School of Chemistry

Important Degree Information:

B.Sc./M.A. Honours
The general requirements are 480 credits over a period of normally 4 years (and not more than 5 years) or part-time equivalent; the final two years being an approved Honours programme of 240 credits, of which 90 credits are at 4000 level and at least a further 120 credits at 3000 and/or 4000 levels. Refer to the appropriate Faculty regulations for lists of subjects recognised as qualifying towards either a B.Sc. or M.A. degree.

For the degree of B.Sc. Chemical Sciences (Honours) the approved Honours programme of 240 credits, requires 90 credits at 4000 level and a further 110 credits (minimum) at 3000 and 4000 levels.

B.Sc./M.A. Honours with Integrated Year Abroad
The general requirements are 540 credits over a period of normally 5 years (and not more than 6 years) or part-time equivalent; the final three years being an approved Honours programme of 300 credits, of which 60 credits are gained during the integrated year abroad, 90 credits are at 4000 level and at least a further 120 credits at 3000 and/or 4000 levels. Refer to the appropriate Faculty regulations for lists of subjects recognised as qualifying towards either a B.Sc. or M.A. degree.

M.Chem. Honours
General requirements are 600 credits over a period of normally 5 years (and not more than 6 years) or part-time equivalent; the final three years being an approved Honours programme of 360 credits, of which 120 credits are at 5000 level and at least a further 210 credits at 3000 and 4000 levels.

M.Sci. Honours
General requirements are 600 credits over a period of normally 5 years (and not more than 6 years) or part-time equivalent; the final three years being an approved Honours programme of 360 credits, of which 120 credits are at 5000 level and at least a further 210 credits at 3000 and 4000 levels.

Other Information: Direct entry into Level 2000 is possible, in which case credit of 120 credits at level 1000 is given on the basis of school examinations. In the case of students who spend part of the Honours programme abroad on a recognised Exchange Scheme, the Programme Requirements will be amended to take into account courses taken while abroad.
Degree Programmes

Biomolecular Science (B.Sc. Honours):

- **Level 1:**
 - Biology Element: 40 credits including passes in BL1001 and BL1201.
 - Chemistry Element: 20 – 40 credits comprising pass or bypass for CH1001, pass in CH1004 or From 2008-08: 60 credits comprising passes in CH1401, CH1402 and CH1601

- **Level 2:** (120 credits including BL2101, BL2104 and CH2101 and CH2103 or From 2008-09: 120 credits comprising passes at grade 11 or better in BL2101, BL2104, CH2501 and CH2601

- **Level 3:** 120 credits comprising Biology Element: BL3301 or BL3302, BL3310 and BL3312
 - Chemistry Element: CH3431, CH3612, CH3613, CH3614, CH3621, CH3716

- **Level 4:** 120 credits comprising:
 - Biology element: BL4210 and THREE modules chosen from (BL4211- BL4216, BL4221, BL4230) #.
 - Chemistry element: CH4442 and TWO other modules chosen from CH4611, CH4612, CH4613, CH5611, CH5612, CH5613, CH5614. (By special arrangement only, BL4201 may be taken instead of CH4442; but modules chosen from # must then be eliminated.)

Chemistry: Direct entry into Level 2 is possible, in which case 120 advanced standing credits at Level 1 are given.

In the case of students who spend part of the Honours Programme abroad on a recognised Exchange Scheme, the Programme Requirements will be amended to take into account courses taken while abroad.

