School of Mathematics & Statistics

Mathematics (MT) modules

MT1001 Introductory Mathematics

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level 7</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2015/6 & 2016/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>9.00 am</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module is designed to give students a secure base in elementary calculus to allow them to tackle the mathematics needed in other sciences. Students wishing to do more mathematics will be given a good foundation from which they can proceed to MT1002. Some of the work covered is a revision and reinforcement of material in the Scottish Highers and many A-Level syllabuses.

Programme module type: Compulsory for students on all programmes in the School who do not meet the direct entry requirements for MT1002. All other students should take MT1002 instead.

Pre-requisite(s): Higher or A-Level Mathematics (A/S level Mathematics with approval of Head of School).

Anti-requisite(s): MT1003, CS1010

Requisite(s): MT1002

Learning and teaching methods and delivery:

- **Weekly contact:** 5 lectures (weeks 1 - 10), 1 tutorial and 1 laboratory (weeks 2 - 11).
- **Scheduled learning:** 70 hours
- **Guided independent study:** 130 hours

Assessment pattern:

- **As defined by QAA:**
 - Written Examinations = 90%, Practical Examinations = 0%, Coursework = 10%
- **As used by St Andrews:**
 - Written Examination = 90% (2-hour final exam = 70%, 2 class tests = 10% each), Coursework = 10%

Re-Assessment: 2-hour Written Examination = 100%

Module Co-ordinator: Dr V Archontis

Lecturer(s)/Tutor(s): Dr V Archontis, Dr J N Reinaud, TBC
The aim of this module is to provide students with a taste of both pure and applied mathematics, to give them insight into areas available for study in later years and to provide them with the opportunity to broaden their mathematical experience.

Programme module type: Optional for all programmes within the School.

Pre-requisite(s): MT1002

Required for: MT3600, MT4514

Learning and teaching methods and delivery:

- **Weekly contact:** 5 lectures (weeks 1 - 10), 1 tutorial and 1 laboratory (weeks 2 - 11).

- **Scheduled learning:** 70 hours
- **Guided independent study:** 130 hours

Assessment pattern:

- **As defined by QAA:** Written Examinations = 90%, Practical Examinations = 0%, Coursework = 10%
- **As used by St Andrews:** Written Examination = 90% (2-hour final exam = 70%, 2 class tests = 10% each), Coursework = 10%

Re-Assessment: 2-hour Written Examination = 100%

Module Co-ordinator: Prof C E Parnell

Lecturer(s)/Tutor(s): Prof K J Falconer, Prof C E Parnell, TBC
MT1007 Statistics in Practice

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level 7</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2015/6 & 2016/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>11.00 am</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module provides an introduction to statistical reasoning, elementary but powerful statistical methodologies, and real world applications of statistics. Case studies, such as building an optimal stock portfolio, and data vignettes are used throughout the module to motivate and demonstrate the principles. Students get hands-on experience exploring data for patterns and interesting anomalies as well as experience using modern statistical software to fit statistical models to data.

Programme module type: Optional for all programmes within the School.

Pre-requisite(s): An A grade at GCSE/Grade 1 at Standard Grade Mathematics or a C grade at AS level/Higher Mathematics.

Required for: MT3833, MT4551

Learning and teaching methods and delivery:
- **Weekly contact:** 4 lectures (weeks 1 - 10), 1 tutorial and 1 laboratory (weeks 2 - 11).
- **Scheduled learning:** 60 hours
- **Guided independent study:** 140 hours

Assessment pattern:
- **As defined by QAA:**
 - Written Examinations = 50%, Practical Examinations = 0%, Coursework = 50%
- **As used by St Andrews:**
 - 2-hour Written Examination = 50%, Coursework = 50%

Re-Assessment:
- 2-hour Written Examination = 75%, Existing Coursework = 25%

Module Co-ordinator: Dr V M Popov

Lecturer(s)/Tutor(s): Dr V M Popov

MT1010 Topics in Mathematics: Problem-solving Techniques

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level 7</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2015/6 & 2016/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability restrictions:</td>
<td>Available only to students on the Fast Track route through the MMath degree programme.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>10.00 am Mon (odd weeks), Wed and Fri</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module introduces some important basic concepts in mathematics and also explores problem-solving in the context of these topics. It is intended to strengthen the mathematical skills of an undergraduate entering on the Fast Track route into the MMath degree programme.

