MPhil in Chemistry

Programme Requirements

MPhil:

CH5442 and 60 credits chosen, with the approval of the Programme Director from the following: CH4461, CH4514, CH4515, CH4612, CH4614, CH4615, CH4715, CH4716, CH4717, CH5511, CH5516, CH5517, CH5518, CH5611, CH5612, CH5613, CH5614, CH5616, CH5711, CH5713, CH5714, CH5715, CH5716, CH5717.

Compulsory module:

<table>
<thead>
<tr>
<th>Compulsory module:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH5442 Chemistry Research Project for First Year MPhil</td>
</tr>
<tr>
<td>SCOTCAT Credits: 60</td>
</tr>
<tr>
<td>Planned timetable: To be arranged.</td>
</tr>
</tbody>
</table>

The research project for MPhil only aims to develop the students' skills in the following areas: experimental design and problem-solving; abstraction, evaluation and interpretation of data in the chemical literature; practical skills and teamwork; communication of results orally and in a dissertation. The project will be selected and supervised by a member of the academic staff. It will contain a significant literature survey.

Programme module type:	Compulsory for Chemistry MPhil.
Learning and teaching methods and delivery:	Weekly contact: 540 hours spread over both semesters and summer vacation.
Assessment pattern:	Coursework = 100%
Module Co-ordinator:	Dr P Kilian
Lecturer(s)/Tutor(s):	all staff

Optional modules:

<table>
<thead>
<tr>
<th>Optional modules:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH4461 Integrating Chemistry</td>
</tr>
<tr>
<td>SCOTCAT Credits: 10</td>
</tr>
<tr>
<td>Planned timetable: To be arranged.</td>
</tr>
</tbody>
</table>

This is a general chemistry module aimed at developing and consolidating fundamental aspects of basic understanding. Students will be encouraged to gain a deeper understanding of elementary core material by a combination of discussion, general reading, essay work and problem solving at a more advanced level than previously required. Students will be expected to read externally on related topics. In addition, each student will be required to submit an essay which will be on a topic relevant to the broader issues of chemical study and knowledge. The problems will apply the knowledge gained in Level 2000 Chemistry modules.

Programme module type:	Optional for Chemistry MPhil
Anti-requisite(s):	CH5461
Learning and teaching methods and delivery:	Weekly contact: 2 classes per week over 8 weeks (Weeks 3-11) and a total of 3 x 1-hour seminars
Assessment pattern:	2-hour Written Examination = 60%, Coursework = 40%
Module Co-ordinator:	Dr R Schaub
Lecturer(s)/Tutor(s):	all staff
CH4514 Advanced Metal Chemistry

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

This module covers the heavier d-block and f-block metals and also the theory behind bonding, magnetism and electronic spectroscopy in d-block metal complexes. At the end of the module students should be in a position to understand fully the nature of bonding in d- and f-block metal systems, to understand the electronic spectra of d-block complexes and to rationalise trends in chemical properties both down and across the periodic table. The module also aims to explore the role played by inorganic systems in biology and their growing importance in medicine. There will also be discussion of the mechanisms of action of some inorganic systems in biology.

Programme module type: Optional for Chemistry MPhil.

Anti-requisite(s): CH4455

Learning and teaching methods and delivery: *Weekly contact:* 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Dr B E Bode

Lecturer(s)/Tutor(s): Dr E Zysman-Colman, Dr B E Bode

CH4515 Advanced Main Group Chemistry

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

This module discusses the importance of and structural similarities between rings, cages and clusters particularly in main group chemistry. The general rules for predicting geometry in cage/cluster systems will be introduced and used to provide a framework for the range of systems to be discussed e.g. boranes, Zintl anions, phosphides. Further advanced topics in s and p block chemistry will be introduced, for example the stabilisation of heavier main group multiple bonds, low coordinate main group element centres, biradicaloids and use of weakly coordinating anions.

Programme module type: Optional for Chemistry MPhil.

Anti-requisite(s): CH5513

Learning and teaching methods and delivery: *Weekly contact:* 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 tutorials in total.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Dr P Kilian

Lecturer(s)/Tutor(s): Dr P Kilian, Dr A Stasch
CH4612 Blockbuster Pharmaceuticals

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level 10</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

The module will discuss case studies from the most successful pharmaceutical products. How the compounds came to be discovered, what diseases they are targeting, how they work and how they are made and delivered to the market. Compounds that will feature are aspirin, penicillin, AZT, 5-flourouracil, Zantac, viagra, 8-blockers, prozac etc.

Programme module type: Optional for Chemistry MPhil.