Other Information: This course is recognised by the Royal Society of Chemistry (RSC) for professional membership.
<table>
<thead>
<tr>
<th>Degree Programmes</th>
<th>Programme Requirements at:</th>
</tr>
</thead>
</table>
| **(B.Sc. Honours): Chemical Sciences** | **Chemical Sciences (B.Sc. Honours Degree):**
Level 1: 40 credits comprising pass or bypass for CH1001, pass in CH1004 and 4 other 1000-level modules or
From 2008-09: 60 credits comprising passes in CH1401, CH1402 and CH1601
Level 2: 60 credits comprising passes at grade 11 or better in CH2101 and CH2102 or CH2103 or
From 2008-09: 90 credits comprising passes at grade 11 or better in CH2501, CH2601 and CH2701
Level 3: 120 credits comprising CH3431, CH3441, CH3511, CH3512, CH3521, CH3612, CH3614, CH3621, CH3712, CH3717, CH3721
Level 4: 120 credits comprising CH4442, 4 from (CH4511, CH4611, CH4612, CH4711), and 4 from (CH4512, CH4613, CH4712, CH4713, CH5513-5, CH5612-4, CH5616, CH5712-4)
Other Information: This course is aimed at those who like Chemistry and were good at it at school, who want the varied training that a Chemistry Degree gives, but who do not wish to be professional Chemists. Up to 40 credits from the 3000-level and 4000-level modules listed above can be replaced with modules from other Schools. This course is recognised by the Royal Society of Chemistry (RSC) for professional membership. |
| **(B.Sc. Honours): Chemistry** | **Chemistry (B.Sc. Honours):**
Level 1: 40 credits comprising pass or bypass for CH1001, pass in CH1004 and 4 other 1000-level modules. or
From 2008-09: 60 credits comprising passes in CH1401, CH1402 and CH1601
Level 2: 90 credits comprising passes at grade 11 or better in CH2101, CH2102 and CH2103 or
From 2008-09: 90 credits comprising passes at grade 11 or better in CH2501, CH2601 and CH2701
Level 3: 120 credits comprising CH3431, CH3441, CH3511, CH3512, CH3521, CH3612, CH3614, CH3621, CH3712, CH3717, CH3721.
Level 4: 120 credits comprising CH4442, CH4461, 2 from (CH4511, CH4611, CH4711), 2 from (CH4512, CH4613, CH4713), either CH4612 or CH4712, and 2 from (CH5513-5, CH5612-4, CH5616, CH5712-4).
Other Information: This course is recognised by the Royal Society of Chemistry (RSC) for professional membership. |
<table>
<thead>
<tr>
<th>Degree Programmes</th>
<th>Programme Requirements at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B.Sc. Honours): Chemistry and Geoscience</td>
<td>Chemistry - Geoscience Joint Degree:</td>
</tr>
<tr>
<td></td>
<td>Level 1: 40 credits comprising Pass or bypass for CH1001, pass in CH1004 and 40 credits comprising passes in GS1001 and GS1002 or From 2008-09: 60 credits comprising passes in CH1401, CH1402 and CH1601 and 40 credits comprising passes in GS1001 and GS1002 Level 2: 60 credits comprising passes at grade 11 or better in CH2101, either CH 2102 or CH2103 or From 2008-09: 60 credits comprising passes at grade 11 or better in CH2501 and either CH2601 or CH2701 and 60 credits comprising passes at grade 11 or better in (GG2003, GG2004, GS2001, and GS2002) or (GS2011 and GS2012) Level 3: 120 credits comprising CH3431, CH3521, CH3717, CH3511, CH3721, CH4512, and GS3004, normally GS3081* and 1 from (GS4083 or GS4084). Level 4: 120 credits comprising 3 from (CH4511, CH4611, CH4711, CH4712 and CH5711), CH4448§, CH5515, normally GS4083 or GS4084**, GS4005, GS4010, GS4009, 1 from (GS4088, GG3067, GG3068, GG3069 and GG3082) Other Information: This course is recognised by the Royal Society of Chemistry (RSC) for professional membership. In total (between the two Schools) 240 credits are required at Level 3 and Level 4 of which at least 90 credits must be achieved at Level 4.</td>
</tr>
<tr>
<td></td>
<td>* With the approval of the Geoscience Adviser of Studies, a student may replace GS3081 and (GS4083 or GS4084) by 2 from GG3067, GG3068, GG3069, GG3082 in semester 2. ** With the approval of the Geoscience Adviser of Studies, a student may replace GS4083 or GS4084 by a second module from the list GS4088, GG3067, GG3068, GG3069 and GG3082 §With the approval of the Directors of Teaching, under some circumstances, students might conduct an integrated 35 credit project, ID4441, combining CH4448 with GS4009 and presenting a single, extended report.</td>
</tr>
<tr>
<td>(B.Sc. Honours): Chemistry and Mathematics</td>
<td>Chemistry element of Joint Honours Degree (B.Sc. Honours):</td>
</tr>
<tr>
<td></td>
<td>Level 1: 40 credits comprising pass or bypass for CH1001, pass in CH1004 or From 2008-09: 60 credits comprising passes in CH1401, CH1402 and CH1601 Level 2: 60 credits comprising passes at grade 11 or better in CH2101, either CH2102 or CH2103 or From 2008-09: 60 credits comprising passes at grade 11 or better in CH2501 and CH2701 Level 3: 60 credits comprising 3 from (CH3431, CH3512, CH3614, CH3621, CH3717, CH3721), 30 credits from (CH3441, CH3511, CH3521, CH3612, CH3712) Level 4: 60 credits comprising CH4442, 1 or 2 from (CH4511, CH4611, CH4612, CH4711), 1 or 2 from (CH4512, CH4613, CH4712, CH4713) Other Information: This course is recognised by the Royal Society of Chemistry (RSC) for professional membership. In total (between the two Schools) 240 credits are required at Level 3 and Level 4 of which at least 90 credits must be achieved at Level 4.</td>
</tr>
<tr>
<td>Degree Programmes</td>
<td>Programme Requirements at:</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>(B.Sc. Honours): Chemistry with Catalysis</td>
<td>Chemistry with Catalysis (B.Sc. Honours):</td>
</tr>
<tr>
<td>(this programme is no longer available to entrants from 2009-10)</td>
<td>Level 1: 120 credits comprising pass or bypass for CH1001, pass in CH1004 and 4 other 1000-level modules, or From 2008-09: 60 credits comprising passes in CH1401, CH1402 and CH1601</td>
</tr>
<tr>
<td></td>
<td>Level 2: 60-90 credits comprising Passes at grade 11 or better in CH2101 and either or both of CH2102 and CH2103 or From 2008-09: 90 credits comprising passes at grade 11 or better in CH2501, CH2601 and CH2701</td>
</tr>
<tr>
<td></td>
<td>Level 3: 120 credits comprising CH3431, CH3441, CH3511, CH3512, CH3521, CH3611, CH3612, CH3621, CH3711, CH3712, CH3721,</td>
</tr>
<tr>
<td></td>
<td>Level 4: 120 credits comprising CH4442, CH4461, CH5511, CH5713, 2 from (CH4512, CH4613, CH4713), 2 from (CH4511, CH4611, CH4711), either CH4612 or CH4712.</td>
</tr>
<tr>
<td></td>
<td>Other Information: This course is recognised by the Royal Society of Chemistry (RSC) for professional membership.</td>
</tr>
<tr>
<td>(B.Sc. Honours): Chemistry with Medicinal Chemistry</td>
<td>Chemistry with Medicinal Chemistry:</td>
</tr>
<tr>
<td></td>
<td>Level 1: 120 credits comprising pass or bypass for CH1001, pass in CH1004 and 4 other 1000-level modules, or From 2008-09: 60 credits comprising passes in CH1401, CH1402 and CH1601</td>
</tr>
<tr>
<td></td>
<td>Level 2: 60-90 credits comprising passes at grade 11 or better in CH2101 and either or both of CH2102 and CH2103 or From 2008-09: 90 credits comprising passes at grade 11 or better in CH2501, CH2601 and CH2701</td>
</tr>
<tr>
<td></td>
<td>Level 3: 120 credits comprising CH3431, CH3441, CH3511, CH3512, CH3521, CH3611, CH3612, CH3621, CH3711, CH3712, CH3721,</td>
</tr>
<tr>
<td></td>
<td>Level 4: 120 credits comprising CH4442, CH4461, CH4511, CH4611, CH4612, CH4613, CH5611, 2 from (CH5612-4 and CH5616),</td>
</tr>
<tr>
<td></td>
<td>Other Information: This course is recognised by the Royal Society of Chemistry (RSC) for professional membership.</td>
</tr>
<tr>
<td>(B.Sc. Honours): Chemistry with French^</td>
<td>Chemistry element of Major Degree with French (B.Sc. Honours):</td>
</tr>
<tr>
<td>^also available as 'With Integrated Year Abroad Degrees'</td>
<td>Level 1: 60 credits comprising passes in CH1401, CH1402 and CH1601</td>
</tr>
<tr>
<td>(SURFACE TO FINAL APPROVAL)</td>
<td>Level 2: 80 credits comprising passes at grade 11 or better in CH2501, CH2603 and CH2701</td>
</tr>
<tr>
<td></td>
<td>Level 3: 90 credits comprising CH3441 and 70 credits from (CH3431, CH3511, CH3512, CH3521, CH3612, CH3614, CH3621, CH3712, CH3717, CH3721)</td>
</tr>
<tr>
<td></td>
<td>Year Abroad (if WIYA version taken): 60 credits comprising FR3101</td>
</tr>
<tr>
<td></td>
<td>Level 4: 90 credits comprising CH4442, and 50 credits from (CH4461, CH4511, CH4512, CH4611, CH4613, CH4711, CH4712, CH4713)</td>
</tr>
<tr>
<td></td>
<td>Other Information: These courses are recognised by the Royal Society of Chemistry (RSC) for professional membership. In total (between the two Schools) 240 credits are required at Level 3 and Level 4 of which at least 90 credits must be achieved at Level 4.</td>
</tr>
<tr>
<td>Degree Programmes</td>
<td>Programme Requirements at:</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| (B.Sc. Honours): Chemistry with German^ | **Chemistry element of Major Degree with German (B.Sc. Honours):**
Level 1: 40 credits comprising pass or bypass for CH1001, pass in CH1004 or CH1005, PH1011, PH1012 and MT1002. Or
From 2008-09: 60 credits comprising passes in CH1401, CH1402 and CH1601
Level 2: 60 credits comprising passes at grade 11 or better in CH2101 and either CH2102 or CH2103 or From 2008-09: 90 credits comprising passes at grade 11 or better in CH2501, CH2601 and CH2701
Level 3: 90 credits comprising CH3441, and 70 credits from (CH3431, CH3511, CH3512, CH3521, CH3612, CH3614, CH3621, CH3712, CH3717, CH3721)
Level 4: 90 credits comprising CH4442, 5 from (CH4461, CH4511, CH4512, CH4611, CH4613, CH4711, CH4712, CH4713)
Other Information: These courses are recognised by the Royal Society of Chemistry (RSC) for professional membership. In total (between the two Schools) 240 credits are required at Level 3 and Level 4 of which at least 90 credits must be achieved at Level 4. |
| (B.Sc. Honours): Chemistry with Pharmacology | **Chemistry with Pharmacology (B.Sc. Honours):**
Level 1: Chemistry element: 40 credits comprising a pass or bypass for CH1001, pass in CH1004 and 2 other 1000-level modules. Or
From 2008-09: 60 credits comprising passes in CH1401, CH1402 and CH1601
Biology element: 40 credits comprising passes in BL1001 and BL1201
Level 2: 120 credits comprising passes at grade 11 or better in BL2101, BL2104, CH2501 and CH2601
Level 3: 80 credits comprising CH3431, CH3512, CH3614, CH3621, CH3716, CH3721, 20 credits from (CH3441, CH3511, CH3612, CH3613) and 40 credits from BL3312, BL3313
Level 4: 50 credits comprising CH4447, CH4462, and 70 credits from CH4511-2, CH4611-3, CH4711-3, CH5611-4, CH5616
Other Information: This course is recognised by the Royal Society of Chemistry (RSC) for professional membership. The project (CH4447) will be supervised jointly by staff from Chemistry and Biology. |
| (B.Sc. Honours): Materials Science | **Materials Science (B.Sc. Honours):**
Level 1: 120 credits comprising pass or bypass for CH1001, pass in CH1004, CH1005, PH1011, PH1012 and MT1002. Or
From 2008-09: 120 credits comprising passes in CH1401, CH1402, CH1602, PH1011, PH1012 and MT1002
Level 2: 120 credits comprising passes at grade 11 or better in CH2101, CH2102, CH2104 and either PH2011 or MT2001. Or
From 2008-09: 120 credits comprising passes at grade 11 or better in CH2501, CH2602, CH2701 and either PH2011 or MT2001
Level 3: 120 credits comprising CH3441, CH3513, CH3712, CH3715, CH3717, CH3722, PH3002, PH3074 and two other 3000-level modules.
Level 4: 120 credits comprising CH4442, CH4711, CH4712, CH4452 and a further three 10 credit 4000-level or 5000-level modules.
Other Information: This course is recognised by the Royal Society of Chemistry (RSC) for professional membership. |
<table>
<thead>
<tr>
<th>Degree Programmes</th>
<th>Programme Requirements at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M.Chem. Honours): Chemistry (M.Chem.) 5 years</td>
<td>Chemistry (M.Chem.) Degree:</td>
</tr>
<tr>
<td></td>
<td>Level 1: 120 credits comprising pass or bypass for CH1001, pass in CH1004 and 4 other 1000-level modules or</td>
</tr>
<tr>
<td></td>
<td>From 2008-09: 60 credits comprising passes in CH1401, CH1402 and CH1601</td>
</tr>
<tr>
<td></td>
<td>Level 2: 90 credits comprising passes at 15 or better in CH2101, CH2102 and CH2103 or</td>
</tr>
<tr>
<td></td>
<td>From 2008-09: 90 credits comprising passes at 15 or better in CH2501, CH2601 and CH2701</td>
</tr>
<tr>
<td></td>
<td>Level 3: 120 credits comprising CH3431, CH3441, CH3511, CH3512, CH3521, CH3612, CH3614, CH3621, CH3712, CH3717, CH3721.</td>
</tr>
<tr>
<td></td>
<td>Level 4: 120 credits comprising CH4442, CH4511, CH4512, CH4611, CH4612, CH4613, CH4711, CH4712, CH4713.</td>
</tr>
<tr>
<td></td>
<td>Level 5: 120 credits comprising CH5461, CH5441, CH5511, CH5611, CH5711, 4 from (CH5513-5, CH5612-4, CH5616, CH5712-4).</td>
</tr>
<tr>
<td></td>
<td>Other Information: This course has been accredited by the Royal Society of Chemistry (RSC) for professional membership.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level 1: 120 credits comprising pass or bypass for CH1001, pass in CH1004 and 4 other 1000-level modules or</td>
</tr>
<tr>
<td></td>
<td>From 2008-09: 60 credits comprising passes in CH1401, CH1402 and CH1601</td>
</tr>
<tr>
<td></td>
<td>Level 2: 90 credits comprising passes at 15 or better in CH2101, CH2102 and CH2103 or</td>
</tr>
<tr>
<td></td>
<td>From 2008-09: 90 credits comprising passes at 15 or better in CH2501, CH2601 and CH2701</td>
</tr>
<tr>
<td></td>
<td>Level 3: 120 credits comprising CH3431, CH3441, CH3511, CH3512, CH3521, CH3614, CH3621, CH3712, CH3717, CH3721.</td>
</tr>
<tr>
<td></td>
<td>Level 4: 120 credits comprising CH4441, CH4451.</td>
</tr>
<tr>
<td></td>
<td>Level 5: 120 credits comprising CH5441, CH5461, CH5511, CH5611, CH5711, 4 from (CH5513-5, CH5612-4, CH5616, CH5712-4).</td>
</tr>
<tr>
<td></td>
<td>Other Information: This course has been accredited by the Royal Society of Chemistry (RSC) for professional membership.</td>
</tr>
<tr>
<td>Degree Programmes</td>
<td>Programme Requirements at:</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
| (M.Chem. Honours): Chemistry with French (M. Chem.) 5 years | Chemistry with French (M.Chem. Honours) (5 year degree) :
 Level 1: 120 credits comprising pass or bypass for CH1001, pass in CH1004 and 4 other 1000-level modules or
 From 2008-09: 60 credits comprising passes in CH1401, CH1402 and CH1601
 Level 2: 90 credits comprising passes at 15 or better in CH2101 and CH2102 or CH2103 or
 From 2008-09: 90 credits comprising passes at 15 or better in CH2501, CH2601 and CH2701
 Level 3: 90 credits comprising CH3441, and 70 credits from (CH3431, CH3511, CH3512, CH3521, CH3611, CH3612, CH3621, CH3711, CH3712, CH3721)
 Level 4: 90 credits from CH4441
 Level 5: 90 credits comprising CH5441, CH5461 and 40 credits from (CH5511, CH5513-5, CH5611-4, CH5616, CH5711-4).
 Other Information: This course has been accredited by the Royal Society of Chemistry (RSC) for professional membership. |
| Not available to entrants from 2008-09 | |
| (M.Chem. Honours): Chemistry with French (M. Chem.) 5 years | Chemistry with French (M.Chem. Honours) (5 year degree) :
 Level 1: 60 credits comprising passes in CH1401, CH1402 and CH1601
 Level 2: 80 credits comprising passes at grade 15 or better in CH2501, CH2603 and CH2701
 Level 3: 90 credits comprising CH3441 and 70 credits from (CH3431, CH3511, CH3512, CH3521, CH3612, CH3614, CH3621, CH3712, CH3717, CH3721)
 Level 4: 90 credits comprising CH4442, CH4511, CH4611, CH4711, 20 credits from (CH4512, CH4613, CH4712, CH4713)
 Level 5: 90 credits comprising CH5441, CH5461 and 40 credits from (CH5511, CH5513-5, CH5611-4, CH5616, CH5711-4).
 Other Information: This course has been accredited by the Royal Society of Chemistry (RSC) for professional membership. |
| (SUBJECT TO FINAL APPROVAL) Available to entrants from 2009-10 | |
Degree Programmes

