Policy Change and Learning in the RBC Model*

Kaushik Mitra
University of St Andrews

George W. Evans
University of Oregon

Seppo Honkapohja
Bank of Finland

AUGUST 11, 2011

ABSTRACT

What is the impact of surprise and anticipated policy changes when agents form expectations using adaptive learning rather than rational expectations? We examine this issue using the standard stochastic real business cycle model with lump-sum taxes. Agents combine knowledge about future policy with econometric forecasts of future wages and interest rates. Both permanent and temporary policy changes are analyzed. Dynamics under learning can have large impact effects and a gradual hump-shaped response, and tend to be prominently characterized by oscillations not present under rational expectations. These fluctuations reflect periods of excessive optimism or pessimism, followed by subsequent corrections.

JEL Classification: E62, D84, E21, E43.

Keywords: Taxation, Government Spending, Expectations, Permanent and temporary policy changes.

---

* Financial support from ESRC Grant RES-062-23-2617 and from National Science Foundation Grant no. SES-1025011 is gratefully acknowledged. Any views expressed are those of the authors and do not necessarily reflect the views of the Bank of Finland. Corresponding author: Kaushik Mitra, School of Economics & Finance, University of St Andrews, Castlecliffe, The Scores, St Andrews, Fife, KY16 9AL, UK. Phone: + 44 (0) 1334 461951, Fax: 44 (0) 1334 462444, Email: Kaushik.Mitra@st-andrews.ac.uk.

CASTLECLIFFE, SCHOOL OF ECONOMICS & FINANCE, UNIVERSITY OF ST ANDREWS, KY16 9AL
TEL: +44 (0)1334 462445  FAX: +44 (0)1334 462444  EMAIL: cdma@st-andrews.ac.uk
www.st-andrews.ac.uk/cdma
1 Introduction

Typically economic models are analyzed with an unchanged structure. However, in practice, policy changes do take place, and these often involve long delays. This is well recognized in the case of fiscal policy which involves lags sometimes even exceeding two years. The process of changing taxes involves legislative lags, between when the new tax is proposed and when it is passed, and implementation lags, between when the legislation is signed into law and when it actually takes effect. These changes in policy may well be anticipated by economic actors (often with discussions in the media) and will influence economic decisions even before the actual implementation of the proposed policy change.1

The standard assumption in macroeconomics is, of course, rational expectations (RE), and this has been used to analyze the impact of both surprise and preannounced policy changes. Within a nonstochastic perfect foresight setting, see, for example, Sargent and Wallace (1973), Blanchard and Fischer (1989), Romer (2011) and Ljungqvist and Sargent (2004).

The seminal contributions of Baxter and King (1993) and Aiyagari, Christiano, and Eichenbaum (1992) analyze changes to fiscal policy within a RE framework in the stochastic Real Business Cycle (RBC) model. These papers consider changes to government spending and analyze both temporary and permanent changes when the government conducts a balanced budget.2

However, the benchmark assumption of RE is very strong and arguably unrealistic when analyzing the effect of policy changes. Economic agents need to have complete knowledge of the underlying structure, both before and after the policy change. They must also rationally and fully incorporate this knowledge in their decision making, and do so under the assumption that other agents are equally knowledgeable and equally rational.

Recently there has been increasing interest in studying situations in which agents have incomplete knowledge of the economy. The assumption that

---

1See Evans, Honkapohja, and Mitra (2009) for some further discussion. Active fiscal strategies have been adopted recently in various countries around the world (like in the US and UK) in the wake of the recent “Great Recession”. These measures include temporary tax cuts and credits and large public works projects; see for instance Auerbach, Gale, and Harris (2010).

2Baxter and King (1993) focus on surprise changes and consider two alternative scenarios; one where the government has access to lump-sum taxes only and the second where it has access to distortionary income taxes as well.
economic agents engage in “learning” behavior has been incorporated into macroeconomic theory (see e.g. Sargent (1993) and Evans and Honkapohja (2001)) and used in a wide range of applications in macroeconomics and finance. The standard adaptive learning approach treats economic agents like econometricians who estimate forecast rules, updating the parameter estimates over time as new data become available. It has been shown that in many models, including the RBC model, least-squares learning can converge over time to the RE solution, while at the same time often providing plausible transitional dynamics that are arguably of empirical importance.3

However, analyses of learning typically assume an unchanged economic structure.4 An apparent drawback of least-squares learning rules is that estimated coefficients respond relatively slowly to data, and thus standard learning rules take time to adjust to structural or policy changes. In some cases this is realistic, but in the case of clearly articulated policy changes one would expect even boundedly rational agents to incorporate structural information about future policy.

In this paper we show how to analyze fiscal policy changes in a learning framework for the stochastic RBC model. To do so we assume that agents forecast some key variables using adaptive learning, while simultaneously incorporating structural knowledge about future government spending and taxes. Both permanent and temporary policy changes are examined, and the results contrasted with those from the RE approach. One case we consider in detail is the impact of announced future policy changes.

The question of how to analyze known structural changes in a learning framework was taken up in Evans, Honkapohja, and Mitra (2009). They considered announced changes in fiscal policy in a simple endowment economy model and (briefly) in a Ramsey model. However, a major limitation of their framework was its deterministic nature which consequently restricted the type of learning behavior that could be analyzed.5 In addition, the variable labor supply assumption in the RBC model plays a crucial role in the policy analysis of government spending by Baxter and King (1993).

Our approach uses an adaptive learning model in which agents in effect

---

3See, for example, Sargent (2008) and Evans and Honkapohja (2010) for extensive references.


5For a discussion of the differences of learning in deterministic and stochastic models see Evans and Honkapohja (1998).
also have partial structural knowledge. At each moment in time agents must make consumption and labor supply decisions based on the time path of expected future wages, interest rates and taxes. As is standard with adaptive learning, we assume that agents make forecasts of wages and interest rates based on a statistical model, with coefficients updated over time using least-squares. However, for forecasting future taxes we assume that agents use the path of future taxes announced (credibly) by policymakers.\(^6\)

This approach seems to us very natural. The essence of the adaptive learning approach is that agents are assumed not to understand the general equilibrium considerations that govern the evolution of the central endogenous variables, i.e. capital, labor and factor prices. Agents are therefore assumed to forecast these variables statistically. On the other hand, agents can be expected to immediately incorporate into their decisions the direct effects on their future net incomes of the announced path of future taxes. As noted in Evans, Honkapohja, and Mitra (2009), this general approach to combining statistical learning and limited structural knowledge can be adapted to other economic situations.

Several general features stand out in our analysis of fiscal policy changes in the RBC model. As under RE, announced current or future changes in government spending lead to immediate changes in consumption, employment, and output.\(^7\) However, with adaptive learning the solution exhibits hump-shaped responses and oscillatory convergence to the new steady state, including overshooting not present under RE. These dynamics stem from a combination of inertia in capital accumulation and the adaptation of expectations to data generated by the statistical learning rules used by private agents.

We also show that for changes in policy, announced to take place in the future, the impact effects under learning can be more extreme than under RE, because the wealth effects of future tax changes are immediate, while the partially offsetting price effects are spread out over time and unknown to agents. For both surprise and announced future changes we sometimes find that the dynamics under learning and RE can be qualitatively different for a period of time following the immediate impact.

A final important feature of the model under learning dynamics is that

\(^6\)For convenience we assume throughout a balanced budget, so that in each period taxes equal government spending.

\(^7\)Surprisingly, it appears that announced future changes of government spending have not previously been systematically studied under RE for the stochastic RBC model.
policy changes can lead to systematic waves of optimism or pessimism. The details depend naturally on the type of policy change considered. For example, a permanent increase in government spending, announced to take place in the future, generates a period of over-optimism concerning wages during much of the pre-implementation period, followed by a correction during the post-implementation period. Such periods of over-optimism or over-pessimism reflect general equilibrium effects, and are a consequence of the agents’s incomplete structural knowledge.

Section 2 below describes the basic RBC model in the presence of learning by agents. Section 3 analyzes permanent changes in policy both within a RE framework and under learning and Section 4 does the same for temporary policy changes. The final section concludes.

2 The Model

There is a representative household who has preferences over non-negative streams of a single consumption good $c_t$ and leisure $1 - n_t$ given by

$$
\hat{E}_t\{\sum_{s=t}^{\infty} \beta^{s-t} U(c_s, 1 - n_s)\} \tag{1}
$$

Here $\hat{E}_t$ denotes potentially subjective expectations at time $t$ for the future, which agents hold in the absence of rational expectations. The analysis of the model under RE is standard. When RE is assumed we indicate this by writing $E_t$ for $\hat{E}_t$. Our presentation of the model is general in the sense that it applies under learning as well as under RE.

We assume the general form

$$
U(c_s, 1 - n_s) = \frac{c_s^{1-\sigma}}{1-\sigma} + \zeta \frac{(1 - n_s)^{1-\epsilon}}{1-\epsilon}, \tag{2}
$$

for $\zeta > 0$, and often focus on the widely considered special case, $\sigma = \epsilon = 1$, i.e.

$$
U(c_s, 1 - n_s) = \ln c_s + \zeta \ln(1 - n_s) \tag{3}
$$
as in Ljungqvist and Sargent (2004), p. 324, Long and Plosser (1983) and McCallum (1989).\footnote{As shown in King, Plosser, and Rebello (1988), log utility for consumption is needed for steady state labor supply along a balanced growth path. Campbell (1994), Section 3, uses (2) with $\sigma = 1$.}
The household flow budget constraint is

\begin{align*}
a_{t+1} &= w_t n_t + r_t a_t - c_t - \tau_{h,t}, \quad \text{where} \\
r_t &= 1 - \delta + r_{k,t}. \tag{4}
\end{align*}

Here \(a_t\) is per capita household wealth at the beginning of time \(t\), which equals holdings of capital \(k_t\) owned by the household less their debt (to other households), \(b_{pt}\), i.e. \(a_t \equiv k_t - b_{pt}\). \(r_t\) is the gross interest rate for loans made to other households, \(w_t\) is the wage rate, \(c_t\) is consumption, \(n_t\) is labor supply, and \(\tau_{h,t}\) is per capita lump sum taxes. Equation (5) is the arbitrage condition arising from loans and capital being perfect substitutes as stores of value; \(r_{k,t}\) is the rental rate on capital goods, and \(\delta\) is the depreciation rate.