Programme module type: Compulsory for MMath Fast Track degree programme

Pre-requisite(s): Admission onto the Fast Track MMath degree programme

Learning and teaching methods and delivery:
- **Weekly contact:** 1.5-hour lecture, 1 practical and 1 tutorial (x 10 weeks)
- **Scheduled learning:** 35 hours
- **Guided independent study:** 65 hours

Assessment pattern:
- **As defined by QAA:**
 - Written Examinations = 50%, Practical Examinations = 0%, Coursework = 50%
- **As used by St Andrews:**
 - 1.5-hour Written Examination = 50%, Coursework = 50%

Re-Assessment:
- 1.5-hour Written Examination = 50%, Existing Coursework = 50%

Module Co-ordinator: Dr M Papathomas

Lecturer(s)/Tutor(s): Dr M Papathomas, Prof I Rivin, TBC
MT2501 Linear Mathematics

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level: 8</th>
<th>Semester:</th>
<th>1 & 2 (taught twice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2015/6 & 2016/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>12.00 noon Mon (odd weeks), Wed and Fri [Semester 1]; 11.00 am on Mon (even weeks), Tuesday and Thursday [Semester 2]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module extends the knowledge and skills that students have gained concerning matrices and systems of linear equations. It introduces the basic theory of vector spaces, linear independence, linear transformations and diagonalization. These concepts are used throughout the mathematical sciences and physics.

Programme module type: Compulsory for all programmes in the School of Mathematics & Statistics.

Required for: MT3501, MT3802, MT3832, MT4515, MT4517

Learning and teaching methods and delivery:
- **Weekly contact**: 2.5 hours of lectures (x 10 weeks), 1 tutorial (x 5 weeks), 1 examples class (x 5 week)
- **Scheduled learning**: 35 hours
- **Guided independent study**: 115 hours

Assessment pattern:
- **As defined by QAA**: Written Examinations = 85%, Practical Examinations = 0%, Coursework = 15%
- **As used by St Andrews**: 2-hour Written Examination = 70%, Coursework (including class test) = 30%

Re-Assessment: 2-hour Written Examination = 100%

Module Co-ordinator: Dr S Huczynska

Lecturer(s)/Tutor(s): Sem 1: Dr S Huczynska; Sem 2: Dr S Huczynska, TBC

MT2502 Analysis

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level: 8</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2015/6 & 2016/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>11.00 am Mon (even weeks), Tue and Thu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The main purpose of this module is to introduce the key concepts of real analysis: limit, continuity and differentiation. Emphasis will be placed on the rigorous development of the material, giving precise definitions of the concepts involved and exploring the proofs of important theorems. This module forms the prerequisite for all later modules in mathematical analysis.

Programme module type: Compulsory for all MMath programmes.

Required for: MT3502, MT3503, MT3600, MT4515, MT4526

Learning and teaching methods and delivery:
- **Weekly contact**: 2.5 hours of lectures (x 10 weeks), 1-hour tutorial (x 5 weeks), 1-hour examples class (x 5 week)
- **Scheduled learning**: 35 hours
- **Guided independent study**: 115 hours

Assessment pattern:
- **As defined by QAA**: Written Examinations = 85%, Practical Examinations = 0%, Coursework = 15%
- **As used by St Andrews**: 2-hour Written Examination = 70%, Coursework (including 1 class test) = 30%

Re-Assessment: 2-hour Written Examination = 100%

Module Co-ordinator: Dr M Todd

Lecturer(s)/Tutor(s): Dr M Todd
MT2503 Multivariate Calculus

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level: 8</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2015/6 & 2016/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>12 noon Mon (even weeks), Tue and Thu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module extends the basic calculus in a single variable to the setting of real functions of several variables. It introduces techniques and concepts that are used throughout the mathematical sciences and physics: partial derivatives, double and triple integrals, surface sketching, cylindrical and spherical coordinates.

Programme module type: Compulsory for all MMath programmes.

Pre-requisite(s): MT1002, or A at Advanced Higher Mathematics, or A at A-level Further Mathematics, or A at both A-level Mathematics and A-level Physics, or Co-requisite MT1010

Anti-requisite(s): MT2001 | **Required for:** MT2506, MT2507, MT3503, MT3504, MT3601, MT4507, MT4513, MT4551, MT4607

Learning and teaching methods and delivery:

- **Weekly contact:** 2.5 hours of lectures (x 10 weeks), 1-hour tutorial (x 5 weeks), 1-hour examples class (x 5 weeks)
- **Scheduled learning:** 35 hours
- **Guided independent study:** 115 hours

Assessment pattern:

- **As defined by QAA:** Written Examinations = 85%, Practical Examinations = 0%, Coursework = 15%
- **As used by St Andrews:**
 - 2-hour Written Examination = 70%, Coursework = 30% (including 1 class test)

Re-Assessment: 2-hour Written Examination = 100%

Module Co-ordinator: Prof A W Hood

Lecturer(s)/Tutor(s): Prof A W Hood, Prof D G Dritschel

MT2504 Combinatorics and Probability

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level: 8</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2015/6 & 2016/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>11.00 am Mon (odd weeks), Wed and Fri</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module provides an introduction to the study of combinatorics and finite sets and also the study of probability. It will describe the links between these two areas of study. It provides a foundation both for further study of combinatorics within pure mathematics and for the various statistics modules that are available.