(M.Chem. Honours): Chemistry with French and External Placement (M. Chem.) 5 years

(SUBJECT TO FINAL APPROVAL)

Available to entrants from 2009-10

<table>
<thead>
<tr>
<th>Programme Requirements at:</th>
<th>Chemistry with French and External Placement (M.Chem. Honours) (5 year degree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1:</td>
<td>60 credits comprising passes in CH1401, CH1402 and CH1601</td>
</tr>
<tr>
<td>Level 2:</td>
<td>80 credits comprising passes at grade 15 or better in CH2501, CH2603 and CH2701</td>
</tr>
<tr>
<td>Level 3:</td>
<td>90 credits comprising CH3441 and 70 credits from (CH3431, CH3511, CH3512, CH3521, CH3612, CH3614, CH3621, CH3712, CH3717, CH3721)</td>
</tr>
<tr>
<td>Level 4:</td>
<td>90 credits from CH4441</td>
</tr>
<tr>
<td>Level 5:</td>
<td>90 credits comprising CH5441, CH5461 and 40 credits from (CH5511, CH5513-5, CH5611-4, CH5616, CH5711-4)</td>
</tr>
</tbody>
</table>

Other Information: This course has been accredited by the Royal Society of Chemistry (RSC) for professional membership.

(M.Chem. Honours): Chemistry with Mathematics (M. Chem.) 5 years

<table>
<thead>
<tr>
<th>Programme Requirements at:</th>
<th>Chemistry with Mathematics (M.Chem. Honours) (5 year degree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1:</td>
<td>120 credits comprising pass or bypass for CH1001, pass in CH1004, pass in MT1002 and 3 other 1000-level modules or From 2008-09: 60 credits comprising passes in CH1401, CH1402 and CH1601</td>
</tr>
<tr>
<td>Level 2:</td>
<td>120 credits comprising passes at 15 or better in CH2101, MT2001, (either CH2102 or CH2103) and (either MT2002 or MT2003) or From 2008-09: 60 credits comprising passes at 15 or better in CH2501 and CH2701</td>
</tr>
<tr>
<td>Level 3:</td>
<td>125 credits comprising CH3441, and 60 credits from (CH3431, CH3511, CH3512, CH3521, CH3612, CH3614, CH3621, CH3712, CH3717, CH3721), two of (MT3501, MT3503, MT3504), MT3600 or MT3601)</td>
</tr>
<tr>
<td>Level 4:</td>
<td>115 credits comprising CH4442, 3 of (CH4511, CH4512, CH4611, CH4612, CH4613, CH4711, CH4712, CH4713) and 3 further 3000 or 4000 level MT modules.</td>
</tr>
<tr>
<td>Level 5:</td>
<td>120 credits comprising CH5441, CH5461, CH5711, CH5712, CH5713, CH5714, 3 from (CH5511, CH5513-5, CH5611-6).</td>
</tr>
</tbody>
</table>

