Endogeneous Risk in Monopolistic Competition

Vladislav Damjanovic*†‡
University of Exeter

OCTOBER 24, 2012

ABSTRACT
We consider a model of financial intermediation with a monopolistic competition market structure. A non-monotonic relationship between the risk measured as a probability of default and the degree of competition is established.

JEL Classification: G21, G24, D43, E13, E43.
Keywords: Competition and Risk, Risk in DSGE models, Bank competition; Bank failure, Default correlation, Risk-shifting effect, Margin effect.
1 Introduction

There is growing evidence, both theoretical and empirical, of a non-monotonic relationship between competition and the risk undertaken by financial institutions. According to so-called traditional views, banks have incentives to take more risk as competition increases since in less competitive markets, there is no need to take on more risk due to a high monopoly rent (Keeley, 1990). However, there is also evidence of the negative relationship between bank risk taking and competition as in Boyd and de Nicolo (2005) and Boyd et al. (2009). There are a few papers where a U-shape relation between bank risk taking and the degree of competition is predicted: in Boyd and De Nicoló (2003), the effect of competition on bank risk taking is investigated when a bankruptcy cost is allowed; in an MMR due to the common shocks there is a default correlation between loans which leads to a U-shape relationship between risk and competition.

We find that a U-shape relationship between probability of default and the degree of competitiveness exists in a monopolistically competitive market as well. This is important since first, in our case, the nature of competition is quite different since FIs compete by differentiated products in contrast to an MMR setting, where they compete by a single product and, second, we have a continuum of banks.\footnote{A model with a continuum of banks seems to be more appropriate for the US banking system.}

A U-shape relationship between competition and risk has been found in Martinez-Miera and Repullo (2010, MMR hereafter). They consider the case of imperfectly correlated loan defaults where the probability of default is endogenously derived by entrepreneurs. The supply side is characterized by a finite number of banks engaged in Cournot competition for entrepreneurial loans. However, it is well known that banks do not supply identical financial products so as a more realistic case, we consider monopolistic competition between a continuum of financial intermediaries, while keeping imperfect correlation in loan defaults as an important and realistic feature. In our setting, the entrepreneurs purchase a basket of differentiated financial products, characterized by constant elasticity of substitution, each of them supplied by a single bank. In effect, entrepreneurs have to solve the portfolio problem by deriving how much of each differentiated product they have to purchase in order to minimize the borrowing cost.

2 Model

There is a continuum of entrepreneurs, financial intermediaries (FIs) and depositors. Financial intermediaries are monopolistic competitors and provide loans to entrepreneurs. For simplicity, loans are financed by a perfectly elastic supply of funds from depositors at zero price. We built on MMR by adding a continuum of monopolistically competitive banks which provide a variety of intermediary financial products (credits) characterized by their prices (interest rates) r_i.

\begin{equation}
1\end{equation}
2.1 Entrepreneurs

There is a continuum of penniless risk-neutral entrepreneurs of measure one, indexed by \(i \in [0, 1] \). To run the investment project, one unit of capital is needed and the revenue \(R \) generated by entrepreneur’s \(i \)th investment project is a binomial random variable defined as:

\[
R = \begin{cases}
1 + \zeta(p_i) & \text{with probability } 1 - p_i \\
\lambda & \text{with probability } p_i
\end{cases}
\]

(1)

where \(\zeta(p_i) \) is an increasing and concave function of \(p_i \), reflecting the fact that a project with a higher revenue has a higher probability of default and \(\lambda < 1 \). When the investment project is undertaken, the probability of its default \(p_i \) is endogenously chosen by the entrepreneur.\(^2\)

There is a continuum of banks of measure one indexed by \(j \in [0, 1] \) whose market power in a loan market is modeled in a Dixit-Stiglitz framework: one unit of capital purchased by the entrepreneur is a basket of differentiated financial products with a constant elasticity of substitution \(\theta > 1 \) — each supplied by bank \(j \):

\[
1 = \left(\int l_j^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta}{\theta-1}}
\]

(2)

where \(l_j \) is a quantity purchased of product \(j \). This approach\(^3\) may be a realistic way of capturing competition between FIs at the aggregate level.

The cost of borrowing for the entrepreneur is given by:

\[
\int (1 + r_j)l_j dj.
\]

(3)

where \(1 + r_j \) is the price of financial product \(j \).