Households maximize utility (1) subject to the budget constraint (4) which yields the Euler equation for consumption

\[ c_t^{-\sigma} = \beta \hat{E}_t r_{t+1} c_{t+1}^{-\sigma}. \tag{6} \]

We next derive the (linearized) consumption function.

From the flow budget constraint (4) we can get the intertemporal budget constraint (in realized terms)

\[ 0 = r_t a_t + \sum_{j=1}^{\infty} (D_{t,t+j}(t))^{-1} \chi_{t+j} + \chi_t, \tag{7} \]

where \(D_{t,t+j} = \prod_{i=1}^{j} r_{t+i}, \ j \geq 1\) and \(\chi_t \equiv w_t n_t - c_t - \tau_{h,t}\), assuming the transversality condition \(D_{t,t+j}^{-1} a_{t+j+1} \to 0\) as \(j \to \infty\) holds.

Note that (7) involves future choices of labor supply by the household which we next eliminate to derive the linearized consumption function. For this we make use of the static first order condition (between consumption and labor supply) from the household’s problem which is

\[ \zeta (1 - n_t)^{-\tau} = w_t c_t^{-\sigma} \tag{8} \]

This can be written as

\[ n_t = 1 - \zeta^{\frac{1}{\tau}} c_t^{\frac{\tau}{\phi}} w_t^{\phi - \frac{1}{\tau}}, \tag{9} \]

so that \(w_t n_t = w_t - \zeta^{\frac{1}{\tau}} c_t^{\frac{\tau}{\phi}} w_t^{\phi - \frac{1}{\tau}}\). This gives a relationship between labor supply and consumption choices which can be used to substitute out \(n_{t+j}\).
in (7). Taking expectations we then get the expected value intertemporal budget constraint

\[ 0 = r_t a_t + \chi_t + \sum_{j=1}^{\infty} \hat{E}_t(D_t; t+j) \left\{ w_{t+j} - \zeta^1 c_{t+j}^{\frac{2}{\rho}} w_{t+j}^{1-\frac{1}{\rho}} - c_{t+j} - \tau_{h,t+j} \right\} \]

To obtain its optimal choice of consumption \( c_t \), we assume that the household uses a consumption function based on a linearization around steady state values. In particular, we assume agents linearize the expected value intertemporal budget constraint and the Euler equations around the initial steady state values \( \tilde{c}, \tilde{a}, \tilde{w}, \tilde{\tau}_h \) and \( \tilde{r} = \beta^{-1} \). This is a natural choice since agents can be assumed to have estimated precisely the steady state values before the policy change that takes place.\(^{10}\)

As shown in the Appendix, substituting the linearized Euler equations into the intertemporal budget constraint, we obtain the consumption function

\[ (c_t - \tilde{c}) C_{AA} = \tilde{a} (r_t - \tilde{r}) + \beta^{-1} (a_t - \tilde{a}) - (\tau_{h,t} - \tilde{\tau}_h) + C_{ww}(w_t - \tilde{w}) - C_{rr} S r_t^e - S \tau_{h,t}^e + C_{ww} S w_t^e \]

where \( C_{AA}, C_{ww} \) and \( C_{rr} \) are given in the Appendix and where

\[ S r_t^e \equiv \sum_{j=1}^{\infty} \beta^j \sum_{i=1}^{j} (r_{t+i}^e - \tilde{r}) \]

\[ S \tau_{h,t}^e \equiv \sum_{j=1}^{\infty} \beta^j (\tau_{h,t+j}^e - \tilde{\tau}_h) \]

\[ S w_t^e \equiv \sum_{j=1}^{\infty} \beta^j (w_{t+j}^e - \tilde{w}) \]

\(^{9}\)Note we do not assume point expectations as in Evans, Honkapohja, and Mitra (2009); this model cannot be solved exactly so we proceed by linearizing the Euler equation and the intertemporal budget constraint.

\(^{10}\)Thus we assume that the final steady state values of \( k, w \) and \( r \) are not initially known to agents. Under least-squares learning agents will eventually come to know the new steady state values as happens in all of the simulations below. We remark that an alternative approach to our procedure would be to assume that agents also update over time the point around which the consumption function is linearized, with the sequence of linearization points chosen to be consistent with the agent’s estimates of the new steady-state values. Provided the changes in government spending are not too large, it is satisfactory to use our simpler procedure of using a fixed linearization point.
denote “present value” type expressions. For the case $\sigma = \epsilon = 1$, the linearization coefficients are given by

$$C_{AA} = (1 + \zeta)/(1 - \beta), \quad C_{ww} = 1 \quad \text{and} \quad C_{rt} = \bar{w} - \bar{r}_h.$$  

Equation (10) specifies a behavioral rule for the household’s choice of current consumption based on predetermined values of initial assets, real interest rates, wage rates, current values of lump-sum taxes and (subjective) expectations of future values of wages, interest rates, and lump-sum taxes. Expectations are assumed to be formed at the beginning of period $t$ and, for simplicity, we assume these to be identical across agents (though agents themselves do not know this to be the case). Equation (10) can then be viewed as the behavioral rule for per capita consumption in the economy.

To implement the behavioral rule, however, the household requires forecasts $r_{t+1}^e$, $w_{t+1}^e$, and $\tau_{h,t+1}^e$. For taxes $\tau_{h,t+1}^e$ (and $\bar{r}_h$) we assume that agents use “structural” knowledge based on announced government spending rules. For convenience we assume balanced budgets, so that $\tau_{h,t+1} = g_{t+1}$. For $r_{t+1}^e$ and $w_{t+1}^e$ we will assume that household estimate future values using a VAR-type model in $k_t, w_t, r_{k,t}$ and $v_t$, with coefficients updated over time by RLS (recursive least squares). The detailed procedure is described below in Section 3.1.

Linearizing equation (9) we also obtain the employment equation, which will be useful later:

$$n_t - \bar{n} = -\frac{\sigma}{\epsilon} \sum_{t}^{1} \bar{w}^{-\frac{1}{2}} \bar{\epsilon}^{-1} (c_t - \bar{c}) + \frac{1}{\bar{w} \epsilon} \sum_{t}^{1} \bar{w}^{-\frac{1}{2}} \bar{\epsilon}^{\sigma} (w_t - \bar{w}).$$

To complete the model, we describe the evolution of the other state variables, namely $w_t, r_{k,t}, r_t, y_t$ and $k_{t+1}$. Households own capital and labor services which they rent to firms. The firm uses these inputs to produce output $y_t$ using the Cobb-Douglas production technology

$$y_t = v_t k_t^{\alpha} n_t^{1-\alpha}$$

where $v_t$ is the technology shock that follows an AR(1) process

$$\hat{v}_t = \rho \hat{v}_{t-1} + \hat{u}_t$$

with $\hat{v}_t = (v_t - \bar{v})$. Here $\bar{v}$ is the mean of the process and $\hat{u}_t$ is an iid zero-mean process with constant variance $\sigma_u^2$. \(^{11}\)

\(^{11}\)For simplicity we do not include a trend in technical progress. This would be straightforward to add, but doing so would require choosing between a deterministic and a stochastic trend, and it would substantially complicate the presentation.
Profit maximization by firms implies the standard first-order conditions involving wages and rental rates

\begin{align}
  w_t &= (1 - \alpha)v_t \left( \frac{k_t}{n_t} \right)^\alpha, \\
  r_{k,t} &= \alpha v_t \left( \frac{n_t}{k_t} \right)^{1-\alpha}.
\end{align}

In equilibrium, aggregate private debt \( b_{pt} \) is zero, so that \( a_t = k_t \), and market clearing determines \( k_{t+1} \) from

\[ k_{t+1} = v_t k_t^\alpha n_t^{1-\alpha} + (1 - \delta) k_t - c_t - g_t \]

where \( g_t \) is per capita government spending.

For simulations of the model we follow standard procedures and approximate the path using a linearization around the steady state.\(^{12}\) The linearized wage rate, rental rate, and real interest rate equations are

\begin{align}
  w_t - \bar{w} &= \bar{w} \left[ (\frac{v_t}{\bar{v}} - 1) + \alpha (\frac{k_t}{\bar{k}} - 1) - \alpha (\frac{n_t}{\bar{n}} - 1) \right], \\
  r_{k,t} - \bar{r}_k &= \bar{r}_k \left[ (\frac{v_t}{\bar{v}} - 1) - (1 - \alpha) (\frac{k_t}{\bar{k}} - 1) + (1 - \alpha) (\frac{n_t}{\bar{n}} - 1) \right], \\
  r_t - \bar{r} &= r_{k,t} - \bar{r}_k.
\end{align}

Finally, the linearized output and capital accumulation equations are

\begin{align}
  y_t - \bar{y} &= \bar{y} \left[ (\frac{v_t}{\bar{v}} - 1) + \alpha (\frac{k_t}{\bar{k}} - 1) + (1 - \alpha) (\frac{n_t}{\bar{n}} - 1) \right], \\
  k_{t+1} - \bar{k} &= (y_t - \bar{y}) - (c_t - \bar{c}) - (g_t - \bar{g}) + (1 - \delta) (k_t - \bar{k}).
\end{align}

Here the equations giving the steady state are

\begin{align*}
  \bar{r} &= 1 - \delta + \bar{r}_k = \beta^{-1}, \\
  \bar{c} &= \bar{v} \bar{k}^\alpha \bar{n}^{1-\alpha} - \delta \bar{k} - \bar{g}, \\
  \bar{\zeta} &= \bar{w} \bar{v} (1 - \bar{n})^\epsilon, \\
  \bar{w} &= (1 - \alpha) \bar{v} \left( \frac{\bar{k}}{\bar{n}} \right)^\alpha \text{ and } \bar{r}_k = \alpha \bar{v} \left( \frac{\bar{k}}{\bar{n}} \right)^{\alpha - 1}.
\end{align*}

\(^{12}\) It is also straightforward to simulate the model under learning using the exact (non-linear) equations for \( y_t, w_t, r_{k,t}, r_t \) and \( k_{t+1} \). For the model at hand we have found the results for the two methods to be very similar. Simulations using linear approximations are much faster, however, so we have used these in the reported results.
These five equations can be solved simultaneously to yield the steady state values of $\bar{c}, \bar{k}, \bar{n}, \bar{w},$ and $\bar{r}_k$ given the value of $\bar{g}$ and the structural parameters $\alpha, \beta, \delta, \zeta, \sigma, \epsilon$.