Other Information: This course is recognised by the Royal Society of Chemistry (RSC) for professional membership.
<table>
<thead>
<tr>
<th>Degree Programmes</th>
<th>Programme Requirements at:</th>
</tr>
</thead>
</table>
| (M.Chem. Honours) Chemistry with Medicinal Chemistry (M.Chem.) 5 years | Chemistry with Medicinal Chemistry (M.Chem)
Level 1: 120 credits comprising pass or bypass for CH1001, pass in CH1004 and 4 other 1000-level modules or
From 2008-09: 60 credits comprising passes in CH1401, CH1402 and CH1601
Level 2: 60 credits comprising passes at 15 or better in CH2101, CH2102 and CH2103 or
From 2008-09: 90 credits comprising passes at 15 or better in CH2501, CH2601 and CH2701
Level 3: 120 credits comprising CH3431, CH3441, CH3511, CH3512, CH3521, CH3612, CH3613, CH3614, CH3621, CH3716, CH3721
Level 4: 120 credits comprising CH4442, CH4511, CH4512, CH4611, CH4612, CH4613, CH4711, CH5612, CH5614.
Level 5: 120 credits comprising CH5441, CH5462, CH5511, CH5513, CH5514, CH5515, CH5611, CH5613, CH5616
Other Information: This course has been accredited by the Royal Society of Chemistry (RSC) for professional membership. |
| (M.Chem. Honours): Chemistry with Medicinal Chemistry and External Placement (M.Chem.) 5 years | Chemistry with Medicinal Chemistry and External Placement (M.Chem):
Level 1: 120 credits comprising pass or bypass for CH1001, pass in CH1004 and 4 other 1000-level modules or
From 2008-09: 60 credits comprising passes in CH1401, CH1402 and CH1601
Level 2: 60 credits comprising passes at 15 or better in CH2101, CH2102 and CH2103 or
From 2008-09: 90 credits comprising passes at 15 or better in CH2501, CH2601 and CH2701
Level 3: 120 credits comprising CH3431, CH3441, CH3511, CH3512, CH3521, CH3612, CH3613, CH3614, CH3621, CH3716, CH3721
Level 4: 120 credits comprising CH4441, CH4451.
Level 5: 120 credits comprising CH5441, CH5462, CH5511, CH5516-6
Other Information: This course has been accredited by the Royal Society of Chemistry (RSC) for professional membership. |
<table>
<thead>
<tr>
<th>Degree Programmes</th>
<th>Programme Requirements at:</th>
</tr>
</thead>
</table>
| **(M.Sc. Honours): Chemistry and Physics (M.Sc. Honours) 5 years** | Chemistry element of Chemistry-Physics M.Sc. Degree:
 Level 1: 40 credits comprising a pass or bypass in CH1001, CH1004 or
 From 2008-09: 40 credits comprising passes in CH1401 and CH1402
 Level 2: 60 credits comprising passes at 15 or better in CH2101 and either
 CH2102 or CH2103 or CH2104 or
 From 2008-09: 60 credits comprising passes at 15 or better in CH2501 and CH2701
 Level 3: 120 credits comprising CH3431, CH3441, CH3511, CH3512, CH3614, CH3712, CH3721, CH4711, CH4712, CH4713
 Level 5: 40 credits from CH5441 or 60 credits from PH5101, at least 30 credits from CH5515, CH5711-CH5714
 Other Information: This course is recognised by the Royal Society of Chemistry (RSC) for professional membership. |
| **(M.Sc. Honours): Materials Science 5 years** | Materials Science M.Sc. Degree:
 Level 1: 120 credits comprising a pass or bypass in CH1001, CH1004, CH1005, PH1011, PH1012 and MT1002 or
 From 2008-09: 120 credits comprising passes in CH1401, CH1402, CH1601, PH1011, PH1012 and MT1002
 Level 2: 120 credits comprising passes at grade 11 or better in CH2101, CH2102, CH2104 and either MT2001 or PH2011 or
 From 2008-09: 120 credits comprising passes at grade 15 or better in CH2501, CH2602, CH2701 and either PH2011 or MT2001
 Level 3: 120 credits comprising CH3441, CH3513, CH3712, CH3715, CH3717, CH3722, CH4711, CH4712, PH3002 and PH3074.
 Level 4: 120 credits comprising CH3511, CH4442, CH4452, CH4512, CH4713, two of (CH3512, CH3612, CH3613, CH3614, CH4511)
 Level 5: 120 credits from CH5441, CH5515, CH5712, CH5713, CH5716 CH5717, CH5718, PH5208
 Other Information: This course is recognised by the Royal Society of Chemistry (RSC) for professional membership. |
Degree Programmes

- **Materials Science with External Placement**
 - 5 years

Programme Requirements at:

Materials Science with External Placement M.Sc. Degree:

- **Level 1:** 120 credits comprising a pass or bypass in CH1001, CH1004, CH1005, PH1011, PH1012 and MT1002 or
 - From 2008-09: 120 credits comprising passes in CH1401, CH1402, CH1601, PH1011, PH1012 and MT1002

- **Level 2:** 120 credits comprising passes at grade 11 or better in CH2101, CH2102, CH2104 and either MT2001 or PH2011 or
 - From 2008-09: 120 credits comprising passes at grade 15 or better in CH2501, CH2602, CH2701 and either PH2011 or MT2001

- **Level 3:** 120 credits comprising CH3441, CH3513, CH3712, CH3715, CH3717, CH3722, CH4711, CH4712, PH3002 and PH3074.

- **Level 4:** 120 credits comprising CH4441, CH4452

- **Level 5:** 120 credits from CH5441, CH5515, CH5712, CH5713, CH5716 CH5717, CH5718, PH5208

Other Information: This course is recognised by the Royal Society of Chemistry (RSC) for professional membership.

Students still completing degree programmes as defined in previous Course Catalogues should discuss their module selections with their Honours Adviser(s).
Modules

Normally the prerequisite for each of the following Honours modules is entry to the Honours Programme(s) for which they are specified, as well as any additional specific prerequisite(s) given.

General degree students wishing to enter 3000 modules and non-graduating students wishing to enter 3000 or 4000 level modules must consult with the relevant Honours Adviser within the School before making their selection.

InterDisciplinary (ID) Modules

There are modules which relate to this School – ID4001 Communication and Teaching in Science which is interdisciplinary and also appears in the Interdisciplinary Section of the Catalogue (Section 23)

Chemistry (CH) Modules

CH3431 Chemistry Workshop
Credits: 10 Semester: 1
Anti-requisite: CH3432, CH3433
Description: The aim of the module is to provide a basis in organic spectroscopy, molecular symmetry and point groups and their application to inorganic spectroscopy, and crystallography and X-ray diffraction. In addition, students will gain experience in chemical information retrieval and searching on-line databases.
Class Hour: To be arranged.
Teaching: Two seminars and one or two lectures, and occasional tutorials.
Assessment: Continuous Assessment = 100%

CH3441 Mini Chemistry Project
Credits: 20 Semester: 2
Anti-requisites ID3441, ID3442
Description: This is a group-based exercise where the students will tackle an unseen problem. Skills to be developed will vary but will include some or all of the following: The use of spectroscopy, retrosynthetic analysis, literature searching, web based searching and design, synthesis, catalysis, mechanistic studies, computational chemistry, surface chemistry, biological chemistry, communication skills.
Class Hour: 9.00 am Monday – Friday for 4 – 5 weeks.
Teaching: 7 hours per day 4 days a week, 4 hours on Wednesdays.
Assessment: Continuous Assessment = 100%