Anti-requisite(s): CH5615

Learning and teaching methods and delivery: Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total, plus a half day site visit.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Prof D O'Hagan

Lecturer(s)/Tutor(s): Prof D O'Hagan and visiting industrial lecturers

CH4614 Heterocyclic and Pericyclic Chemistry

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level 10</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

This module covers the important areas of heterocyclic and pericyclic chemistry in detail. In heterocyclic chemistry, the nomenclature and numbering of single and fused ring systems, and structure, reactivity, synthesis and applications of the main five and six-membered ring systems with one and two heteroatoms will be covered. Selected industrial syntheses of heterocyclic medicinal compounds are used to illustrate the basic principles as well as the factors to be considered in large scale synthesis. In pericyclic chemistry, a frontier molecular orbital approach based on the Woodward-Hoffmann rules will be applied to pericyclic reactions and used to provide an understanding of the energetics and stereochemistry of Diels-Alder and 1,3-dipolar cycloaddition reactions as well as electrocyclic processes and sigmatropic rearrangements. Synthetic applications of these processes will also be illustrated.

Programme module type: Optional for Chemistry MPhil.

Anti-requisite(s): CH4456

Learning and teaching methods and delivery: Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total, plus a half-day site visit.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Dr R A Aitken

Lecturer(s)/Tutor(s): Dr R A Aitken, Dr E R Kay
CH4615 Fragrance, Food and Colour Chemistry

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level: 10</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module considers three areas where applications of organic chemistry have been able to benefit society and given rise to important industries. The fragrance, perfumery and food flavouring industry will be covered from the early extraction of essential oils to the modern marketplace with an overview of the key structural features required for perfumes and flavours and some major manufacturing processes. The chemical constituents of food will be considered with an emphasis on health effects and the molecular mechanism of antioxidants, vitamins and other food constituents. The chemistry of organic dyes and pigments will be discussed including the historical development of colour compounds and how these affected society and art. Coloured compounds in nature will also be discussed.

Programme module type: Optional for Chemistry MPhil.

Anti-requisite(s): CH4613

Learning and teaching methods and delivery:
Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Dr R A Aitken

Lecturer(s)/Tutor(s): Dr R A Aitken, Dr R J M Goss, Prof T K Smith

CH4715 Functional Materials and Electrons in Solids

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level: 10</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The module introduces the physical concepts of dielectrics, semiconductors, and metals. Electronic properties of interfaces and thin films which are fundamental to devices such as microprocessors, lasers in CD players, or solar cells will be discussed.

Programme module type: Optional for Chemistry MPhil.

Anti-requisite(s): CH5712

Learning and teaching methods and delivery:
Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Dr F D Morrison

Lecturer(s)/Tutor(s): Dr F D Morrison, Prof M Buck
CH4716 Electrochemistry and Computational Chemistry

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level: 10</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One component of the module covers electrolyte solutions and ionic conductivity, equilibrium electrochemistry, electrode processes and applications of electrochemistry.

The other component is a computational element, and will introduce aspects of modern computational chemistry related to the electronic structure of atoms, molecules and solids to achieve a basic understanding of the underlying approximations made in practical calculations, and consider applications of computed structures and energies in chemistry.

Programme module type: Optional for MPhil in Chemistry

Learning and teaching methods and delivery:

Weekly contact: 2 hours of lectures (x 9 weeks) and 2 hours of tutorials over the semester.

Assessment pattern:

2-hour Written Examination = 100%

Module Co-ordinator:

Prof M Buck

Lecturer(s)/Tutor(s):

Prof M Buck, Prof M Buehl

CH4717 Fundamentals of the Spectroscopy of Molecules and Solids

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level: 10</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned timetable:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module describes the properties of matter relevant to their interaction with electromagnetic radiation. Absorption, transmission, reflection and diffraction of light across the electromagnetic spectrum are covered. There is a focus on microwave, infrared and NMR spectroscopy. Solid-state NMR spectroscopy will be compared with solution-state NMR and the advantages of solid-state NMR in obtaining structural information discussed.

Programme module type: Optional for Chemistry MPhil.

Learning and teaching methods and delivery:

Weekly contact: 2 hours of lectures (x 9 weeks) and 2 hours of tutorials over the semester.

Assessment pattern:

2-Hour Written Examination = 100%

Module Co-ordinator:

Dr R Schaub

Lecturer(s)/Tutor(s):

Dr R Schaub, Prof S E M Ashbrook

CH5511 Homogeneous Catalysis

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level: 11</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module discusses the use of metal based systems in organic transformations and a detailed treatment of homogeneous catalysis. Important processes in the petrochemicals industry will be used to exemplify the principles described.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil.