Combining (1) and (3), the \(i \)th entrepreneur’s problem can be written as:

\[
\bar{\pi} = \max_{p_i, l_j}(1 - p_i)(1 + \zeta(p_i) - \int (1 + r_j)l_j dj).
\]

(4)

\[
s.t.
\]

\[
l_j = \left(\int l_j^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta}{\theta-1}}.
\]

(5)

Apart from choosing the probability of default \(p_i \), the entrepreneur \(i \) will also choose fractions \(l_j \) to minimize the repayment cost subject to (2).

2.1.1 Demand

The FOC of the problem (4) gives us a down-sloping demand that bank \(j \) faces from a single entrepreneur \(i \)

\[
l_j = \left(\frac{1 + r_j}{1 + r} \right)^{-\theta}
\]

\(^2\)See, for example, Alen and Gale (2001), Vereshchagina and Hopenhayn (2009) and Martinez-Miera and Repullo (2010) for further references.

\(^3\)Some authors use this approach. See, for example, Gerali et al. (2008).
where

\[1 + r = \left[\int (1 + r_j)^{1-\theta} d_j \right]^{\frac{1}{1-\theta}} \]

is the aggregate gross rate.

Since all entrepreneurs who are in need of investment demand the same amount of capital \(l_j \) from bank \(j \), the total demand faced by bank \(j \) is:

\[L_j = \left(\frac{1 + r_j}{1 + r} \right)^{-\theta} L(r) \]

(7)

where total demand \(L(r) \) is exogenously given and is a decreasing function of \(r \).

2.1.2 Distribution of Default rate

As in MMR, we assume that each investment project \(i \) is characterized by a latent random variable \(y_i \) so that whenever \(y_i < 0 \), the project is in default state. \(y_i \) is defined as

\[y_i = -\Phi^{-1}(p_i) + \sqrt{p}z + \sqrt{1-\rho}\varepsilon_i^i, \quad z, \varepsilon_i^i \sim \mathcal{N}(0,1), \]

where \(z \) is a common shock, \(\varepsilon_i \) is an idiosyncratic shock, all independently and normally distributed from each other, \(0 \leq \rho \leq 1 \) is a parameter which measures the correlation in project defaults, and \(\Phi^{-1}(p_i) \) stands for inverse standard normal cdf. Because \(\sqrt{p}z + \sqrt{1-\rho}\varepsilon_i \sim \mathcal{N}(0,1) \) we have that \(\mathbb{P}(y_i < 0) = p_i \) where \(p_i \) is the expected probability of default which will be endogenously selected by the entrepreneur and, in equilibrium, will depend on the loan rate \(r \).

Since, in equilibrium, \(^5\) all entrepreneurs will choose the same \(p \), the fraction of projects in default (the default rate) conditional on the realization of \(z \) is given by

\[\gamma(z) = \mathbb{P}(y_i < 0|z) = \Phi \left(\frac{\Phi^{-1}(p) - \sqrt{p}z}{\sqrt{1-\rho}} \right) \]

from which it follows that a cumulative distribution of the default rate is given by:

\[F(x) = \mathbb{P}(\gamma(z) < x) = \mathbb{P}(z < \gamma^{-1}(x)) = \Phi \left(\frac{\sqrt{1-\rho}\Phi^{-1}(x) - \Phi^{-1}(p)}{\sqrt{p}} \right). \]

(8)

2.2 FI’s problem

Here, we focus on FI’s optimization problem assuming, for simplicity, that deposits are supplied at zero cost and fully insured. Given the default rate \(x \), the \(j \)-th FI’s profit is

\[\pi_j = \max \left[L_j (1 + r_j)(1 - x) + L_j \lambda x - L_j, 0 \right] \]

\[= L_j \max \left[r_j - (r_j + 1 - \lambda)x, 0 \right] \]

(9)

(10)

\(^4\)See McNeil et al. (2005) for more details about deriving this relation.

\(^5\)In what follows, the existence of a symmetric equilibrium where all FIs choose the same interest rate \(r \) is established.
where the revenue comes from two channels: full repayment from the fraction $1 - x$ of entrepreneurs being in no default state and partial repayment from fraction x of entrepreneurs in default. The cost L_j is repayment to depositors.

Now with the aim of (7) and (8), the expected profit can be written as

$$E(\pi_j) = \frac{L(r^*)}{(1 + r^*)^\theta} (1 + r_j)^{-\theta} \int_0^{\hat{x}(r_j)} (r_j - (r_j + 1 - \lambda)x) dF(x, r^*)$$

subject to

$$x \leq \hat{x}(r_j) = \frac{r_j}{r_j + 1 - \lambda}$$

where r^* is an equilibrium interest rate still to be determined.

