Chromosomal DNA replication and genome stability.

Group leader: Stuart MacNeill

SULSA Reader in Translational Biology

Research overview

Chromosomal DNA replication in eukaryotic cells requires the complex interplay of a large number of essential and non-essential protein factors in a temporally- and spatially-coordinated manner. Determining how these factors act together to replicate the genome is central to understanding how the integrity of the genome is maintained within, and across, generations and how genetic diseases such as cancer are avoided. The components of the replication machinery are also potential targets for anti-proliferative drugs and can be used as diagnostic markers for the proliferative state.

The complexity of the replication machinery favours the use of simple model systems to dissect problems of protein structure, function and regulation. Indeed, much of what we know about the eukaryotic replication apparatus has come from model system studies. In the MacNeill lab, research is focused on dissecting the molecular biology of eukaryotic chromosomal DNA replication and genome stability using two highly contrasting model systems, the eukaryotic fission yeast Schizosaccharomyces pombe and the genetically-tractable halophilic archaeon Haloferax volcanii. We use a variety of methods to address questions of protein structure and function within the chromosome replication apparatus, including genetics and molecular biology, biochemistry, biophysics and bioinformatics.

Publications

Overview

Overview header image

Scientists associated with the thirty-two research groups that are affiliated with the Biomedical Sciences Research Complex perform highly innovative, multi-disciplinary research in eleven broad areas of biomedical research, employing state-of-the-art techniques to address key questions at the leading edge of the biomedical and biological sciences. The BSRC is grateful for funding from all funding agencies including the Institutional Strategic Support Fund from the Wellcome Trust.

Follow the links on the left to view individual research groups associated with one or more of the eleven BSRC research areas.

Research areas

Scientists associated with the thirty-two research groups that are affiliated with the Biomedical Sciences Research Complex perform highly innovative, multi-disciplinary research in eleven broad areas of biomedical research, employing state-of-the-art techniques to address key questions at the leading edge of the biomedical and biological sciences.

Follow the links on the left to view individual research groups associated with one or more of the eleven BSRC research areas.

Research by academic schools

Research in the BSRC is conducted by thirty-two independent research groups based in the Schools of Biology, Chemistry, Physics and Astronomy, and Medicine. Follow the links on the left to view groups associated with each school.