Optional for MSc in Geochemistry.

Learning and teaching methods and delivery:

Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern:

2-hour Written Examination = 100%

Module Co-ordinator:

Prof P C J Kamer

Lecturer(s)/Tutor(s):

Prof P C J Kamer, Prof R P Tooze
CH5516 Advanced Ligand Design

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level: 11</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

Phosphines and carbenes represent the most common ligands used in many applications of metal complexes. Recent developments have allowed very precise design of properties of complexes as a result of new ligand design. In this module design principles will be addressed and applications of these important complexes in industry will be discussed.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil.

Learning and teaching methods and delivery: Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Prof P C J Kamer,

Lecturer(s)/Tutor(s): Prof P C J Kamer

CH5517 Advanced Physical Inorganic Chemistry

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level: 11</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

This module involves distinct sections on photophysics of coordination complexes including theory and applications, and inorganic ‘open shell’ compounds including synthesis, characterisation and applications of paramagnetic inorganic species.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil. Optional for MSc in Geochemistry.

Learning and teaching methods and delivery: Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Dr E Zysman-Colman

Lecturer(s)/Tutor(s): Dr E Zysman-Colman, Dr B Bode

CH5518 Blockbuster Solids

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level: 11</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

This module covers two major topics. The first deals with modern materials which have a major impact on our lives, focusing on how the material's structure influences its electrical, magnetic and thermal properties. In the second section, emphasis will be placed on metal organic frameworks and how they can be used for the storage and release of gases.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil. Optional for MSc in Geochemistry.

Learning and teaching methods and delivery: Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Prof P Lightfoot

Lecturer(s)/Tutor(s): Prof P Lightfoot, Prof R E Morris
CH5611 Asymmetric Synthesis

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level 11</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

This module discusses the methods available for the synthesis of chiral compounds. After a detailed introduction to the specialised terminology and analytical methods used, the main methods using chiral auxiliaries, chiral reagents and chiral catalysts will be described. This will then be combined with a consideration of synthetic strategy and total syntheses of several complex chiral compounds will be discussed.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil.

Learning and teaching methods and delivery: Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Dr M L Clarke

Lecturer(s)/Tutor(s): Dr M L Clarke, Prof A D Smith

CH5612 Natural Products, Biosynthesis and Enzyme Co-factors

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level 11</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

The module will investigate the biosynthesis of the main natural products groups (polyketides, terpenes, alkaloids). Unifying features of their structures and biosynthesis will be described and methods for studying the biosynthesis of natural products will be taught (isotope tracer methods). The common enzyme co-factors (PLP, TPP, NADH, co-enzyme B12) will be highlighted and their mechanistic role in mediating enzymatic transformations will be explored.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil.

Learning and teaching methods and delivery: Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Prof D O'Hagan

Lecturer(s)/Tutor(s): Prof D O'Hagan, Prof T K Smith, Dr G J Florence

CH5613 Reactive Intermediates

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level 11</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

Aspects of the organic chemistry of the most important reactive intermediates viz.: carbo-cations, carbanions, free radicals, carbenes, nitrenes and arynes will be covered. Means of generating each type of reactive intermediate will be introduced. The key reactions of each intermediate will be reviewed and their characteristic reactions highlighted. An understanding of the use of each species in organic synthesis and of their significance in mechanistic analysis will be developed.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil.

Learning and teaching methods and delivery: Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Dr R A Aitken

Lecturer(s)/Tutor(s): Dr R A Aitken, Dr I A Smellie
CH5614 Chemical Biology

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

This module will examine new methodologies for drug discovery. An overview of the processes of target discovery, lead discovery and lead optimisation will be given. The use of structural biology (protein crystallography, NMR), computational chemistry and combinatorial chemistry in 'rational drug design' will be described. The module will look at the technologies behind combinatorial library design, synthesis and high throughput screening. Broad and focused libraries will be discussed. Several examples will be explored, such as the development of drugs against AIDS and influenza.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil.

Learning and teaching methods and delivery: Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Prof J Naismith

Lecturer(s)/Tutor(s): Prof J H Naismith, Prof N J Westwood

CH5616 Molecular Recognition

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

This module offers a systematic introductory treatment of molecular recognition, emphasising fundamental concepts of intermolecular interactions and molecular recognition in solution. The nature, strength and directionality of orbital, hydrogen-bonding and hydrophobic interactions will be explored. Spectroscopic and other techniques for studying these interactions will be outlined with examples.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil.

