemented with guest lectures from scientists at the cutting edge of chromatin research and students will also have the opportunity to engage in research debates on topics at the forefront of modern cancer biology. Importantly, you will be expected to design and defend a research proposal that addresses an unsolved question of your choice within the field of genome stability.

Pre-requisite(s): Before taking this module you must pass BL3302

Learning and teaching methods of delivery:

Weekly contact: 1 x 2-hour seminar.

Scheduled learning: 0 hours Guided independent study: 0 hours

Assessment pattern:

As defined by QAA:
Written Examinations = 0%, Practical Examinations = 0%, Coursework = 0%

As used by St Andrews:
1.5-hour Written Examination = 20%, Coursework = 80%

Re-assessment pattern:
1.5-hour Written Examination = 20%, Existing Coursework = 80%

Module coordinator: Dr H C Ferreira

Module teaching staff: Dr H Ferreira
In this module we will investigate the cognitive abilities of animals, with particular interest in understanding the adaptive value of those abilities. This means that although we will develop an understanding of animal cognition based on standard animal models (typically rats and pigeons), we will extend those principles to addressing cognitive abilities in 'real' animals behaving in the 'real' world. We will use Shettleworth's book, already the key animal cognition text, as our starting point with student-led seminars providing breadth by presenting examples from the recent burgeoning of literature on non-model animals. The result will be a stimulating opportunity to develop a critical understanding of how animals perceive their world, how their cognitive abilities are shaped by that world and how those abilities lead to reproductive success.

Learning and teaching methods of delivery:

Weekly contact: 2-hour seminar (x 10 weeks),

Scheduled learning: 20 hours

Guided independent study: 132 hours

Assessment pattern:

As defined by QAA:
- Written Examinations = 50%, Practical Examinations = 50%, Coursework = 0%

As used by St Andrews:
- 2-hour Written Examination = 50%, Presentation = 50%

Re-assessment pattern:

3-hour Written Examination = 100%

Module coordinator:

Prof S D Healy

Module teaching staff:

Prof S Healy

This project will involve extensive and advanced laboratory work to investigate a defined problem within biochemistry, appropriate to the MBiochem degree. The project will involve initiative and independence in experimental design and in pursuing the literature, excellent experimental and analytical techniques. The project will begin with an assessed project proposal and culminate in the production of a high-quality dissertation that integrates an awareness of the project subject and a critical, extensive and detailed knowledge of the relevant theories, concepts and principals. Students will be allocated to a member of staff within the School of Biology who will guide and advise them in research activities throughout the academic year. The project will be presented in the form of a proposal, a research dissertation, an oral presentation and a viva.

Pre-requisite(s):

Before taking this module you must pass BL4601 and pass BL4602

Learning and teaching methods of delivery:

Weekly contact: 1 dedicated meeting with supervisor per week.

Scheduled learning: 33 hours

Guided independent study: 567 hours

Assessment pattern:

As defined by QAA:
- Written Examinations = 0%, Practical Examinations = 25%, Coursework = 75%

As used by St Andrews:
- Coursework = 100%

Re-assessment pattern:

Resubmission of failed item(s) of Coursework

Module coordinator:

Dr C S Adamson

Module teaching staff:

Individual Supervisors across the School of Biology