CH3442 External Placement for Chemical Sciences
Credits: 20 Semester: 2
Availability: Not available 2009-10
Description: This module is designed to carry out a placement in a company or other body, in order to assist students in selecting an appropriate career outside direct Chemistry, but in which they will find their background Chemical knowledge useful (examples might include, Scientific Publishing, Patent Office, Management in the Chemical Industry, Hospital Management).
Class Hour: Full-time – 3 months between March & Sept
Teaching: Full-time
Assessment: Continuous Assessment = 100%
CH3511 Main Group Chemistry
Credits: 10 Semester: 2
Description: This module discusses the Chemistry of the elements of groups 2, 12, 13, 117 and 18, with particular reference to systematic trends and to the chemistry of the hydrides, halides, oxides, hydroxides and solid state compounds. In all cases the basic chemistry is linked to the exciting applications of the compounds in fields as diverse as clearing runways from snow in Northern Canada to night vision and metal-containing enzymes. It also explores aspects of solid state Chemistry. A major component of the module will cover the use of spectroscopic techniques, including multinuclear NMR and EPR, to characterize main group and other inorganic compounds.
Class Hour: To be arranged.
Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH3512 Organometallic Chemistry
Credits: 10 Semester: 1
Description: This module offers a systematic introductory treatment of organometallic compounds, emphasising fundamental concepts and the principal functional groups of organometallic chemistry. Topics include: the hapto nomenclature and 18-electron rule; synthesis of complexes of CO, alkyl, alkyne and carbocyclic ligands; static and dynamic structures; reactions of coordinated ligands; unit processes involved in homogeneous catalytic cycles.
Class Hour: To be arranged.
Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH3513 Advanced Solid State Chemistry
Credits: 10 Semester: 1
Prerequisite: CH2102
Description: This module on Advanced Solid State Chemistry brings together a number of advanced concepts including advanced crystal chemistry, electronic effects, phase equilibria and extended defects. It is key to the understanding of both modern solid state chemistry and materials science.
Class Hour: To be arranged.
Teaching: 2 – 3 lectures over 7 weeks and three tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH3521 Inorganic Chemistry Laboratory
Credits: 10 Semester: 2
Description: This module comprises practical experiments involving synthesis, characterisation and measurements in inorganic chemistry.
Class Hour: 9.00 am – 12.00 noon Monday to Friday
Teaching: 3 Hours daily for weeks 1 - 6.
Assessment: Continuous Assessment = 100%

CH3612 Synthetic Methodology
Credits: 10 Semester: 2
Description: This module will cover a wide range of synthetic methods and applications of the methods to the synthesis of complex molecules. Students will gain a deep understanding of the importance of methods involving sulfur, phosphorus, boron, silicon, organolithium and organozinc reagents. Students will also be introduced to modern methods of alkene, alkyne and biaryl synthesis using palladium and ruthenium catalysts. The use of the protecting groups in conjunction with these synthetic methods will also be covered.
Class Hour: To be arranged.
Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%
CH3613 Carbohydrate and Nucleic Acid Chemistry

Credits: 10
Semester: 2

Description: The aim of the module is to cover aspects of the chemistry of nucleic acids. It will begin with an introduction to carbohydrate chemistry including discussion of biological processes, the synthesis of carbohydrates and carbohydrate-based pharmaceuticals. The structure and chemical synthesis of nucleic acids will then be discussed. The chemical reactivity of DNA and the ways in which it is chemically damaged will be examined. The chemical reactions of DNA will be related to mechanisms of carcinogenesis. The ways in which a range of drugs interact with DNA will be discussed in detail.

Class Hour: To be arranged.
Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH3614 Electron Flow in Organic Chemistry

Credits: 10
Semester: 1

Anti-requisite: CH3611

Description: This module will build on the basic understanding of organic reaction mechanism developed in the sub-honours organic chemistry modules. This module will focus on the critical role of orbitals in determining the reactivity and selectivity of organic compounds. Reaction mechanism described as a flow of electrons through a correctly aligned orbital manifold will be developed as a tool to explore key topics in synthetic chemistry, with particular emphasis on stereoelectronic effects, aspects of alicyclic chemistry and pericyclic reactions.

Class Hour: To be arranged.
Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH3621 Organic Chemistry Laboratory

Credits: 10
Semester: 1

Description: Practical experiments involving synthesis, characterisation and measurements in organic chemistry.

Class Hour: 9.00 am - 12.00 noon Monday to Friday.
Teaching: Daily three-hour practical classes over six weeks.
Assessment: Continuous Assessment = 100%

CH3712 Quantum Theory of Atoms, Molecules and Solids

Credits: 10
Semester: 2

Prerequisite: CH2102

Description: This module builds on 'Quantum Theory of Atoms, Molecules and Solids. Part I' given in CH 2102. It provides an introduction to further, basic concepts of quantum mechanics that are an essential part of the description of the electronic structures of atoms, molecules and solids. While the module is mathematically based, the emphasis throughout is on the physical and chemical implications of the mathematical results and how this provides a coherent, quantitative framework for understanding the beauty and complexities of the electronic structure of atoms, molecules and solids.

Class Hour: To be arranged.
Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH3713 Sustainable Chemistry in Relation to the Semiconductor Industry

Credits: 10
Semester: 2

Availability: Not available 2009-10

Description: This module focuses on the application of “green chemistry” concepts to the semiconductor and chemical industry. The module will examine the changes employed by the chemical and semiconductor industries in recent years in terms of production methods, cost, and the minimization of waste material. The module will also describe existing legislation as applied to the chemical industries.

Class Hour: To be arranged.
Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%
CH3714 Surface Chemistry and Advanced Physical Chemistry
Credits: 10 Semester: 2
Availability: Not available 2009-10
Description: This module focuses on the surface properties of the solid state and in particular the chemical interactions between solid state materials and selected adsorbates. The module will also include analytical methods to determine the surface composition and chemical properties of solid state materials that may or may not possess semiconducting properties.
Class Hour: To be arranged.
Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH3715 Introduction to analysis of materials
Credits: 10 Semester: 2
Description: The objective of this module is to introduce the principles of the most popular materials analysis methods using X-ray, ion beams, electrons and diffraction methods. The module will cover analytical principles of X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) together with secondary ion mass spectroscopy (SIMS) and X-ray Diffraction methods (XRD). Diffraction techniques will also be covered with the introductory aspects of Electron Energy Loss Spectroscopy (EELS) together with vibrational spectroscopic techniques.
Class Hour: To be arranged.
Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH3716 Quantitative Aspects of Medicinal Chemistry
Credits: 10 Semester: 1
Description: The aim of the module is to cover some of the quantitative aspects of Medicinal Chemistry and drug design. Initially some relevant fundamental thermodynamics will be discussed. The thermodynamics of the drug receptor interactions will then be covered along with other aspects of pharmacology. The pharmacokinetic phase of drug action will be described including the absorption, distribution, metabolism and elimination (ADME) of drugs. The use of computational chemistry in the modern drug design process will then be discussed, covering force field calculations, molecular docking, QSAR and virtual screening.
Class Hour: To be arranged.
Teaching: 3 lectures per week over 5 weeks and 3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH3717 Statistical Mechanics and Computational Chemistry
Credits: 10 Semester: 1
Anti-requisites: CH3711, CH3716
Description: This module combines the study of statistical mechanics with an introduction to theoretical and computational methods as applied in modern chemistry. In the first set of lectures the molecular basis of thermodynamics is covered in an introduction to the study of statistical mechanics. The use of computational chemistry in the modern drug design process will then be discussed, covering force field calculations, molecular docking, QSAR and virtual screening.
Class Hour: To be arranged.
Teaching: 2 - 3 lectures per week over 5 weeks and 2 - 3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%
CH3721 Physical Chemistry Laboratory
Credits: 10 Semester: 1
Anti-requisite: CH3722
Description: This module comprises practical experiments involving physical measurements and the use of computational programmes in Chemistry.
Class Hour: 9.00 am – 12.00 noon or 1.00pm Monday to Friday
Teaching: 3 – 4 hours per day for 5 weeks
Assessment: Continuous Assessment = 100%

CH3722 Materials Laboratory
Credits: 10 Semester: 1
Anti-requisite: CH3721
Description: This module comprises practical experiments involving physical measurements and the use of computational programmes in Materials Science.
Class Hour: 9.00 am – 12.00 noon or 1.00 pm Monday to Friday
Teaching: 3 – 4 hours per day for 5 weeks
Assessment: Continuous Assessment = 100%

CH4441 External Placement
Credits: 90 Semester: Whole Year
Co-requisite: CH4451 or CH4452 or FR5810
Description: This module is intended to provide each individual student with direct experience of work in an industrial or similar laboratory. Activities are very varied, according to the nature of the particular company’s or organisation’s area of business. Some students will be engaged in synthetic work and some in analytical/measurement activities. Some will be based exclusively in a laboratory, while others will also be involved in liaison with the company’s plant operators or with its customers.
Teaching: Day to day supervision by company supervisor, liaising with member of School academic staff.
Assessment: Continuous Assessment = 100%