Programme module type: Compulsory for all MMath programmes.

Pre-requisite(s): MT1002 or A at Advanced Higher Mathematics or A at A-level Further Mathematics, or Co-requisite MT1010

Anti-requisite(s): MT2004 or MT2005 | **Required for:** MT2508, MT3706, MT3833, MT4514, MT4516, MT4528, MT4551

Learning and teaching methods and delivery:

- **Weekly contact:** 2.5 hours of lectures (x 10 weeks), 1-hour tutorial (x 5 weeks), 1-hour examples class (x 5 weeks)
- **Scheduled learning:** 35 hours
- **Guided independent study:** 115 hours

Assessment pattern:

- **As defined by QAA:** Written Examinations = 70%, Practical Examinations = 0%, Coursework = 30%
- **As used by St Andrews:**
 - 2-hour Written Examination = 70%, Coursework = 30%

Re-Assessment: 2-hour Written Examination = 100%

Module Co-ordinator: Dr C M Roney-Dougal

Lecturer(s)/Tutor(s): Dr C M Roney-Dougal, Prof D L Borchers
MT2505 Abstract Algebra

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 8</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2015/6 & 2016/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>11.00 am Mon (odd weeks), Wed and Fri</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This main purpose of this module is to introduce the key concepts of modern abstract algebra: groups, rings and fields. Emphasis will be placed on the rigorous development of the material and the proofs of important theorems in the foundations of group theory. This module forms the prerequisite for later modules in algebra.

<table>
<thead>
<tr>
<th>Programme module type:</th>
<th>Compulsory for all MMath programmes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-requisite(s):</td>
<td>MT1002 or A at Advanced Higher Mathematics or A at A-level Further Mathematics</td>
</tr>
<tr>
<td>Anti-requisite(s):</td>
<td>MT2002</td>
</tr>
<tr>
<td>Required for:</td>
<td>MT3505, MT3600, MT4003, MT4516, MT4517, MT4519</td>
</tr>
<tr>
<td>Learning and teaching methods and delivery:</td>
<td>Weekly contact: 2.5 hours of lectures (x 10 weeks), 1-hour tutorial (x 5 weeks), 1-hour examples class (x 5 weeks)</td>
</tr>
<tr>
<td></td>
<td>Scheduled learning: 35 hours</td>
</tr>
<tr>
<td>Assessment pattern:</td>
<td>As defined by QAA: Written Examinations = 70%, Practical Examinations = 0%, Coursework = 30%</td>
</tr>
<tr>
<td></td>
<td>As used by St Andrews: 2-hour Written Examination = 70%, Coursework = 30%</td>
</tr>
<tr>
<td>Re-Assessment:</td>
<td>2-hour Written Examination = 100%</td>
</tr>
<tr>
<td>Module Co-ordinator:</td>
<td>Dr J D Mitchell</td>
</tr>
<tr>
<td>Lecturer(s)/Tutor(s):</td>
<td>Dr J D Mitchell</td>
</tr>
</tbody>
</table>

MT2506 Vector Calculus

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 8</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2015/6 & 2016/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>9.00 am Mon (even weeks), Tue and Thu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module introduces students to some of the fundamental techniques that are used throughout the mathematical modelling of problems arising in the physical world such as grad, div and curl as well as cylindrical and spherical coordinate systems. Fundamental theorems such as Green’s Theorem, Stokes’ Theorem and Gauss’s Divergence Theorem will also be studied. It provides the foundation for many of the modules available in applied mathematics later in the Honours programme.

<table>
<thead>
<tr>
<th>Programme module type:</th>
<th>Compulsory for all MMath programmes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-requisite(s):</td>
<td>MT2503</td>
</tr>
<tr>
<td>Anti-requisite(s):</td>
<td>MT2003</td>
</tr>
<tr>
<td>Required for:</td>
<td>MT3506, MT3601, MT4005, MT4509, MT4510</td>
</tr>
<tr>
<td>Learning and teaching methods and delivery:</td>
<td>Weekly contact: 2.5 hours of lectures (x 10 weeks), 1-hour tutorial (x 5 weeks), 1-hour examples class (x 5 weeks)</td>
</tr>
<tr>
<td></td>
<td>Scheduled learning: 35 hours</td>
</tr>
<tr>
<td>Assessment pattern:</td>
<td>As defined by QAA: Written Examinations = 85%, Practical Examinations = 0%, Coursework = 15%</td>
</tr>
<tr>
<td></td>
<td>As used by St Andrews: 2-hour Written Examination = 70%, Coursework (including class test) = 30%</td>
</tr>
<tr>
<td>Re-Assessment:</td>
<td>2-hour Written Examination = 100%</td>
</tr>
<tr>
<td>Module Co-ordinator:</td>
<td>Prof I De Moortel</td>
</tr>
<tr>
<td>Lecturer(s)/Tutor(s):</td>
<td>Prof I De Moortel, Dr J N Reinaud</td>
</tr>
</tbody>
</table>
MT2507 Mathematical Modelling