To examine the impact of policy in the model under learning, we will compare the dynamics to those under RE. At this stage we remark that, as is well known, in the absence of a policy change, under RE the endogenous variables, $k_{t+1}, c_t, n_t, w_t, r_{k,t}, r_t$, can be written as an (approximate) linear function of $k_t$ and $v_t$, e.g. Campbell (1994). The linearized equations of motion take the form

\begin{align*}
\hat{k}_{t+1} &= \lambda_2 \hat{k}_t + f_{kv} \hat{v}_t, \quad (20) \\
\hat{c}_t &= f_{ck} \hat{k}_t + f_{ca} \hat{v}_t, \\
\hat{n}_t &= f_{nk} \hat{k}_t + f_{na} \hat{v}_t, \\
\hat{w}_t &= f_{wk} \hat{k}_t + f_{wu} \hat{v}_t, \\
\hat{r}_{k,t} &= f_{rk} \hat{k}_t + f_{re} \hat{v}_t, \quad (21) \\
\hat{v}_t &= \rho \hat{v}_{t-1} + \hat{u}_t. \\
\end{align*}

where the hatted values are deviations from the RE deterministic steady state i.e. $\hat{k}_t = k_t - \bar{k}$, $\hat{r}_{k,t} = r_{k,t} - \bar{r}_k$, $\hat{w}_t = w_t - \bar{w}$, etc. The RE solution takes the form of a stationary VAR(1) in the state $\hat{x}_t \equiv \left( \begin{array}c \hat{k}_t \\ \hat{v}_t \end{array} \right)$

\begin{align*}
\left( \begin{array}c \hat{k}_{t+1} \\ \hat{v}_{t+1} \end{array} \right) &= B \left( \begin{array}c \hat{k}_t \\ \hat{v}_t \end{array} \right) + \left( \begin{array}c 0 \\ 1 \end{array} \right) \hat{u}_t, \quad (25) \\
B &= \left( \begin{array}c \lambda_2 \\ 0 \end{array} \begin{array}c f_{kv} \\ \rho \end{array} \right), \quad (26)
\end{align*}

with the other variables given by linear combinations of the state. Note also that under RE forecasts of future $\hat{w}_{t+j}$ and $\hat{r}_{k,t+j}$ are given by linear combinations of the forecasted future state $\hat{x}_{t+j} = B^j \hat{x}_t$.

We now turn to obtaining the dynamics, under both RE and learning, when there is a policy change.

### 3 Permanent Policy Changes

At the beginning of period $t = 1$, a policy announcement is made that the level of government spending will change permanently upward from $\bar{g}$ to $\bar{g}'$
at a specified date $T_p$ in the future. The policy announcement is assumed to be credible and known to the agents with certainty. With a balanced budget, this means equivalently that there is an anticipated change in (per capita) taxes, i.e., $\tau_{h,t} = \tilde{\tau} = \tilde{\gamma}$ when $t < T_p$ and $\tau_{h,t} = \tilde{\tau}' = \tilde{\gamma}'$ when $t \geq T_p$.

The long run effects on the steady state of an increase in government expenditure are well-known, e.g. Baxter and King (1993). From the steady state equations, it is easy to see that the new steady state involves lower consumption and higher levels of investment, output, labor, and capital, but an unchanged capital-labor ratio. The latter implies that steady state wages and interest rates are unchanged.

The method for obtaining the impact of policy changes under RE is standard, e.g. see Ljungqvist and Sargent (2004), Ch. 11.

3.1 Learning dynamics

We now consider the learning dynamics in the context of the policy change just described. In the standard adaptive learning approach, private agents would formulate an econometric model to forecast future taxes as well as interest rates and wage rates, since these are required in order for agents to solve for their optimal level of consumption. We continue to follow this approach with respect to interest rates and wage rates, but take the radically different approach for forecasting taxes by assuming that agents understand the future course of taxes implied by the announced policy. In effect, we are giving the agents structural knowledge of one part of the economy: the fiscal implications of the announced future change in government spending.

As argued in the Introduction, we think this is a natural way to proceed, since changes in agents’ own future taxes have a quantifiable direct effect, while future wages and interest rates are determined through dynamic general equilibrium effects. The adaptive learning perspective is that it is unrealistic to assume that agents understand the economic structure sufficiently well to improve on reduced form econometric forecasts of aggregate variables like wages and interest rates.

To keep things simple, we assume that the government operates and is known to operate under a balanced-budget rule. Given this structural knowledge of the government budget constraint and the announced path of government spending, the agents can thus use $\tilde{\tau} = \tilde{\gamma}$, for $t < T_p$, and $\tilde{\tau}' = \tilde{\gamma}'$, for $t \geq T_p$, for their forecasts of future taxes. Of course, for simplicity we are assuming that the announced policy change is fully credible. It would
be possible to relax this assumption within the general framework of our approach.

Since the path of future taxes $\tau_{t+j} = g_{t+j}$ is known to agents, they compute its present value as

$$S^\tau_{h,t} = \sum_{j=1}^{\infty} \beta^j (g_{t+j} - \bar{\gamma}) = \begin{cases} \frac{\beta^{T_p-t+1}}{1-\beta} (\bar{\gamma}' - \bar{\gamma}), & 1 \leq t \leq T_p - 1 \\ \frac{\beta}{1-\beta} (\bar{\gamma}' - \bar{\gamma}), & t \geq T_p. \end{cases}$$

However, under learning, agents still need to form forecasts of future wages and interest rates since these are needed for their individual consumption choice in (10). Moreover, they need to form forecasts of these variables without full knowledge of the underlying model parameters.

Under RE, in contrast, agents are assumed to know all the underlying parameters involved in the REE solution, i.e. the parameters in (25) and (23) - (24), which they can then use to form future forecasts of wages and rental rates. For anticipated changes in policy the implicit assumptions under RE are even stronger: agents need to know the full structural model and use it to deduce the full equilibrium path that puts the economy on the new saddle path at the exact time at which the policy change takes place. Furthermore this computation by agents must be made under the assumption that other agents are equally “rational” and make the same computation. The learning perspective is that these assumptions are implausibly strong and hence unrealistic.

Under learning wage and interest rate forecasts depend on the perceived laws of motion (PLMs) of the agents, with parameters updated over time in response to the data. We consider PLMs given by (20), (23), and (24) in which future capital, wages, and rental rates depend on the current capital stock and technological shock, $k_t$ and $\nu_t$.13 That is, we consider PLMs that are of the form (including constants)

$$k_{t+1} = b_k + a_{kk}k_t + a_{kv}\hat{v}_t + \text{noise}, \quad (27)$$
$$w_t = b_w + a_{wk}k_t + a_{wv}\hat{v}_t + \text{noise}, \quad (28)$$
$$r_{k,t} = b_r + a_{rk}k_t + a_{rv}\hat{v}_t + \text{noise}, \quad (29)$$
$$\hat{v}_t = \rho \hat{v}_{t-1} + \tilde{a}_t. \quad (30)$$

13We will explore alternative PLMs in future work, for instance PLMs based solely on observed wages and interest rates. Such PLMs may be considered more realistic since (arguably) it is easier to observe market values of wages and interest rates than it is to observe contemporaneous values of capital stock and productivity.
where the PLM parameters $b_k$, $a_{kk}$ etc. will be estimated on the basis of actual data. The final line is the stochastic process for evolution of the (de-meaned) technological shock, which for simplicity is assumed known to the agents. In real-time learning, the parameters in (27), (28), (29) are time dependent and are updated using recursive least squares (RLS); see for e.g. Evans and Honkapohja (2001) p. 233. We assume agents allow for structural change, which would include policy changes as well as other potential structural breaks, by discounting older data as discussed below.

We remark that in assuming that agents forecast using the PLM (27) - (30), we are implicitly assuming that they do not have useful information available from previous policy changes. We think this is generally plausible, since policy changes are relatively infrequent and since the qualitative and quantitative details of previous policy changes are unlikely to be the same. In particular, any previous fiscal policy changes, of the type considered here, are likely to have varied in terms of the magnitude and duration of the change in government spending, the extent to which it was anticipated, and the state of the economy in which it was announced and implemented. Since older information of this type would probably have limited value, we assume that agents respond to policy change by updating the parameters of the PLM (27) - (29) as new data become available.14

Before discussing how the PLM coefficients are updated over time using least-squares learning, we describe how (27) - (29) are used by agents to make forecasts. Given coefficient estimates and the observed state $(k_t, \hat{v}_t)$, equations (27) and (30) can be iterated forward to obtain forecasts $k_{t+j}^e$ and $\hat{v}_{t+j}$ for $j = 1, 2, \ldots$. Then wage and rental rate forecasts $w_{t+j}^e$ and $r_{k,t+j}^e$ are obtained using the relationships (28) - (29) and interest-rate forecasts are then given by $r_{t+j}^e = 1 - \delta + r_{k,t+j}^e$ using (5). Given these forecasts, $Sw_t^e$ and $Sr_t^e$ are computed from (13) and (11), which in turn are used in (10) to help determine consumption in the temporary equilibrium. For further details see the Appendix.