CH4442 Chemistry Research Project
Credits: 40 Semester: Whole Year
Anti-requisites: CH4443 - CH4448, ID4441
Description: The research project at Level 4000 aims to develop the students' skills in the following areas: experimental design and problem-solving; abstraction, evaluation and interpretation of data in the chemical literature; practical skills and teamwork; communication of results orally and in a dissertation. The project will be selected and supervised by a member of the academic staff.
Class Hour: Two days per week, to be arranged.
Teaching: Laboratory-based research project.
Assessment: Continuous Assessment = 100%

CH4443 Chemistry Research Project for Non-graduating Students
Credits: 45 Semester: Either
Anti-requisites: CH5441, CH4442, CH4444 - CH4448, ID4441
Description: The research project at Level 4000 only aims to develop the students' skills in the following areas: experimental design and problem-solving; abstraction, evaluation and interpretation of data in the chemical literature; practical skills and teamwork; communication of results orally and in a dissertation. The project will be selected and supervised by a member of the academic staff.
Class Hour: Two days per week, to be arranged.
Teaching: Laboratory-based research project.
Assessment: Continuous Assessment = 100%
CH4444 Chemistry Research Project

Credits: 60
Semester: Either or both

Anti-requisites: CH5441, CH4442 - CH4443, CH4445 - CH4448, ID4441

Description: The research project at Level 4000 only aims to develop the students' skills in the following areas: experimental design and problem-solving; abstraction, evaluation and interpretation of data in the chemical literature; practical skills and teamwork; communication of results orally and in a dissertation. The project will be selected and supervised by a member of the academic staff.

Class Hour: To be arranged.
Teaching: Laboratory-based research project.
Assessment: Continuous Assessment = 100%

CH4445 Chemistry Research Project for Non-graduating Students

Credits: 90
Semester: Whole Year

Anti-requisites: CH5441, CH4442 - CH4444, CH4446 - CH4448, ID4441

Description: The research project at Level 4000 only aims to develop the students' skills in the following areas: experimental design and problem-solving; abstraction, evaluation and interpretation of data in the chemical literature; practical skills and teamwork; communication of results orally and in a dissertation. The project will be selected and supervised by a member of the academic staff.

Class Hour: To be arranged.
Teaching: Laboratory-based research project.
Assessment: Continuous Assessment = 100%

CH4446 Chemistry Research Project for Non-graduating Students

Credits: 120
Semester: Whole Year

Anti-requisites: CH5441, CH4442 - CH4445, CH4447, CH4448, ID4441

Description: The research project at Level 4000 only aims to develop the students' skills in the following areas: experimental design and problem-solving; abstraction, evaluation and interpretation of data in the chemical literature; practical skills and teamwork; communication of results orally and in a dissertation. The project will be selected and supervised by a member of the academic staff.

Class Hour: To be arranged.
Teaching: Laboratory-based research project.
Assessment: Continuous Assessment = 100%

CH4447 Level 4000 Project for Chemistry/Pharmacology

Credits: 40
Semester: Whole Year

Anti-requisites: CH4442 - CH4446, CH4448, CH5441, ID4441

Description: The research project at Level 4000 for Chemistry/Pharmacology students only aims to develop the students' skills in the following areas: experimental design and problem-solving; abstraction, evaluation and interpretation of data in the chemical literature; practical skills and teamwork; communication of results orally and in a dissertation. The project will be selected and supervised jointly by members of the academic staff in Chemistry and Biology.

Class Hour: Two days per week, to be arranged.
Teaching: Laboratory-based research project.
Assessment: Continuous Assessment = 100%

CH4448 Chemistry Project for Chemistry and Geoscience

Credits: 20
Semester: 1

Anti-requisites: CH4442 – CH4447, CH5441, ID4441

Description: The research project at Level 4000 only aims to develop the students' skills in the following areas: experimental design and problem-solving; abstraction, evaluation and interpretation of data in the chemical literature; practical skills and teamwork; communication of results orally and in a dissertation.

Class Hour: To be arranged.
Teaching: Laboratory-based research project.
Assessment: Continuous Assessment = 100%
CH4451 MChem Distance Learning
Credits: 30 Semester: Whole Year
Anti-requisites: CH4511, CH4611, CH4711, CH4452
Co-requisite: CH4441
Description: This module offers the material covered by Level 4000 BSc/MChem modules CH4511, CH4611 and CH4711 in a distance learning mode to students on the MChem one year placement. See the module descriptions for modules CH4511, CH4611 and CH4711 for details of module content.
Teaching: Distance Learning
Assessment: Continuous Assessment = 100%

CH4452 Materials Science Distance Learning
Credits: 30 Semester: Whole Year
Description: This distance learning module allows students to develop an advanced understanding of the basic concepts of Materials Science. It will be delivered in three sections, metals, ceramics and polymers, each approximately equivalent to a normal 10 credit lecture module.
Teaching: Distance Learning
Assessment: Continuous Assessment = 100%

CH4461 Integrating Chemistry
Credits: 10 Semester: 1
Anti-requisites: CH4462, CH5461 and CH5462
Description: This is a general chemistry module aimed at developing and consolidating fundamental aspects of basic understanding. Students will be encouraged to gain a deeper understanding of elementary core material by a combination of discussion, general reading, essay work and problem solving at a more advanced level than previously required. Students will be expected to read externally on related topics. In addition, each student will be required to submit an essay which will be on a topic relevant to the broader issues of chemical study and knowledge. The problems will be aimed at Level 4000 standard.
Class Hour: To be arranged.
Teaching: Two classes each week for 9 weeks.
Assessment: Continuous Assessment = 40%, One-and-a-half Hour Examination = 60%

CH4462 Integrating Chemistry for Medicinal Chemistry
Credits: 10 Semester: 1
Anti-requisites: CH4461, CH5461 and CH5462
Description: This is a general chemistry module aimed at developing and consolidating fundamental aspects of basic understanding. Students will be encouraged to gain a deeper understanding of elementary core material by a combination of discussion, general reading, essay work and problem solving at a more advanced level than previously required. Students will be expected to read externally on related topics. In addition, each student will be required to submit an essay which will be on a topic relevant to the broader issues of chemical study and knowledge. A proportion of the problems and examples will contain material specifically relevant to medicinal chemistry.
Class Hour: To be arranged.
Teaching: Two classes each week for 9 weeks.
Assessment: Continuous Assessment = 40%, One-and-a-half Hour Examination = 60%
Chemistry – Honours – 2009/10 – February 2010