In a symmetric equilibrium, \(^6\) all FIs set the same interest rate r so after dropping subscript j the bank’s problem is to set r so as to maximize the function

$$\Psi(r, \theta) = (1 + r)^{-\theta} \int_0^{\hat{x}} [r - (r + 1 - \lambda)x] dF(x, r^*)$$

subject to

$$\hat{x}(r) = \frac{r}{r + 1 - \lambda}.$$

Proposition 1 There is an internal solution to the bank’s problem (13).

Proof. The function $\Psi(r, \theta)$ is continuous for all $r \geq 0$ starting from zero since $\hat{x}(0) = 0$. On the other hand, when $r \to \infty$, we have $\hat{x} \to 1$ and $\Psi(r \to \infty, \theta) \to 0$. \(\blacksquare\)

Now from the first-order condition $d\Psi(r, \theta)/dr = 0$, we have that the equilibrium interest rate r is given as a solution to the following equation:

$$\int_0^{\hat{x}} [\theta((r + 1 - \lambda)x - r) + (1 + r)(1 - x)] dF(x, r) = 0.$$

For a wide range of parameters ρ and θ, the numerical computations show that $r'(\theta) < 0$ as shown in Figure 1 (a).

3 Risk and Competition

In this section, we establish the existence of a U-shape relationship between the risk of the financial institution measured as the probability of default and the degree of competition. First, note that since in symmetric equilibrium all banks set the same interest rate r, the entrepreneur’s problem can be rewritten as:

\(^6\)Here, we implicitly assume that there is no social cost related to FIs. In other words, the total amount of available loans is equal to the sum of granted loans that is $\left(\int l_j^{\frac{\rho - 1}{\rho}} dj\right)^{\frac{\rho}{\rho - 1}} = \int l_j dj$ which is possible only in a symmetric equilibrium.
\[u(r) = \max_p (1 - p)(\zeta(p) - r)^7 \]

where \(r \) is calculated from (15) for a given \(\theta \). Solving (16) gives us \(p(r) \) which enters into the distribution of default rates (8).

As follows from (11), the risk or the probability of bank failure is the probability that the default rate \(x \) exceeds the threshold \(\tilde{x}(r) \) given by (14), that is

\[\text{Risk}(r) = \mathbb{P}(x > \tilde{x}(r)) = \Phi \left(\frac{\Phi^{-1}(p(r)) - \sqrt{1 - \rho \Phi^{-1}(\tilde{x}(r))}}{\sqrt{\rho}} \right) \]

where \(p(r) \) is the solution of (16).

Differentiating \(\text{Risk} \) with respect to \(\theta \), we get:

\[\text{Risk}'(\theta) = \frac{\Phi'(\cdot)}{\sqrt{\rho}} \frac{d \Phi^{-1}(p)}{dp} p'(r) r'(\theta) - \frac{\Phi'(\cdot)}{\sqrt{\rho}} \sqrt{1 - \rho} \frac{d \Phi^{-1}(\tilde{x})}{d \tilde{x}} \tilde{x}'(r) r'(\theta). \]

As competition rises, the interest rate falls which means that always \(\Phi'(\cdot) > 0 \), so that the sign of the first term (risk shifting effect) is negative since \(d \Phi^{-1}(p)/dp > 0 \), \(p'(r) > 0 \), and \(r'(\theta) < 0 \) while the second term (margin effect) is positive since first \(d \Phi^{-1}(\tilde{x})/d \tilde{x} > 0 \) and \(\tilde{x}'(r) > 0 \).

The discussion of (18) as a function of \(\theta \) closely resembles that in MMR in the case of Cournot competition. The negative effect (first term) called the risk shifting effect (Boyd and DeNicolo) says that as competition increases, the interest rate goes down which, in turn, decreases the probabilities of default. The other side (second term) called marginal effect tells us the opposite: as competition rises, the revenue from performing loans goes down, thus making banks riskier.

The interplay between the risk shifting effect and the margin effect is reflected in a U-shape relation as shown in subplot a) in Figure 1. A simple sensitivity analysis shows that the U-shape relationship between risk and competition is sensitive with respect to the correlation coefficient \(\rho \). Depending on which of the two above mentioned effects dominates, the impact of competition on the risk of bank failures may be positive or negative as demonstrated on subplots b) and d) in Figure 1. When loan defaults are perfectly correlated in the absence of idiosyncratic shocks, the margin effect disappears completely.

4 Conclusion

We showed the existence of a non-monotonic (U-shaped) relationship between the risk taken by FIs and competition in a monopolistically competitive market. This is relevant since first, our finding is evidence that an MMR result holds for a wider spectrum of market structures. Second, the existence of an 'optimal' level of competition with respect to the default rate is something that must be accounted for in any macroeconomic model with financial frictions. Especially an U-shaped relation between competition and risk should be taken into consideration by policy makers.