Parameter updating by agents using RLS learning is as follows. We define

---

14 However, if repeated policy changes take place that are qualitatively and quantitatively similar, then agents might plausibly make use of this information using procedures along the lines of Section 4 of Evans, Honkapohja, and Mitra (2009).
the time $t$ parameter estimates as

$$
\phi_{k,t} = \begin{pmatrix} b_{k,t} \\ a_{kk,t} \\ a_{kw,t} \end{pmatrix}, \ \phi_{w,t} = \begin{pmatrix} b_{w,t} \\ a_{wk,t} \\ a_{ww,t} \end{pmatrix}, \ \phi_{rk,t} = \begin{pmatrix} b_{r,t} \\ a_{rk,t} \\ a_{rw,t} \end{pmatrix}, \ \hat{z}_t = \begin{pmatrix} 1 \\ \hat{k}_t \end{pmatrix}.
$$

The RLS formulas corresponding to estimates of equation (27) then are

$$
\phi_{k,t} = \phi_{k,t-1} + \gamma R_{t-1}^{-1} z_{t-1} (k_t - \phi_{k,t-1}^l z_{t-1}),
$$

(31)

$$
R_t = R_{t-1} + \gamma (z_{t-1} z_{t-1}^\prime - R_{t-1}).
$$

(32)

Here we are assuming that agents update parameter estimates using “discounted least squares,” i.e. they discount past data geometrically at rate $1 - \gamma$, where $0 < \gamma < 1$ is a (typically) small positive number.¹⁵ In the learning literature the parameter $\gamma$ is known as the “gain,” and discounted least squares is also called “constant-gain” least squares. $\phi_{w,t}$ and $\phi_{rk,t}$ are estimated in the same way, see below.

Constant-gain least squares is widely used in the adaptive learning literature because it weights recent data more heavily. See for example Sargent (1999), Cho, Williams, and Sargent (2002), McGough (2006), Orphanides and Williams (2007), Ellison and Yates (2007), Huang, Liu, and Zha (2009), Carceles-Poveda and Giannitsarou (2008), Eusepi and Preston (2011) and Milani (2011). In the current context constant gain is particularly natural since agents will be aware that the announced policy change will induce changes in forecast-rule parameter values taking a possibly complex and time-varying form. Use of a constant-gain rule allows parameter estimates to more quickly track changes in parameter values than does straight (“decreasing-gain”) least squares.

Analogously, the RLS formulas corresponding to estimates of equations (28) and (29) are

$$
\phi_{w,t} = \phi_{w,t-1} + \gamma R_{t-1}^{-1} z_{t-1} (w_{t-1} - \phi_{w,t-1}^l z_{t-1}),
$$

(33)

$$
\phi_{rk,t} = \phi_{rk,t-1} + \gamma R_{t-1}^{-1} z_{t-1} (r_{k,t-1} - \phi_{rk,t-1}^l z_{t-1}).
$$

(34)

with $R_t$ being given by (32). Note that we have set the gain to be the same in all of the regressions (this is done only for simplicity and is not essential). The initial values of all parameter estimates $\phi$ and $R$ are set to the initial steady state values under RE. See the Appendix for details.

¹⁵ Giving a constant weight of $\gamma$ to the most recent data point implies discounting older data as the sample size increases.
3.2 Surprise permanent policy change

We first consider the benchmark case of a surprise change in government spending that takes place immediately. This is a scenario that is frequently studied in the RE literature (see, e.g., Baxter and King (1993), Aiyagari, Christiano, and Eichenbaum (1992), and Romer (2011)).\textsuperscript{16} It would, therefore, be of interest to study a surprise policy change under learning and compare with the corresponding RE dynamics. As we will see this provides interesting insights.\textsuperscript{17}

Figure 1 compares the dynamics under RE and learning for an increase in government spending that takes place in period 1 and which was not anticipated by agents. The variables plotted are capital ($k_t$), gross investment ($\tilde{y}_t = k_{t+1} - (1 - \delta)k_t$), consumption ($c_t$), labor ($n_t$), output ($y_t$), capital-labor ratio ($k_t/n_t$), wages ($w_t$) and the interest rate ($r_t$). In all of the figures below, period $t = 0$ depicts the initial steady state values of the variables. We assume the following parametric form for the figures:

$\sigma = 1, \zeta = 4, \alpha = 1/3, \beta = 0.985, \rho = 0.9, \bar{v} = 1.359, \theta = 0.20, \text{and } \gamma = 0.04$ in the learning rule.

The parameter values used conform to the ones used in the real business cycle literature, see e.g. King and Rebello (1999) or Heijdra (2009). The value of $\delta = 0.025, \alpha = 1/3, \beta = 0.985, \rho = 0.9, \bar{v} = 1.359, \theta = 0.20, \text{and } \gamma = 0.04$ in the learning rule.

The parameter values used conform to the ones used in the real business cycle literature, see e.g. King and Rebello (1999) or Heijdra (2009). The value of $\alpha = 1/3, \beta = 0.985, \rho = 0.9, \bar{v} = 1.359, \theta = 0.20, \text{and } \gamma = 0.04$ in the learning rule.

Our choice of the gain parameter $\gamma = 0.04$ is in line with most of the literature, e.g. Branch and Evans (2006), Orphanides and Williams (2007) and Milani (2007). Eusepi and Preston (2011) use a much smaller value for the gain, but they do not consider changes in policy, for which a larger value

\textsuperscript{16}Baxter and King (1993) analyze surprise permanent and temporary changes in government spending in the neoclassical model while Ljungqvist and Sargent (2004), Chapter 11, analyze some anticipated changes in policy in deterministic neoclassical models with elastic and inelastic labor supply.

\textsuperscript{17}In the notation of the previous section, for the surprise permanent change, the dynamics under learning has $S\tau_{h,t}^* = \frac{\beta}{1 - \beta}(\hat{y} - \hat{y})$ for all $t \geq 1$ since the anticipatory effects are absent when the policy change takes the agents by surprise.

\textsuperscript{18}Note that these values are (approximately) the ones used in Heijdra (2009); p. 510, equations (15.46)-(15.47). In our baseline case, the initial steady state values are $\bar{a} = 0.22, k = 8.29, \bar{c} = 0.59, \bar{w} = 3.04$. See also footnote 5, p. 509, in Heijdra (2009).
of $\gamma$ is more appropriate.\(^{19}\)

$\hat{u}_t$ is assumed to be distributed uniformly with a support of $(-0.005, 0.005)$. For the policy exercises, there is an increase in government spending from $g_0 = 0.20$ to $\bar{g} = 0.21$ (a 5% increase) that takes place at $t = 1$. We plot the mean time paths for each endogenous variable over 20,000 replications.\(^{20}\) We focus attention on the mean time path across replications since this is the most salient aspect of the differences between the RE and learning dynamics when there is a change in policy.

We first describe the dynamics under RE of the surprise increase in government expenditure financed by lump-sum taxes under a balanced budget regime. These dynamics are standard; see for instance Baxter and King (1993), pp. 321-2 and Heijdra (2009), chapter 15. We can get some (qualitative) intuition from the saddle path dynamics considered in Heijdra (2009), Figures 15.1 and 15.2, in the deterministic continuous-time RBC model for such a surprise, permanent change. This is reproduced as our Figure 5 at the end of the paper. The $CSE_0$, $CE_0$ lines represent the initial capital stock and consumption equilibrium lines respectively with $E_0$ the initial steady state. $CSE_1$ is the capital stock equilibrium line after the increase in government spending and the new steady state is $E_1$. Consumption falls immediately on impact from point $E_0$ to point $A$ on the new saddle path ($SP_1$) in Figure 5, i.e. consumption under-shoots the new steady state $E_1$ on impact. Thereafter, the dynamics for consumption and capital are monotonically increasing along $SP_1$ to the new steady state $E_1$.

These RE qualitative dynamics are confirmed by the behavior of $c_t$, $k_t$ in Figure 1 which also illustrates the dynamics of other important endogenous variables $n_t$, $i_t$, $y_t$, $k_t$, $w_t$, and $r_t$.\(^{21}\) Intuitively, the permanent increase in government spending has a large wealth effect on individuals, reducing their permanent income. Since neither consumption nor leisure are inferior goods, individuals respond by reducing consumption and leisure dramatically, so

\(^{19}\)Our results are qualitatively robust to a range of values for the gain parameter, except that very small values of $\gamma$ slow down convergence to the final steady state, and values that are too large lead to instability. For further discussion of the gain parameter see Evans, Honkapohja, and Mitra (2009).

\(^{20}\)The learning rule uses a projection facility to keep the dynamics of capital bounded since the autoregressive root in the AR(1) process for capital in the RE equilibrium is close to one for plausible parameter values. The projection facility is used outside the range $(0.01, 0.99)$. In all the reported cases, this is used less than 1% of the times for all replications over all the periods.

\(^{21}\)All figures and tables are at the end of the paper.
that labor supply increases. Consumption under-shoots (and labor supply over-shoots) the new steady state on impact as shown in Figure 1. Since the capital stock is predetermined, the boost in labor input on impact increases aggregate output, the marginal product of capital and the real interest rate. In the short run, an accelerator mechanism operates to generate a boom in investment (overshooting the new higher steady state); see Baxter and King (1993), p. 321. The investment boom leads to a rising path of capital which increases monotonically towards the new higher steady state (as does output). The increase in the real interest rate on impact leads to a rising path of consumption (and declining path of labor supply) due to intertemporal substitution effects. Rising consumption in turn dampens the investment boom which gradually converges towards the steady state. Rising $\kappa$ and falling $\mu\tau$ raise the $\kappa^\mu\tau$ ratio gradually towards its (unchanged) steady state value which in turn drives the dynamics of $\omega\tau$ and $\rho\tau$; $\rho\tau$ declines (and $\omega\tau$ rises) towards the steady state.