CH4511 Inorganic Reaction Mechanisms and Bioinorganic Chemistry
Credits: 10 Semester: 1
Anti-requisite: CH4451
Description: This module aims to develop the students' understanding of the mechanisms that lie behind the reactions of inorganic compounds and to explore the role played by inorganic systems in biology and their growing importance in medicine. There will also be discussion of the mechanisms of action of some inorganic systems in biology which will link the two parts of the module together.
Class Hour: To be arranged.
Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH4512 Chemistry in the Natural Environment
Credits: 10 Semester: 2
Description: This module is concerned with the role of chemical processes in the Earth’s crust responsible for the development of natural resources, such as minerals and petroleum, and the role of chemistry in their exploitation. The effect of natural and anthropogenic processes on the natural environment will also be discussed, particularly with reference to water chemistry, together with chemical routes to safeguard water quality.
Class Hour: To be arranged.
Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH4611 Target Synthesis and Medicinal Chemistry
Credits: 10 Semester: 1
Anti-requisite: CH4451
Description: The module will cover aspects of organic chemistry that are important for the synthesis of biologically active compounds such as pharmaceuticals and agrochemicals. Firstly, fundamental aspects of heterocyclic chemistry will be discussed, with a review of the structure, reactivity and synthesis of heterocyclic systems, which is important as the majority of pharmaceuticals and agrochemicals are heterocyclic compounds. The module will then go on to discuss the process of industrial chemical synthesis. This will include the design of synthetic routes, choice of reagents and conditions, as they apply to the development of processes for the synthesis of commercially important molecules.
Class Hour: To be arranged.
Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH4612 Blockbuster Pharmaceuticals
Credits: 10 Semester: 1
Anti-requisite: CH5615
Description: The module will discuss case studies from the most successful pharmaceutical products. How the compounds came to be discovered, what diseases they are targeting, how they work and how they are made and delivered to the market. Compounds that will feature are aspirin, penicillin, AZT, 5-flourouracil, Zantac, viagra, β–blockers, prozac etc.
Class Hour: To be arranged.
Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Semester</th>
<th>Description</th>
<th>Class Hour</th>
<th>Teaching</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH4613</td>
<td>Natural Products and Society</td>
<td>10</td>
<td>2</td>
<td>Natural products are low molecular weight compounds produced by plants, fungi and bacteria. They have had a dramatic impact in shaping our society. The module will discuss the impact of natural products in medicine, the food industry and in society more generally. Particular case studies will be covered eg. The discovery and impact of penicillin from a fungal mould, morphine as the most widely prescribed pain killer, taxol from the yew tree as a new generation anticancer compound. The role of natural flavours and fragrances in the food and cosmetics industries will be highlighted as well as the impact of plant alkaloids in medicine.</td>
<td>To be arranged</td>
<td>2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.</td>
<td>One-and-a-half Hour Examination = 100%</td>
</tr>
<tr>
<td>CH4711</td>
<td>Physical Chemistry of Solutions</td>
<td>10</td>
<td>1</td>
<td>This module discusses the physical chemistry of and in solutions. In the first part the thermodynamics of ideal and non-ideal solutions are covered, together with micellar solutions and the chemistry of colloidal suspensions. In the second part solution electrochemistry is covered.</td>
<td>To be arranged</td>
<td>2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.</td>
<td>One-and-a-half Hour Examination = 100%</td>
</tr>
<tr>
<td>CH4712</td>
<td>Energy Conversion and Storage</td>
<td>10</td>
<td>2</td>
<td>In our efforts to mitigate global warming it is essential to develop new and improved methods of generation and storage of energy. Foremost among these methods are the electrochemical technologies of batteries and fuel cells. In this module we will discuss the technical details and applications of such devices. Particular emphasis will be placed on the underlying electrochemistry and materials chemistry.</td>
<td>To be arranged</td>
<td>2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.</td>
<td>One-and-a-half Hour Examination = 100%</td>
</tr>
<tr>
<td>CH4713</td>
<td>Interactions of Light with Matter</td>
<td>10</td>
<td>2</td>
<td>This module describes the fascinating properties of matter relevant to their interaction with electromagnetic radiation. Absorption, transmission, reflection and diffraction of light across the electromagnetic spectrum is covered. The properties of matter, particularly in the gas and solid phases, which are important for the emission, modification and transport of light are discussed at the atomic and molecular level.</td>
<td>To be arranged</td>
<td>2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.</td>
<td>One-and-a-half Hour Examination = 100%</td>
</tr>
<tr>
<td>CH5441</td>
<td>Research Project</td>
<td>40</td>
<td>Whole Year</td>
<td>The research project at Stage 5 of the M.Chem. programme aims to develop the students' skills in the following areas: experimental design and problem-solving; abstraction, evaluation and interpretation of data in the chemical literature; practical skills and teamwork; communication of results orally and in a dissertation. The project is supervised by a member of the academic staff. The project topic and aims will be selected by both supervisor and student and a literature survey will be carried out.</td>
<td>Two days per week, to be arranged.</td>
<td>Laboratory-based research project</td>
<td>Continuous Assessment = 100%</td>
</tr>
</tbody>
</table>
Chemistry – Honours – 2009/10 – February 2010

CH5461 Integrating Chemistry

Credits: 10
Semester: 1

Anti-requisites: CH5462, CH4461, CH4462

Description: This is a general chemistry module aimed at developing and consolidating fundamental aspects of basic understanding. Students will be encouraged to gain a deeper understanding of elementary core material by a combination of discussion, general reading, essay work and problem solving at a more advanced level than previously required. Students will be expected to read externally on related topics. In addition, each student will be required to submit an essay which will be on a topic relevant to the broader issues of chemical study and knowledge. The problems will be aimed at Level 5000 standard.

Class Hour: To be arranged.

Teaching: Two weekly classes over nine weeks.

Assessment: Continuous Assessment = 40%, One-and-a-half Hour Examination = 60%

CH5462 Integrating Chemistry for Medicinal Chemistry

Credits: 10
Semester: 1

Anti-requisites: CH5461, CH4461, CH4462

Description: This is a general chemistry module aimed at developing and consolidating fundamental aspects of basic understanding. Students will be encouraged to gain a deeper understanding of elementary core material by a combination of discussion, general reading, essay work and problem solving at a more advanced level than previously required. In addition, each student will be required to submit an essay which will be on a topic relevant to the broader issues of chemical study and knowledge. A proportion of the problems and examples will contain material specifically relevant to Medicinal chemistry.

Class Hour: To be arranged.

Teaching: 2-3 weekly classes over 6-8 weeks.

Assessment: Continuous Assessment = 40%, One-and-a-half Hour Examination = 60%

CH5511 Homogeneous Catalysis

Credits: 10
Semester: 1

Description: This module discusses the use of metal based systems in organic transformations and a detailed treatment of homogeneous catalysis. Important processes in the petrochemicals industry will be used to exemplify the principles described.

Class Hour: To be arranged.

Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.

Assessment: One-and-a-half Hour Examination = 100%

CH5513 Inorganic Rings, Cages and Clusters and Macrocyclic Chemistry

Credits: 10
Semester: 2

Description: This module discusses the importance of and structural similarities between rings, cages and clusters particularly in main group chemistry. Recognition of cations and anions using macrocycle, cryptand and spherand hosts will be discussed, as well as the interaction of neutral molecules with cyclodextrins, calixarenes, cyclophanes and clefts with applications in catalysis and as enzyme mimics. Recent developments in other applications such as molecular electronics and solar energy conversion will be described.

Class Hour: To be arranged.

Teaching: 2-3 weekly lectures over 5-7 weeks.

Assessment: One-and-a-half Hour Examination = 100%
CH5514 Advanced Coordination Chemistry
Credits: 10 Semester: 2
Description: This is a Masters level module in advanced co-ordination chemistry covering the heavier d-block and f-block metals and also the theory behind bonding, magnetism and electronic spectroscopy in d-block metal complexes. At the end of the module students should be in a position to understand fully the nature of bonding in d- and f-block metal systems, to understand the electronic spectra of d-block complexes and to rationalise trends in chemical properties both down and across the periodic table.
Class Hour: To be arranged.
Teaching: 2-3 weekly lectures over 5-7 weeks.
Assessment: One-and-a-half Hour Examination = 100%

CH5515 Characterisation of Solids
Credits: 10 Semester: 2
Description: This module aims to describe the most important experimental techniques available for the characterisation of solids, viz. X-ray crystallography, solid-state NMR and transmission electron microscopy. The fundamentals of each technique, together with examples of their applications to inorganic chemistry will be covered.
Class Hour: To be arranged.
Teaching: 2 – 3 weekly lectures over 5-7 weeks.
Assessment: One-and-a-half Hour Examination = 100%

CH5611 Asymmetric Synthesis
Credits: 10 Semester: 1
Description: This module discusses the methods available for the synthesis of chiral compounds. After a detailed introduction to the specialised terminology and analytical methods used, the main methods using chiral auxiliaries, chiral reagents and chiral catalysts will be described. This will then be combined with a consideration of synthetic strategy and total syntheses of several complex chiral compounds will be discussed.
Class Hour: To be arranged.
Teaching: 2 – 3 lectures per week over 5 – 7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH5612 Natural Products, Biosynthesis and Enzyme Co-factors
Credits: 10 Semester: 2
Description: The module will investigate the biosynthesis of the main natural products groups (polyketides, terpenes, alkaloids). Unifying features of their structures and biosynthesis will be described and methods for studying the biosynthesis of natural products will be taught (isotope tracer methods). The common enzyme co-factors (PLP, TPP, NADH, co-enzyme B12) will be highlighted and their mechanistic role in mediating enzymatic transformations will be explored.
Class Hour: To be arranged.
Teaching: 2 –3 weekly lectures over 5-7 weeks.
Assessment: One-and-a-half Hour Examination = 100%