Learning and teaching methods and delivery: Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Prof D Philp

Lecturer(s)/Tutor(s): Prof D Philp, Dr E R Kay

CH5711 Advanced Spectroscopic Methods

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

This module describes the importance of more advanced spectroscopic methods for the elucidation of structure and properties of increasingly complex molecules and materials. Particular attention will be paid to those techniques which exploit synchrotron radiation.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil.

Learning and teaching methods and delivery: Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials per week.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Dr C J Baddeley

Lecturer(s)/Tutor(s): Dr C J Baddeley, Dr G Haehner
CH5713 Surface Science and Heterogeneous Catalysis

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level 11</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

The module describes the Chemistry of solid surfaces with particular reference to the structure of metal, oxide and semiconductor surfaces. The techniques available to characterise the uppermost atomic layers of a solid are presented and the novel reactivity of surfaces is linked to applications in sensors, electronic devices, heterogeneous catalysis as well as the processes of corrosion, friction and wear.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil.

Learning and teaching methods and delivery: Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Dr C J Baddeley

Lecturer(s)/Tutor(s): Dr C J Baddeley, Prof P A Wright

CH5714 Chemical Applications of Electronic Structure Calculations

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level 11</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

This module will build on the foundations laid in CH2701 and CH3712 and introduce further aspects and methods of modern computational chemistry related to the electronic structures of atoms and molecules. It will be shown how results of such calculations can be used to complement, interpret, and guide experiments in many areas of chemistry.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil.

Learning and teaching methods and delivery: Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Dr J B O Mitchell

Lecturer(s)/Tutor(s): Dr J B O Mitchell, Dr T van Mourik

CH5715 Energy Conversion and Storage

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level 11</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged.

In our efforts to mitigate global warming it is essential to develop new and improved methods of generation and storage of energy. Foremost among these methods are the electrochemical technologies of batteries and fuel cells. In this module we will discuss the technical details and applications of such devices. Particular emphasis will be placed on the underlying electrochemistry and materials chemistry.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil. Optional for MSc in Geochemistry.

Anti-requisite(s): CH4712

Learning and teaching methods and delivery: Weekly contact: 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern: 2-hour Written Examination = 100%

Module Co-ordinator: Dr R T Baker

Lecturer(s)/Tutor(s): Dr R T Baker, Prof J T S Irvine
CH5716 Processing of Materials

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level 11</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module focuses on the processing of materials. Fundamental materials properties such as crystallinity, composition, crystal phase, phase mixing, domain structure, grains and grain boundaries, porosity and pore structure will be covered and the main methods used to control these properties in order to develop and improve materials for specific applications will be addressed. Processes including casting, extrusion, physical and chemical vapour deposition, calcination, sintering, annealing, plasma treatments, mechanical working, crystallisation and dopant addition will be described and explained. Applications in high-value metals, ceramics and semiconductor materials will be emphasised.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil. Optional for MSc in Geochemistry.

Learning and teaching methods and delivery:
- **Weekly contact:** 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern:
- 2-hour Written Examination = 100%

<table>
<thead>
<tr>
<th>Module Co-ordinator:</th>
<th>Prof J T S Irvine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer(s)/Tutor(s):</td>
<td>Prof J T S Irvine, Dr M Cassidy</td>
</tr>
</tbody>
</table>

CH5717 Nanostructured Materials

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level 11</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module will introduce the concepts and science behind the design and synthesis of a wide range of nanostructures and the application of these structures in functional materials and devices. The relationship between nanoscale structure and composition and macroscale properties and behaviour will be emphasised. Structures will be classified and introduced in terms of their number of dimensions: clusters, nanoparticles and quantum dots (0-D); nanotubes, nanowires and nanorods (1-D); nanosheets and films (2-D); and porous crystals, mesoporous structures and metal-organic frameworks (3-D). Other specific topics will include the science of clusters, molecular assemblies and assemblies of nanostructures. Novel carbon based materials, including simple and functionalised fullerenes, carbon nanotubes and graphene and related materials will be described and their physical and chemical properties related to their structure and bonding. Advanced characterisation techniques and applications related to nanotechnology, MEMs, biomaterials, catalysis, and optical and magnetic devices will be addressed.

Programme module type: Optional for Chemical Science MSc and Chemistry MPhil.

Learning and teaching methods and delivery:
- **Weekly contact:** 2 - 3 lectures per week over 9 - 10 weeks (within Weeks 1-11) and 2 - 3 tutorials in total.

Assessment pattern:
- 2-hour Written Examination = 100%

<table>
<thead>
<tr>
<th>Module Co-ordinator:</th>
<th>Prof W Zhou</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer(s)/Tutor(s):</td>
<td>Prof W Zhou, Prof M Buck</td>
</tr>
</tbody>
</table>