Under learning, the most striking difference from RE is in the behavior of capital and investment. Instead of the strong investment boom that characterizes the RE dynamics, in the early periods under learning we have the opposite case of a large drop in investment leading in fact to disinvestment (negative net investment $k_t+1 - k_t = i_t - \delta k_t$) and hence a falling path of capital in the initial periods after the policy change. Why does this happen under learning? One way to view this is that in the new steady state, all of the perceived parameters in the capital equation (i.e. the constant term $\bar{b}_k$, the auto-regressive root $\lambda_2$, and the coefficient of the shock term $\bar{a}_{ks}$) are higher than the initial steady state values. Since agents’ parameter estimates are still at the initial steady state at $\tau = 1$, the “desired” capital stock under learning is lower than under RE, which causes the disinvestment. In effect, agents are yet to realize that the permanent increase in government spending will lead to a higher steady state capital stock; under RLS learning, agents figure this out gradually as they accumulate more data and update their parameter estimates over time.

More specifically, in terms of the equilibrium dynamic system under learning, the mechanism is as follows. At $t = 1$, consumption falls because of the increase in $S_{r_{h,t}}$. However, because wage and interest rate expectations are predetermined, the fall in consumption and the increases in employment and output are all less than under RE. Under RE the paths of lower future $w_t$ and higher $r_t$ are fully anticipated, magnifying the impact relative to the learning path in which expectations are initially unchanged. Under learning
$w_{t+s}^*, r_{t+s}^*$ gradually respond to the data, leading initially to a gradual fall in $w_{t+s}^*$ (and rise in $r_{t+s}^*$) before eventually rising towards the steady state.

As a consequence of the smaller sizes of the impacts on output and consumption at $t = 1$, the increase in $g$ necessarily leads to a lower level of $i_t$ under learning than under RE, and in fact we see a sharp reduction in investment. In the periods immediately following the policy change, expectations of wages and interest rates adjust. Two factors are at work. The lower capital stock in the periods soon after the policy change leads to lower forecasts of future wages and higher forecasts of future interest rates and thus lower $\Sigma w^*$ and higher $\Sigma r^*$. This leads to a further reduction in $c_t$, and increases in $n_t$ and $y_t$, which results in increases in $i_t$ from its low level at $t = 1$. After several periods this process is sufficient to restore $k_t$ to an upward path, accompanied by a fall in $n_t$, and an increase in $k_t/n_t$, drives $w_t$ upwards and $r_t$ downwards to their steady state values. The other factor at work is that over time coefficient estimates under RLS learning gradually adjust in response to the shock and the evolution of the data. Eventually the coefficients converge to the values that correspond to the REE values at the new steady state, so that in the long run their is convergence to the new REE.

This situation is in stark contrast to the RE case where agents, at $t = 1$, are fully aware of the new steady values of all variables including capital. Realizing that the long run capital stock is higher, desired capital stock is higher and that causes the investment boom under RE, with the consequent bigger initial impact effects on consumption and labor supply. Table 1, at the end of the paper, compares these impact effects under RE and learning. Compared to RE the paths of $c_t$, $n_t$ and $k_t/n_t$ under learning adjust less on impact and respond more sluggishly, leading to a hump-shaped response of $c_t$, $n_t$ and $i_t$, with $i_t$ eventually overshooting the new steady state (in effect this compensates for the low levels of investment in the initial periods).22

This also implies that the paths followed by $c_t$, $n_t$ and $k_t/n_t$ (and hence $w_t$ and $r_t$) in the periods following the policy change are qualitatively in opposite directions under learning compared to that under RE; e.g. $c_t$, $w_t$ are falling under learning initially whereas they are rising under RE.

\textsuperscript{22}In RBC models with learning, hump-shaped responses to productivity shocks have been observed by Eusepi and Preston (2011), Branch and McGough (2011), and Huang, Liu, and Zha (2009). The latter also emphasize the plausible labor market dynamics that arise from the learning model. However, none of these papers focus on changes in government spending.
3.3 Anticipated permanent policy change

We now examine the effects of an anticipated change in policy that is announced credibly in period 1. We will see that the dynamic effects under both RE and learning depend on how far in advance the policy change is announced. We, therefore, consider two values of $T_p$ in what follows. Figure 2 plots the dynamics for an anticipated, permanent increase in government spending to take place in period $t = 5$ i.e. $T_p = 5$. We interpret a period as a quarter and frequently refer to this as an announcement one year in advance. The parameter values used are the same as those for Figure 1 (and in fact in all of the figures below). Figure 3 illustrates the dynamics when $T_p = 29$ (we refer to this as an announcement seven years in advance).

We first summarize the effects of the policy change under RE. We can again use Figure 5 to help us understand the dynamics. When $T_p$ is small (like $T_p = 5$ in Figure 2), the impact effect on $c_t$ at $t = 1$ is quite large (though smaller than that for the surprise change) and it under-shoots the new steady state $E_1$. The dynamics, thereafter, is governed by the phase diagram implied by the curves $CE_0$, $CSE_0$ since $g_t$ is unchanged until $T_p$. The phase diagram implies that $c_t$ and $k_t$ rise monotonically during the anticipatory phase until the saddle path $SP_1$ is hit at the time when $g_t$ increases (and the dynamics are then governed by the $CE_0$, $CSE_1$ lines). Thereafter, the paths of $c_t$ and $k_t$ continue to increase monotonically along $SP_1$ until the steady state $E_1$ is reached.

When $T_p$ is large (like 29 in Figure 3), the impact effect on $c_1$ is much smaller and it does not under-shoot the new steady state $E_1$. The phase diagram then implies that $c_t$ and $k_t$ rise monotonically initially until the dynamics hits the $CE_0$ line. Thereafter, $c_t$ falls but $k_t$ continues to rise until the new saddle path $SP_1$ is reached at the time when the actual increase in $g_t$ takes place. The paths of $c_t$ and $k_t$ then monotonically decrease along $SP_1$ towards the new steady state $E_1$ (in accordance with the transitional dynamics implied by the $CE_0$, $CSE_1$ lines). Thus, $k_t$ increases monotonically until $t = 29$ over-shooting the new steady state before decreasing gradually in the transient phase.

These effects are confirmed by the dynamics displayed under RE in Figures 2 and 3.\footnote{Note that for permanent changes in $g$ the RE dynamics for the standard RBC model are significantly different from the Ramsey model discussed in Ljungqvist and Sargent (2004), Chapter 11 or Figures 8-9 of Evans, Honkapohja, and Mitra (2009); steady state} $c_t$ falls on impact while $n_t$, gross investment $i_t$, and $y_t$ all
rise on impact (correspondingly, $w_t$ falls on impact). Over-shooting of $c_t$ is observed on impact in Figure 2 but not in Figure 3 which is consistent with the explanation from the phase diagram. The impact effects under RE get smaller as $T_p$ increases. Intuitively, with large $T_p$, the time period over which the capital stock can be built up is longer, making it possible for agents to smooth out their consumption with a smaller initial fall in consumption.

After these initial impact effects, there are further rises in $k_t$ and $n_t$ until the policy is implemented which further boosts $y_t$. $k_t$ rises sharply, which raises the $k_t/n_t$ ratio and $w_t$ during this phase. After the policy change, the increase in $g$ crowds out $i_t$ which falls sharply and the other variables converge gradually towards the steady state. An interesting thing to note is that over-shooting of $k_t$ (and $w_t, r_t$) is observed when $T_p = 29$ whereas $c_t$ and $n_t$ overshoot when $T_p = 5$ (rather than $k_t, w_t, r_t$) under RE; this is of course consistent with the explanation given above.

Under learning, only the announced increase in future taxes reduces $c_t$ at $t = 1$, by equation (10), since expectations of wages and interest rates are pre-determined. The impact effects under learning (like that under RE) are reduced as $T_p$ increases. However, compared to RE, the impact effects are smaller under learning when $T_p$ is small (see Figure 2) while they are larger when $T_p$ is large (see Figure 3). Table 1 summarizes the impact effects in percentage terms for the surprise and the announced permanent changes illustrated in Figures 1-3.

We return to the dynamics under learning, and focus on the case $T_p = 29$, which we examine in detail.\textsuperscript{24} The initial fall in consumption, due to the higher anticipated future taxes $S\tau_{h,t}^{c}$, leads to a temporary investment boom and a period of capital accumulation. However, under learning this is soon followed by a considerable period in advance of $T_p = 29$, specifically $t = 4, \ldots, 23$, in which there are higher wages and expected wages, $Sw_t^{c}$, and lower interest rates and expected interest rates, $Sr_t^{c}$ than under RE. These expectations under learning are partially self-fulfilling, in that they are accompanied by higher $c_t$, lower $n_t$ and higher $k_t/n_t$, compared to the RE path. As a result, the qualitative dynamics of $n_t$ and $y_t$ under learning are actually opposite to that under RE throughout most of the pre-implementation phase, in the sense that $n_t$ and $y_t$ are falling over time under learning whereas they

\begin{itemize}
  \item values of capital and labor change in the RBC model.
  \item For $T_p = 5$ the qualitative dynamics are similar under learning, except that the over-shooting of $c_t, w_t$, and $r_t$ are not observed in the pre-implementation period.
\end{itemize}
rise over time fairly dramatically under RE.

Continuing with the learning scenario, these optimistic assumptions of high future wages and low future interest rates offset the higher expected taxes $S\gamma_{h,t}$, and consequently when $T_p = 29$ arrives, employment is back to initial levels and consumption is actually slightly larger than it was initially. During the period $T_p = 29$ itself, when the government spending increase begins, there is virtually no impact on $c_t$ or $n_t$, or on $w_t, r_t$, since the tax increases had been almost fully anticipated. Consequently almost the full impact of the increase in $\bar{g}$ at $T_p$ is on $i_t$ and thus on $k_{t+1}$. This corresponds to a similar decrease in $i_t$ in the RE case. However, in the learning case the fall in the capital stock after $T_p = 29$, during periods $t = 30 – 35$, leads to a sharp reduction in wages and a sharp increase in interest rates that were not correctly anticipated by agents. There is then a sustained period for $t > T_p$ of low $c_t$, low $w_t$, high $r_t$ and high $n_t$ (with both $n_t$ and $i_t$ overshooting their new higher steady state levels), as agents adjust their expectations to the post-policy implementation reality, with eventual convergence to the new steady state.