\footnote{As in Martinez-Miera and Repullo (2010), in order to have an interior solution \(0 < p < 1 \) the condition \(\zeta(0) - \zeta'(0) < r < \zeta(1) \) is imposed.}
Figure 1: $r^\prime(\theta) < 0$ as shown in a) for $\rho = 0.4$. For a sufficiently small ρ, there is only a marginal effect shown in b) as opposed to risk shifting when ρ is sufficiently large, shown in d). Both effects can be seen in subplot c). In all graphs $p = 0.01 + 0.5r$ as in MMR (2010) and $\lambda = 0.6$.

5 Acknowledgment

Part of this work was done at the Department of Economics, NYU, during my visit in September 2012. I am grateful to Tatiana Damjanovic, Douglas Gale, and Boyan Jovanovic for useful comments and suggestions. All remaining errors are mine.

References

ABOUT THE CDMA

The Centre for Dynamic Macroeconomic Analysis was established by a direct grant from the University of St Andrews in 2003. The Centre facilitates a programme of research centred on macroeconomic theory and policy. The Centre is interested in the broad area of dynamic macroeconomics but has particular research expertise in areas such as the role of learning and expectations formation in macroeconomic theory and policy, the macroeconomics of financial globalization, open economy macroeconomics, exchange rates, economic growth and development, finance and growth, and governance and corruption. Its affiliated members are Faculty members at St Andrews and elsewhere with interests in the broad area of dynamic macroeconomics. Its international Advisory Board comprises a group of leading macroeconomists and, ex officio, the University’s Principal.

Affiliated Members of the School
Prof George Evans (Co-Director).
Dr Gonzalo Forgue-Puccio.
Dr Laurence Lasselle.
Dr Seong-Hoon Kim.
Dr Peter Macmillan.
Prof Rod McCrorie.
Prof Kaushik Mitra (Director).
Dr Geetha Selvaretnam.
Dr Ozge Senay.
Dr Gary Shea.
Dr Gang Sun.
Prof Alan Sutherland.
Dr Alex Trew.

Senior Research Fellow
Prof Andrew Hughes Hallett, Professor of Economics, Vanderbilt University.

Research Affiliates
Dr Fabio Aricò, University of East Anglia.
Prof Keith Blackburn, Manchester University.
Prof David Cobham, Heriot-Watt University.
Dr Luisa Corrado, Università degli Studi di Roma.
Dr Tatiana Damjanovic, University of Exeter.
Dr Vladislav Damjanovic, University of Exeter.
Prof Huw Dixon, Cardiff University.
Dr Anthony Garratt, Birkbeck College London.
Dr Sugata Ghosh, Brunel University.
Dr Aditya Goenka, Essex University.
Dr Michal Horvath, University of Oxford.
Prof Campbell Leith, Glasgow University.
Prof Paul Levine, University of Surrey.
Dr Richard Mash, New College, Oxford.
Prof Patrick Minford, Cardiff Business School.
Dr Elisa Newby, University of Cambridge.
Prof Charles Nolan, University of Glasgow.
Dr Gulcin Ozkan, York University.

Research Associates
Miss Jinyu Chen.
Mr Johannes Geissler.
Miss Erven Lau.
Mr Min-Ho Nam.