CH5613 Reactive Intermediates
Credits: 10 Semester: 2
Description: Aspects of the organic chemistry of the most important reactive intermediates viz.: carbocations, carbanions, free radicals, carbenes, nitrenes and arynes will be covered. Means of generating each type of reactive intermediate will be introduced. The key reactions of each intermediate will be reviewed and their characteristic reactions highlighted. An understanding of the use of each species in organic synthesis and of their significance in mechanistic analysis will be developed.
Class Hour: To be arranged.
Teaching: 2 –3 weekly lectures over 5-7 weeks
Assessment: One-and-a-half Hour Examination = 100%
CH5614 Chemical Biology
Credits: 10 Semester: 2
Description: This module will examine new methodologies for drug discovery. An overview of the processes of target discovery, lead discovery and lead optimisation will be given. The use of structural biology (protein crystallography, NMR), computational chemistry and combinatorial chemistry in ‘rational drug design’ will be described. The module will look at the technologies behind combinatorial library design, synthesis and high throughput screening. Broad and focused libraries will be discussed. Several examples will be explored, such as the development of drugs against AIDS and influenza.
Class Hour: To be arranged.
Teaching: 2 –3 weekly lectures over 5-7 weeks.
Assessment: One-and-a-half Hour Examination = 100%

CH5615 Advanced Pharmaceutical Chemistry
Credits: 10 Semester: 1
Anti-requisite: CH4612
Description: The module will discuss case studies from the most successful pharmaceutical products. How the compounds came to be discovered, what diseases they are targeting, how they work and how they are made and delivered to the market. Compounds that will feature are aspirin, penicillin, AZT, 5-flourouracil, Zantac, viagra, β-blockers, prozac etc.
Class Hour: To be arranged.
Teaching: Two - three lectures over 5-7 weeks, two tutorials, plus extra directed reading.
Assessment: One-and-a-half Hour Examination = 100%

CH5616 Molecular Recognition
Credits: 10 Semester: 2
Description: This module offers a systematic introductory treatment of molecular recognition, emphasizing fundamental concepts of intermolecular interactions and molecular recognition in solution. The nature, strength and directionality of orbital, hydrogen-bonding and hydrophobic interactions will be explored. Spectroscopic and other techniques for studying these interactions will be outlined with examples.
Class Hour: To be arranged.
Teaching: Two - three lectures over 5-7 weeks, two - three tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH5711 Advanced Spectroscopic Methods
Credits: 10 Semester: 1
Description: This module describes the importance of more advanced spectroscopic methods for the elucidation of structure and properties of increasingly complex molecules and materials. Particular attention will be paid to those techniques which exploit synchrotron radiation.
Class Hour: To be arranged.
Teaching: 2–3 lectures per week over 5–7 weeks and 2-3 tutorials.
Assessment: One-and-a-half Hour Examination = 100%

CH5712 Functional Materials / Electrons in Solids
Credits: 10 Semester: 2
Description: The module introduces the physical concepts of dielectrics, semiconductors, and metals. Electronic properties of interfaces and thin films which are fundamental to devices such as microprocessors, lasers in CD players, or solar cells will be discussed.
Class Hour: To be arranged.
Teaching: 2-3 lectures over 5-7 weeks.
Assessment: One-and-a-half Hour Examination = 100%
CH5713 Surface Science and Heterogeneous Catalysis
Credits: 10 Semester: 2
Description: The module describes the Chemistry of solid surfaces with particular reference to the structure of metal, oxide and semiconductor surfaces. The techniques available to characterise the uppermost atomic layers of a solid are presented and the novel reactivity of surfaces is linked to applications in sensors, electronic devices, heterogeneous catalysis as well as the processes of corrosion, friction and wear.
Class Hour: To be arranged.
Teaching: 2–3 weekly lectures over 5-7 weeks.
Assessment: One-and-a-half Hour Examination = 100%

CH5714 Statistical Mechanics and Quantum Mechanics
Credits: 10 Semester: 2
Prerequisites: CH3711, CH3712
Description: This module builds on ‘Statistical Mechanics. Part I’, given in CH3712, ‘Quantum Theory of Atoms, Molecules and Solids. Part I’ given in CH 2102 and ‘Quantum Theory of Atoms, Molecules and Solids. Part II’ given in CH3711. While the module is mathematically based, the emphasis throughout is on the physical and chemical implications of the mathematical results and how this provides a coherent, quantitative framework for understanding the basis of thermodynamics and the electronic structure of atoms, molecules and solids.
Class Hour: To be arranged.
Teaching: 2 –3 weekly lectures over 5-7 weeks.
Assessment: One-and-a-half Hour Examination = 100%

FR5810 Science Project Report in French
Credits: 30 Semester: Whole Year
Prerequisites: Admission to stage 4 of MChem with French Programme
Anti-requisites: FR3101, FR3103, FR3810, FR3809, FR4809
Co-requisites: CH4441 or CH4442
Description: This module offers students the opportunity of personal study arising from a work placement or research project in connection with their science course. It will be assessed by a dissertation in French, normally 5,000 words in length including any quotations, on an agreed topic for which the student already possesses adequate foundation knowledge and for which suitable linguistic supervision can be provided. During the work placement or project year, students will collect data for their dissertation and will prepare a plan in French which will be submitted at the beginning of their final year. This will provide a benchmark for writing the dissertation, which will allow any relevant knowledge acquired during the final year to be incorporated.
Assessment: Dissertation = 100%

GG3096 Earth System Science: Terrestrial Ecosystems and Environmental Change
Credits: 15 Semester: 2
Prerequisites: GE2011/ GE2012 or GS2011/GS2012 or SD2001 or BL2105. Familiarity with basic chemistry and mathematics is desirable, but not essential.
Description: Terrestrial ecosystems play a central role in modulating the flow of energy and materials in the Earth system, regulating trace gas exchange with the atmosphere, the transfer of carbon and nutrients with rivers and oceans, and the natural attenuation of pollutants. Understanding how terrestrial ecosystems function is crucial to addressing problems such as climate change, stratospheric ozone loss, and environmental pollution. This module will develop principles of ecosystems ecology and biogeochemistry, focusing on major elemental cycles, soil processes, and human activity. In addition to students in Geography and Geosciences, this module also welcomes students from Sustainable Development, Biology and Chemistry.
Class Hour: To be arranged.
Teaching: Two lectures and occasional tutorials.
Assessment: Continuous Assessment = 30%, 2 Hour Examination = 70%
ID4001 Communication and Teaching in Science

Credits: 15 Semester: 1
Availability: Available only to final year students who have been accepted following interview.
Description: This module is based on the Undergraduate Ambassador Scheme launched in 2002. It provides final year students within the Faculty of Science with the opportunity to gain first hand experience of science education through a mentoring scheme with science teachers in local schools. Students will act initially as observers in the classroom and later as classroom assistants. With permission of the teacher-in-charge, students may also be given the opportunity to lead at least one lesson, or activity within a lesson, during their placement. This module will enable students to gain substantial experience of working in a challenging and unpredictable working environment, and of communicating scientific ideas at various different levels; and to gain a broad understanding of many of the key aspects of teaching science in schools. While of particular value to students aiming for a career in education, these core skills are equally important for any career that requires good communication. Entry to this module is by selection following application and interview during the preceding semester.
Class Hour: Flexible
Teaching: Occasional tutorials and a half-day training session.
Assessment: Continuous Assessment = 100%

ID4441 Combined Chemistry and Geoscience Research Project

Credits: 35 Semester: Whole Year
Prerequisites: Admission to stage 4 of BSc programme
Anti-requisites: CH4442-CH4448, CH5441
Description: The research project at Level 4000 for Chemistry and Geoscience students only aims to develop the students’ skills in the following areas: experimental design and problem-solving; abstraction, evaluation and interpretation of data in the chemical literature; practical skills and teamwork; communication of results orally and in a dissertation. The project will be selected and supervised jointly by members of the academic staff in Chemistry and Geoscience.
Class Hour: Two days per week.
Teaching: Reflection, laboratory work, library work, written and oral presentation preparation.
Assessment: Continuous Assessment = 100%