To summarize, only the direct wealth effects from the anticipated change in government spending (and taxes) are fully foreseen under learning in the anticipatory phase. Under learning, in contrast to RE, agents do not correctly foresee the path of future wages and interest rates. This leads to overoptimism concerning wages and interest rates in the pre-implementation period, and a substantial correction following implementation, with a period of low wages, low consumption and high interest rates.25

3.4 Interpretation of results

For both surprise and anticipated permanent increases in $g$ we see the following main qualitative features:

1. There are large impact effects for both the RE and learning solutions, and these effects get smaller as $T_p$ increases. The impact effects under learning are smaller than under RE for surprise changes but the opposite is true when $T_p$ is large.

<sup>25</sup>Looking at Figures 1-3, it is evident that the $k_t$ dynamics is qualitatively important in determining the movement of $w_t, r_t$ while the $n_t$ dynamics is influential in determining the behavior of $y_t$ under learning; of course, the interaction between $k_t$ and $n_t$ generally influences the paths of all variables simultaneously.
2. The dynamics of variables under RE and learning can be in qualitatively opposite directions for some periods after the impact effects. For the surprise change, \( k_t, c_t \) are falling after the policy change under learning while they are rising under RE (\( n_t \) is rising under learning and falling under RE during this time). These features lead to a hump-shaped response in variables under learning that is absent under RE. Similarly, for the announced change, \( i_t, n_t, \) and \( y_t \) are all falling under learning in the pre-implementation phase whereas they are all rising under RE in this time period.

3. For anticipated future permanent changes in \( \gamma \), under learning there is essentially no impact on \( c_t \) or \( n_t \) on the date when the policy is implemented, and in this respect is like RE. The reasons are the same in each case: the tax change is fully anticipated and agents aim to smooth their consumption path over time.

4. There can be classic “overshooting” results for both learning and RE paths. For example, in the case of an announced increase in \( \gamma \) when \( T_p \) is large, the path for the capital stock rises above the new higher steady state before eventually converging to it under RE. However, overshooting is a far more prominent feature of learning paths; for an announced change in \( \gamma \), consumption falls instantaneously before gradually rising until \( T_p \); there is then a substantial fall in consumption under-shooting the new steady state before converging to it.

5. Related to this last point, the learning paths exhibit oscillatory convergence that is particularly pronounced for announced policy changes. For example, in the announced case, under learning, the capital stock, after its initial rise, falls for a period before increasing and eventually converging. Other variables like \( c_t, n_t, y_t, k_t/n_t \) ratios (hence, \( w_t \) and \( r_t \)) all exhibit oscillatory convergence as well.

We now discuss the intuition for these results. The key feature is that the effects from the change in expected future government spending and taxes is felt immediately (since agents foresee the path of \( g_t \) even under learning), while the implications for expected future wages and interest rates evolve slowly in response to the data.

Consider the effect of an anticipated permanent increase in \( g \) illustrated in Figures 2 and 3. At the time of the announcement agents understand that the future higher taxes reduce their overall wealth, leading to lower \( c_t \) and higher \( n_t \). Because \( g_t \) has not yet increased this leads to an investment boom and a higher capital stock. This in turn leads to higher wages and lower interest rates, offsetting the reduced wealth, so that under learning, for large
variables can evolve to steady levels consistent with expectations. Then, under learning, at $T_p$ agents are again surprised because the (anticipated) increase in $g = \tau$ leads to an (unexpected) fall in aggregate capital, leading to lower wages and higher interest rates. This second surprise on implementation under learning leads to a large drop in consumption, overshooting the new lower steady state, and a subsequent sustained period during which the capital stock is built up during the process of convergence to the new REE.

To summarize, on announcement of the future increase in $g$, agents immediately understand the implications for their wealth of their future higher taxes and they immediately adjust their consumption and labor supply accordingly. During the period $t < T_p$ they also revise their expectations of future wages and interest rates in response to the data. What they do not foresee, however, is that when the policy is implemented this will lead to a crowding out of capital that will in turn eventually reduce wages and increase interest rates. Consequently, for $t > T_p$ there is another period of adjustment as agents learn the properties of the new equilibrium steady state.

How reasonable is our implicit assumption that agents will not foresee the extent to which capital is crowded out by the government spending in the period following implementation? We think this is very plausible. For agents to deduce that there will be the decline in the capital stock following $T_p$ they would need not only to understand the capital accumulation equation (16), but also to accurately forecast aggregate consumption $c_t$ and aggregate labor supply $n_t$ during the period following $T_p$. As we have already indicated in our earlier discussion of RE, this in turn requires an implausibly high degree of structural knowledge of the economy, as well as a belief that this structural information is common knowledge, that all agents are fully rational and capable of computing equilibrium paths, and that this is common knowledge. These are precisely the assumptions that the adaptive learning literature aims to avoid.

The approach taken in this paper is to examine the implications of assuming that agents have some structural information pertinent to their decision problem, here the path of future taxes, but that they use econometric forecasting procedures for other key variables. An implication of our approach is that agents are likely to make systematic mistakes when confronted with announced future increases in government spending: while the tax implica-

---

26The strong assumptions required for agents to be able to deduce, and hence coordinate on RE, are discussed in Guesnerie (2002).
tions will be understood, agents may become overoptimistic in advance of
the policy implementation, leading to a subsequent correction.

3.5 Oscillatory dynamics under learning

We have noted that oscillatory dynamics is a prominent feature under learn-
ing. In general, the oscillatory convergence under learning is due to a com-bi-
nation of surprises and inertia. Given their expectations, households aim to
smooth consumption, and this leads to inertia in capital adjustment, which
is present under both RE and learning, and to monotone dynamics. Un-
der adaptive learning, there is also inertia in the parameters used in wage
and interest rate forecasts, and this can lead to a failure to understand the
full dynamics of future wages and prices. This leads to additional learning
dynamics that can produce oscillations in the endogenous macroeconomic
variables. In the case of anticipated policy changes, the inertia in learning
dynamics can also lead to a secondary surprise following implementation,
leading to a second round of oscillations.

More formally, the system under learning combines two types of dynam-
ics. First consider the case of the permanent surprise increase in \( \gamma \). This
case is simpler since the structure of the system after the shock remains sta-
tionary. Under RE the policy change in effect re-initializes the system so
that the “initial” capital stock is below its new steady state values. Con-
sumption drops to the new saddle path, and the mean paths of all variables
converges over time to their new steady state values. The RE forecast func-
tions immediately jump to the parameter values corresponding to the RE
paths associated with the new steady state. Under RE the system dynamics
are inherently monotonic since the state is given by (25)-(26), which implies
that the mean path of capital simply follows

\[
E_t k_{t+1} - \bar{k'} = \lambda_2'(k_t - \bar{k'}) \quad \text{where } 0 < \lambda_2' < 1.
\]

Here \( \bar{k'}, \lambda_2' \) etc. denotes new steady state values.

Under learning the temporary equilibrium and thus the system dynamics
are driven by the values of the forecast parameters as well as by the current
state (and the random productivity shocks). The forecast functions (27),
(28), (29) and (30) are characterized by a vector of estimated coefficients
\( \theta = (b_k, a_{kk}, a_{kw}, b_w, a_{ww}, b_r, a_{rr}, a_{rw}) \), which are updated over time using
RLS. If, at the time of the policy change, the coefficient values for \( \theta \) changed
immediately to the new RE values (i.e. if $b_k$ and $a_{kk}$ changed to $a_{kk} = \lambda_2'$ and $b_k = (1 - \lambda_2')k'$ and all other coefficients changed analogously) then our temporary equilibrium system would replicate the REE. Under adaptive learning, however, the coefficients gradually evolve towards the new RE values in response to data and the RLS updating scheme. One can show the actual law of motion (ALM) dynamics for given parameters $\theta$ takes the same form as the PLM but with parameters $T(\theta)$ instead of $\theta$. The mapping $T : \mathbb{R}^9 \rightarrow \mathbb{R}^9$ can be computed numerically and REE parameter values are a fixed point $\bar{\theta} = T(\bar{\theta})$. Under learning the parameters $\theta(t)$ evolve under RLS updating. Denoting $\theta^*(t) = T(\theta(t))$ and using $b_k^*(t)$, etc., for the components of $\theta^*$, the (linearized) actual temporary equilibrium dynamics are given by

$$

t_{t+1} = b_k^*(t) + a_{kk}^*(t)k_t + a_{k_t}(t)\hat{v}_t \\
w_t = b_w^*(t) + a_{wk}^*(t)k_t + a_{wv}^*(t)\hat{v}_t \\
r_{k,t} = b_r^*(t) + a_{rk}^*(t)k_t + a_{rv}^*(t)\hat{v}_t \\
\hat{v}_t = \rho\hat{v}_{t-1} + \tilde{v}_t,
$$

where the temporary equilibrium expression for $c_t$ (and a corresponding expression for $n_t$) have been used to obtain this system. Thus under learning the system has two types of dynamics: the linear state dynamics corresponding to this system with given parameters $\theta(t)$ (equal to $\bar{\theta}$ at an REE) and the RLS dynamics governing the evolution of $\theta(t)$ over time. The resulting system for the endogenous variables is a nonlinear stochastic dynamic system that can include oscillatory responses to structural change.