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 8</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2015/6 & 2016/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>12.00 noon Mon (odd weeks), Wed and Fri</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module provides an introduction to a variety of techniques that are used throughout applied mathematics. It discusses how to translate physical problems into mathematics and covers such topics as differential equations, dynamics, numerical methods and Fourier series. It illustrates how these are used when solving problems.

Programme module type: Compulsory for all MMath programmes.

Pre-requisite(s): MT2503

Anti-requisite(s): MT2003

Required for: MT3601

Learning and teaching methods and delivery:

Weekly contact: 2.5 hours of lectures (x 10 weeks), 1-hour tutorial (x 5 weeks), 1-hour examples class (x 5 weeks)

Scheduled learning: 35 hours

Guided independent study: 115 hours

Assessment pattern:

As defined by QAA:
Written Examinations = 70%, Practical Examinations = 0%, Coursework = 30%

As used by St Andrews:
2-hour Written Examination = 70%, Coursework = 30%

Re-Assessment:
2-hour Written Examination = 100%

Module Co-ordinator: Prof M A J Chaplain

Lecturer(s)/Tutor(s): Prof M A J Chaplain, TBC

MT2508 Statistical Inference

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 8</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic year:</td>
<td>2015/6 & 2016/7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planned timetable:</td>
<td>12.00 noon Mon (even weeks), Tue and Thu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module provides an introduction to the mathematical models of randomness. These models are used to perform statistical analysis, where the aim is to evaluate our uncertainty on a certain quantity after observing data. Important topics in statistics are described including maximum likelihood estimation, confidence intervals and hypothesis testing, permutation tests, and linear regression. It forms a prerequisite for the statistics modules in the Honours programme.

Programme module type: Compulsory for all MMath programmes.

Pre-requisite(s): MT2504

Anti-requisite(s): MT2004 or EC2003

Required for: MT3507, MT3508, MT3606, MT3607, MT4113, MT4527, MT4530, MT4607, MT4608, MT4614

Learning and teaching methods and delivery:

Weekly contact: 2.5 hours of lectures (x 10 weeks), 1-hour tutorial (x 5 weeks), 1-hour examples class (x 5 weeks)

Scheduled learning: 35 hours

Guided independent study: 115 hours

Assessment pattern:

As defined by QAA:
Written Examinations = 70%, Practical Examinations = 0%, Coursework = 30%

As used by St Andrews:
2-hour Written Examination = 70%, Coursework = 30%

Re-Assessment:
2-hour Written Examination = 100%

Module Co-ordinator: Dr M Papathomas

Lecturer(s)/Tutor(s): Dr M Papathomas
Interdisciplinary (ID) module

<table>
<thead>
<tr>
<th>ID2003 Science Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOTCAT Credits:</td>
</tr>
<tr>
<td>SCQF Level:</td>
</tr>
<tr>
<td>Semester:</td>
</tr>
<tr>
<td>Academic year:</td>
</tr>
<tr>
<td>Planned timetable:</td>
</tr>
</tbody>
</table>

This module provides an overview of the rationale, methods, history and philosophy of science. We explore the different definitions of science, the distinction between science and pseudo-science, the design of experiments, critical thinking, errors in reasoning, methods of making inferences and generalisations, the role of personal experience and anecdotes in science, the process of scientific publication and the role of anomalies in science. The module is collaboratively taught by staff from a number of schools in the university providing a useful methodological background for all science students.

Programme module type: Available to any degree programme.

Learning and teaching methods and delivery:
Weekly contact: 2 lectures and 1 practical class.
Scheduled learning: 33 hours
Guided independent study: 67 hours

Assessment pattern:
As defined by QAA:
Written Examinations = 50%, Practical Examinations = 0%, Coursework = 50%

As used by St Andrews:
1.5-hour Written Examination = 50%, Coursework = 50%

Re-Assessment:
2-hour Written Examination = 100%

Module Co-ordinator: Dr C G M Paxton, Mathematics & Statistics
Lecturer(s)/Tutor(s): Dr C G M Paxton, Dr E Rexstad, TBC