Advisory Board
Prof Sumru Altug, Koç University.
Prof V V Chari, Minnesota University.
Prof John Driffill, Birkbeck College London.
Dr Sean Holly, Director of the Department of Applied Economics, Cambridge University.
Prof Seppo Honkapohja, Bank of Finland and Cambridge University.
Dr Brian Lang, Principal of St Andrews University.
Prof Anton Muscatelli, Heriot-Watt University.
Prof Charles Nolan, St Andrews University.
Prof Peter Sinclair, Birmingham University and Bank of England.
Prof Stephen J Turnovsky, Washington University.
Dr Martin Weale, CBE, Director of the National Institute of Economic and Social Research.
Prof Michael Wickens, York University.
Prof Simon Wren-Lewis, Oxford University.
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDMA11/06</td>
<td>Variety Matters</td>
<td>Oscar Pavlov (Adelaide) and Mark Weder (Adelaide, CDMA and CEPR)</td>
</tr>
<tr>
<td>CDMA11/07</td>
<td>Foreign Aid—a Fillip for Development or a Fuel for Corruption?</td>
<td>Keith Blackburn (Manchester) and Gonzalo F. Forgues-Puccio (St Andrews)</td>
</tr>
<tr>
<td>CDMA11/08</td>
<td>Financial intermediation and the international business cycle: The case of small countries with big banks</td>
<td>Gunes Kamber (Reserve Bank of New Zealand) and Christoph Thoenissen (Victoria University of Wellington and CDMA)</td>
</tr>
<tr>
<td>CDMA11/09</td>
<td>East India Company and Bank of England Shareholders during the South Sea Bubble: Partitions, Components and Connectivity in a Dynamic Trading Network</td>
<td>Andrew Mays and Gary S. Shea (St Andrews)</td>
</tr>
<tr>
<td>CDMA11/10</td>
<td>A Social Network for Trade and Inventories of Stock during the South Sea Bubble</td>
<td>Gary S. Shea (St Andrews)</td>
</tr>
<tr>
<td>CDMA11/11</td>
<td>Policy Change and Learning in the RBC Model</td>
<td>Kaushik Mitra (St Andrews and CDMA), George W. Evans (Oregon and St Andrews) and Seppo Honkapohja (Bank of Finland)</td>
</tr>
<tr>
<td>CDMA11/12</td>
<td>Individual rationality, model-consistent expectations and learning</td>
<td>Liam Graham (University College London)</td>
</tr>
<tr>
<td>CDMA11/13</td>
<td>Learning, information and heterogeneity</td>
<td>Liam Graham (University College London)</td>
</tr>
<tr>
<td>CDMA11/14</td>
<td>(Re)financing the Slave Trade with the Royal African Company in the Boom Markets of 1720</td>
<td>Gary S. Shea (St Andrews)</td>
</tr>
<tr>
<td>CDMA11/15</td>
<td>The financial accelerator and monetary policy rules</td>
<td>Güneş Kamber (Reserve Bank of New Zealand) and Christoph Thoenissen (Victoria University of Wellington and CAMA)</td>
</tr>
<tr>
<td>CDMA11/16</td>
<td>Sequential Action and Beliefs under Partially Observable DSGE Environments</td>
<td>Seong-Hoon Kim (St Andrews)</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>CDMA12/01</td>
<td>A Producer Theory with Business Risks</td>
<td>Seong-Hoon Kim (St Andrews) and Seongman Moon (Carlos III Madrid)</td>
</tr>
<tr>
<td>CDMA12/02</td>
<td>Fiscal Policy and Learning</td>
<td>Kaushik Mitra (St Andrews), George Evans (Oregon and St Andrews) and Seppo Honkapohja (Bank of Finland)</td>
</tr>
<tr>
<td>CDMA12/03</td>
<td>Bayesian Model Averaging, Learning and Model Selection</td>
<td>George Evans (Oregon and St Andrews), Seppo Honkapohja (Bank of Finland), Thomas Sargent (New York) and Noah Williams</td>
</tr>
<tr>
<td>CDMA12/04</td>
<td>Finite Horizon Learning</td>
<td>William Branch (California), George Evans (Oregon and St Andrews), and Bruce McGough (Oregon)</td>
</tr>
<tr>
<td>CDMA12/05</td>
<td>Universal banking, competition and risk in a macro model</td>
<td>Tatiana Damjanovic (Exeter), Vladislav Damjanovic (Exeter) and Charles Nolan (Glasgow)</td>
</tr>
<tr>
<td>CDMA12/06</td>
<td>Financial frictions and the role of investment specific technology shocks in the business cycle</td>
<td>Güneş Kamber, Christie Smith and Christoph Thoenissen</td>
</tr>
<tr>
<td>CDMA12/07</td>
<td>Does Size Matter? Scale, Corruption and Uncertainty</td>
<td>Gonzalo Forgues-Puecio and Ibrahim Okumu</td>
</tr>
<tr>
<td>CDMA12/08</td>
<td>Profits in (Partial) Equilibrium and (General) Disequilibrium</td>
<td>Seong-Hoon Kim (St Andrews) and Seongman Moon (Carlos III)</td>
</tr>
<tr>
<td>CDMA12/09</td>
<td>E-stability in the Stochastic Ramsey Model</td>
<td>George Evans (Oregon and St Andrews) and Kaushik Mitra (St Andrews)</td>
</tr>
</tbody>
</table>

For information or copies of working papers in this series, or to subscribe to email notification, contact:

Kaushik Mitra
Castlecliffe, School of Economics and Finance
University of St Andrews
Fife, UK, KY16 9AL
Email: km91@at-andrews.ac.uk; Phone: +44 (0)1334 462443; Fax: +44 (0)1334 462444.