In the case of the permanent surprise increase in $g$ illustrated in Figure 1, the hump-shaped response for $k_t, i_t, c_t$ and $n_t$ results from this combined dynamics. Immediately after the policy shock, the PLM parameters are at the old steady state values $\bar{\theta}$, and this leads to smaller impact effects than under RE and a decline in $k_t$. This then leads to further movements of variables away from the new steady state as discussed above. However, over time $\theta(t)$ evolves towards the new REE values $\bar{\theta}'$, leading to the eventual monotonic convergence seen in Figure 1.27

27 It can be shown that the mean dynamics of the parameter estimates are governed by the “E-stability” differential equation $\dot{\theta} = T(\theta) - \theta$, and that local asymptotic stability of an REE $\bar{\theta}$ is therefore determined by the Jacobian matrix $D_T(\theta)$. Numerically for our baseline parametrization, six of the nine eigenvalues are zero and the remaining are approximately $-4.50, -0.95, -0.64$. Since all the eigenvalues are less than one, the equilibrium is E-stable and therefore stable under least squares learning. For some initial conditions stable
In the case of anticipated permanent increases in $g$, illustrated in Figures 2 and 3, we have the additional feature under learning, described above, of a second surprise after the policy is implemented, taking the form of unexpected wages and interest rate changes. This leads to a second period of oscillatory dynamics before convergence to the final steady state.

Intuitively, the system under learning exhibits a mixture of state variable dynamics inherited from the rational expectations equilibrium and coefficient dynamics from RLS learning. The rational expectations dynamics deliver a strongly positively serially correlated process for capital and the other variables in the system. In contrast, the learning dynamics can deliver oscillatory behavior around the REE values when the system undergoes either a surprise or an anticipated structural change (here a change in policy).

The importance of cyclical or oscillatory dynamics has been emphasized in RE models by a number of people, e.g. Farmer (1999), Chapter 7, Farmer and Guo (1994) and Azariadis, Bullard, and Ohanian (2004). These papers also argue that such dynamics are a feature of US data. Farmer and Guo (1994) obtain cyclical dynamics in RBC-type models with nonconvexities (see also Baxter and King (1991)). In Azariadis, Bullard, and Ohanian (2004) the oscillatory dynamics arise from the overlapping generations structure. In contrast, we have shown that in the presence of adaptive learning, oscillatory dynamics can be expected to be a prominent feature of changes in fiscal policy in standard RBC models. It would be interesting to examine this feature of adaptive learning in more detail and to compare its implications with the data.\textsuperscript{28}

4 Temporary Policy Changes

The other natural fiscal policy experiment to consider is a change in government spending that is known to be temporary. We assume that initially, at $t = 0$, we are in the steady state corresponding to $g = \bar{g}$, and consider the following policy experiment, assumed fully credible and announced at the oscillations of parameters could still arise, and large negative eigenvalues can make the system more prone to oscillations under constant gain. These can even generate instability for large gains, as noted in Evans and Honkapohja (2009).

\textsuperscript{28}See Eusepi and Preston (2011) and Milani (2011) for empirically oriented studies in models with unchanged policy.
start of period 1:

\[ g_t = \tau_t = \begin{cases} \bar{g}', t = 1, \ldots, T_g - 1 \\ \bar{g}, t \geq T_g, \end{cases} \quad (35) \]

i.e., government spending and taxes are changed in period \( t = 1 \) and this change is reversed at a later period \( T_g \). Thus, the experiment is one where the policy change is announced in period 1 to take place in the future for a fixed number of periods.\(^{29}\) The formal dynamics under RE and learning are summarized in the Appendix.

Before examining the results we remark that our surprise temporary changes include an important anticipated component, since the policy change is assumed to be accompanied by an announced date at which the policy will come to an end. We plot the dynamics for a surprise temporary policy change, which takes place in period 1 and lasts for 8 periods (we interpret this as a two-year war).\(^{30}\) The remaining parameter values are the same as in the earlier Figures.

For the RE case we can again get some intuition from the phase diagram considered in Figure 5. The impact effect on consumption will be less than for the permanent change. In addition, given the transient nature of the shock, \( c_1 \) will lie between the \( CSE_0 \) and the \( CSE_1 \) lines. Thereafter, \( c_t \) starts rising and \( k_t \) starts falling (since \( CSE_1 \) governs the dynamics in this phase) until the dynamics hit the initial saddle path \( SP_0 \) passing through \( E_0 \) when the policy change is reversed. Thereafter \( c_t \) and \( k_t \) both rise monotonically towards the initial steady state along this saddle path.

These dynamics are confirmed in Figure 4 and are qualitatively similar to the RE dynamics for a similar policy analyzed in Baxter and King (1993) and Aiyagari, Christiano, and Eichenbaum (1992). \( k_t \) falls as long as the policy change is in effect and then increases towards the (unchanged) steady state. \( c_t \) falls on impact and then increases monotonically towards the steady state. As emphasized in these papers, the key difference from a surprise permanent change is the behavior of investment. When the change is temporary, consumption smoothing by agents is achieved by a reduction in investment. The smaller wealth effect due to the temporary change has a smaller effect on \( c_t \), \( n_t \), and \( y_t \) on impact. The \( k_t/n_t \) ratio falls on impact which raises \( r_t \) and lowers \( w_t \) on impact. \( w_t \) continues to be low during the war and this reduces

\(^{29}\)We have also examined the case of temporary changes in \( g \) that are announced in advance, but for reasons of space we omit these results here.

\(^{30}\)Of course, one could also incorporate uncertainty about the length of the war.
over time. People, however, maintain a rising path of \( c_t \) by running down their capital and \( i_t \) continues to decline as long as the war lasts which also results in a falling path of \( y_t \) over time. There is no longer a need to reduce capital to maintain a rising consumption path once the period of high \( g \) is over. There is, therefore, an investment boom at this point and \( k_t \) starts increasing towards the (unchanged) steady state. The \( k_t/n_t \) ratio starts rising, which raises \( w_t \) (lowers \( r_t \)). The falling interest rates lead to further declines in \( n_t \) which converges towards its steady state.

We now discuss the impacts of the policy under learning. The most marked difference under learning compared to RE is the sharper fall in investment on impact.\(^{31}\) Under RE, agents foresee the path of low wages (and high interest rates) in the future which reduces initial consumption more on impact compared to learning. With expectations of future wages and interest rates pre-determined, and only a small rise in \( S\tau^e_{b,t} \) (due to the temporary change), the reduction in consumption at \( t = 1 \) is much smaller under learning than under RE (the impact effects on other variables is also muted under learning for the same reason). Consequently, there is a sharp fall in investment with the capital stock run down rapidly.

Under learning, although agents correctly foresee the period of higher taxes, they fail to appreciate the precise form of the wage and price dynamics that result from the policy change. The reduction in \( k_t \) over \( t = 1, \ldots, T_g - 1 = 8 \), leads to lower wages and expected wages, \( Sw^e_t \), and higher interest rates and expected interest rates, \( Sr^e_t \), resulting in a period of excessive pessimism during the period of the war. The resulting reduction in \( c_t \) and increase in \( n_t \) during this period reverses the fall in investment and stabilizes the capital stock at a level in excess of RE levels. Then, when the war ends at \( T_g = 9 \), the planned reduction in government spending leads to a sharp spike in investment and build-up of the capital stock. This leads to a period of higher wages and expected wages, and lower interest rates and expected interest rates, and thus to an extended period of correction to the earlier period of over pessimism, before eventual convergence back to the REE steady state. Note that yet again the dynamics of \( c_t, n_t, y_t, w_t, \) and \( r_t \) display a hump-shaped pattern under learning unlike that under RE.

As in the case of permanent policy changes, one way to view these results is that agents fail to foresee the full impacts of the crowding out or crowding

\(^{31}\) See Table 2 for a comparison of impact effects under RE and learning for the endogenous variables.
in of capital from government spending. In the present case, agents tend to extrapolate the low wages during the war, which result from the rundown of capital, and while they understand that their future taxes will fall when the war ends, they fail to recognize the improvement in wages that will occur after the crowding in of capital after the war. This is the source of the excessive pessimism during the war, with a resulting correction after the war ends. These shifts in household sentiment are the origins of the oscillatory response observed under learning to the policy change. As a result one also observes overshooting of all the key variables under learning. The overshooting phenomenon is not observed here under RE. For example, under learning, after the end of the war, $c_t$, $w_t$ and $r_t$ substantially overshoot the steady state values.

5 Conclusion

Changes in fiscal policy, in an RBC model with adaptive learning, generate mean trajectories that have both common features and significant differences from the mean paths under RE. These dynamics were examined for various types of fiscal changes: surprise vs. announced and permanent vs. temporary. For announced policy changes scheduled to take place in the future, immediate anticipation effects under learning arise from the wealth effects of anticipated future tax changes, followed by additional more gradual impacts arising from changes in expected future wages and interest rates.32

The differences in dynamics under RE and adaptive learning therefore arise due to the future path of wages and interest rates being fully foreseen by RE agents, while agents learn only gradually about these variables under incomplete knowledge. In effect, under learning agents understand the direct wealth effects of future changes of government spending and taxes, but fail to fully anticipate the effect on factor prices of the crowding out or crowding in of changes in government spending. Depending on the form of the announced policy change, the size of the impact effects under learning can be either greater or smaller than under RE. In some cases the qualitative dynamics of variables can be in diametrically opposite directions under RE and

---

32 We remark that our focus on anticipated future fiscal changes is reminiscent of the literature on news shocks about future productivity changes, see Jaimovich and Rebelo (2009). The approach used in the current paper could naturally be extended to news shocks within their framework.
learning. Oscillatory dynamics, not present under RE, emerge prominently as agents learn about the full impact of the policy change and its effect on the new steady state. This feature of adaptive learning ought to be explored more in future work since oscillatory dynamics are arguably present in US macroeconomic data as well.

The current work has only considered a scenario with balanced budget and lump-sum taxes, which is the baseline case considered in the RBC literature. In work in progress, we plan to analyze the impact of changes in (distortionary) capital and labor taxes in an RBC type model and compare the dynamics under adaptive learning with those under RE.
References


Appendix

A Details of Solutions under Learning

Under learning, agents need to form forecasts of variables without full knowledge of the underlying model parameters. In the basic formulation, announced policy changes are fully credible and, hence, future forecasts of lump-sum taxes are assumed known to them. However, they still need to form forecasts of future wages and rental rates/interest rates in order to determine their consumption choice in (10). In the learning literature, these forecasts depend on the perceived laws of motion (PLMs) of the agents. We initially start with PLMs that correspond to the REE given in (20), (23) and (24) in which wages, and rental rates are estimated on the basis of data on capital stock and technological shock, \( k_t \) and \( v_t \). Thus the PLMs (including constants) of the agents are taken to be of the form of equations (27) - (29), where the PLM parameters \( b_k, a_{kk}, a_{kv} \) etc will be estimated on the basis of actual data. The final line is the stochastic process for evolution of the (de-meaned) technological shock which is assumed known to the agents (this is without loss of generality).

We will now write these PLMs in deviation form; with deviations under learning taken from the estimated steady state values of capital, wage rate, and rental rate. Define

\[
\begin{align*}
\tilde{k}_t &= k_t - \bar{k}_t^e, \\
\tilde{r}_{k,t} &= r_{k,t} - \bar{r}_{k,t}^e, \\
\tilde{w}_t &= w_t - \bar{w}_t^e.
\end{align*}
\]

(36)

where, for instance, \( \tilde{r}_{k,t} \) is the deviation of the rental rate from the steady state rental rate estimated under learning at time \( t \) (i.e. \( \tilde{r}_{k,t}^e \)).

Using this notation we have

\[
\begin{align*}
\tilde{k}_{t+1} &= a_{kk}\tilde{k}_t + a_{kv}\tilde{v}_t, \\
\tilde{w}_t &= a_{w}\tilde{k}_t + a_{wv}\tilde{v}_t, \\
\tilde{r}_{k,t} &= a_{r}\tilde{k}_t + a_{rv}\tilde{v}_t.
\end{align*}
\]

(37)

(38)

(39)

where the estimated steady state values of capital, rental rates, and wages
under learning are (omitting the time subscripts on $\bar{k}^e_t$, etc.)

$$\bar{k}^e_t = \frac{b_k}{1 - a_{kk}},$$

(40)

$$\bar{r}^e_k = b_r + a_{rk} b_k \frac{b_k}{1 - a_{kk}},$$

(41)

$$\bar{w}^e = b_w + a_{wk} b_k \frac{b_k}{1 - a_{kk}}.$$  

(42)

Then under learning, the form corresponding to (25) is

$$\begin{pmatrix} \tilde{k}_{t+1} \\ \tilde{v}_{t+1} \end{pmatrix} = \tilde{B} \begin{pmatrix} \tilde{k}_t \\ \tilde{v}_t \end{pmatrix} + \begin{pmatrix} 0 \\ \tilde{u}_{t+1} \end{pmatrix},$$

$$\tilde{B} = \begin{pmatrix} a_{kk} & a_{kv} \\ 0 & \rho \end{pmatrix}.$$  

Defining $\tilde{x}_t \equiv \begin{pmatrix} \tilde{k}_t \\ \tilde{v}_t \end{pmatrix}$, we have for $j \geq 1$,

$$\tilde{x}_{t+j}^e = \tilde{B}^j \tilde{x}_t.$$  

(43)

Using the future forecasts of capital stocks from (43), we can in turn obtain the future forecasts of wages and rental rates from (38) and (39) as

$$\tilde{w}^e_{t+j} = \begin{pmatrix} a_{wk} & a_{wv} \end{pmatrix} \tilde{B}^j \tilde{x}_t,$$

$$\tilde{r}^e_{k,t+j} = \begin{pmatrix} a_{rk} & a_{rv} \end{pmatrix} \tilde{B}^j \tilde{x}_t.$$  

We linearize (6) around the deterministic steady state $\bar{c}$ and $\bar{r} = \beta^{-1}$ to get

$$c_t - c = \hat{E}_t (c_{t+1} - c) - \beta \sigma^{-1} \bar{c} \hat{E}_t (r_{t+1} - \bar{r})$$

(44)

As noted in the main text, we assume agents choose the (known) initial steady state as the point around which to linearize. Iterate equation (44) forward to get

$$c_t - c = \hat{E}_t (c_{t+j} - c) - \beta \sigma^{-1} \bar{c} \hat{E}_t \sum_{i=1}^{j} (r_{t+i} - \bar{r})$$

which describes current consumption in terms of expected consumption $j$ steps ahead and future short-term interest rates.
Having obtained the future forecasts of wages and interest rates under learning, we reproduce the consumption function below that agents use to determine their current consumption. The linearized consumption function is

$$(c_t - \bar{c})C_{AA} = \bar{a}(r_t - \bar{r}) + \bar{r}(a_t - \bar{a}) - (\tau_{h,t} - \bar{\tau}_h) + C_{ww}(w_t - \bar{w}) + S1_t^e + S2_t^e,$$

where $\bar{r} = \beta^{-1}$ in the deterministic steady state and

$$C_{AA} \equiv \frac{1}{1 - \beta}(1 + \frac{\sigma}{\epsilon} \zeta \frac{1}{\bar{w}} \bar{c}^{-1}),$$

$$C_{ww} \equiv 1 - \frac{\epsilon - 1}{\epsilon} \zeta c^\frac{1}{\bar{w}}^{-1}.$$  

$S1_t^e$ in (45) is defined as

$$S1_t^e \equiv -S_A S_r^e,$$  

$$S_A = \bar{w} - \zeta \frac{1}{\bar{c}} \bar{c}^{-1} - \bar{c} - \bar{\tau}_h,$$  

and $S2_t^e$ is defined as

$$S2_t^e = \sum_{j=1}^{\infty} \bar{r}^{-j}[C_{ww}(w_t^e - \bar{w}) - (\tau_{h,t+j}^e - \bar{\tau}_h) - 1 - \frac{\bar{c}}{\sigma} + \frac{\zeta c^\frac{1}{\bar{w}}^{\frac{1}{\bar{w}}}}{\epsilon} \zeta \frac{1}{\bar{w}}^{-1} \sum_{j=1}^{\infty} (\tau_{t+j}^e - \bar{r})].$$

$S2_t^e$ can be rewritten as

$$S2_t^e = C_{ww} S_{w_t}^e - S_{\tau_{h,t}^e} + (\frac{\bar{c}}{\sigma} + \frac{\zeta c^\frac{1}{\bar{w}}^{-1}}{\epsilon}) S_r^e,$$

where $S_r^e$, $S_{\tau_{h,t}^e}$, and $S_{w_t}^e$ are given by equations (11), (12), and (13) in the text.

If we combine the expressions in (46) and (48), we can write the consumption function (45) as

$$(c_t - \bar{c})C_{AA} = \bar{a}(r_t - \bar{r}) + \bar{r}(a_t - \bar{a}) - (\tau_{h,t} - \bar{\tau}_h) + C_{ww}(w_t - \bar{w}) - (S_A + \frac{\bar{c}}{\sigma} + \frac{\zeta c^\frac{1}{\bar{w}}^{\frac{1}{\bar{w}}}}{\epsilon} \bar{w}^{-1}) S_r^e + C_{ww} S_{w_t}^e - S_{\tau_{h,t}^e}$$

which is equation (10) in the text, with

$$C_{rr} = S_A + \bar{c} \sigma^{-1} + \frac{\zeta c^\frac{1}{\bar{w}}^{\frac{1}{\bar{w}}}}{\epsilon} \bar{w}^{-1}.$$
We note that equation (10) reduces to the following when \( \sigma = \epsilon = 1 \); the case assumed in the figures,

\[
    c_t - \bar{c} = \frac{1 - \beta}{1 + \zeta} \left[ \beta (r_t - \bar{r}) + \bar{r} (a_t - \bar{a}) - (\tau_{h,t} - \bar{\tau}_h) + (w_t - \bar{w}) \right] \\
    - (\bar{w} - \bar{\tau}_h) S_{t}^e + S_{t}^e - S_{t-h}^e, \]

For the calibrations assumed in the figures, \( \bar{w} > \bar{\tau}_h \), so that increases in \( S_{t}^e \) and decreases in \( S_{t}^e \) reduce current consumption \( c_t \), as one would intuitively expect.

Since announced policy changes are assumed to be credible, future forecasts of taxes \( S_{t-h}^e \), simply coincide with the assumed fiscal rule for the government in the consumption function (10). However, one still needs to obtain analytical expressions for \( S_{t}^e \) which appear in (10). This is what we do now.

Note that using (19) along with (36) we obtain

\[
    r_t - \bar{r} = \tilde{r}_{k,t} + \tilde{r}_{k,t} - \bar{r}_k, 
\]

which after iterating forward gives us

\[
    r_{t+i} - \bar{r} = (\tilde{r}_{k,t+i} + \tilde{r}_{k,t} - \bar{r}_k) \\
    = ( \begin{pmatrix} a_{rk} & a_{rv} \end{pmatrix} \tilde{B}^i \tilde{x}_t + (\tilde{r}_{k,t} - \bar{r}_k), 
\]

since \( \tilde{r}_{k,t+i} = \tilde{r}_{k,t} \); i.e. the estimated steady state rental rate \( i \) steps ahead is still based on time \( t \) data and hence equals the time \( t \) estimate \( \tilde{r}_{k,t} \) given in (41). We use this to derive \( S_{t}^e \) below. Observe that

\[
    \sum_{i=1}^{j} (r_{t+i} - \bar{r}) \\
    = (\tilde{r}_{k,t} - \bar{r}_k) j + ( \begin{pmatrix} a_{rk} & a_{rv} \end{pmatrix} [(I - \tilde{B})^{-1} \tilde{B} - (I - \tilde{B})^{-1} \tilde{B}^{j+1}] \tilde{x}_t 
\]

since

\[
    \sum_{i=1}^{j} \tilde{B}^i = (I - \tilde{B})^{-1} \tilde{B} - (I - \tilde{B})^{-1} \tilde{B}^{j+1} \]
Using this $S_{r_t}^e$ is finally obtained as

$$S_{r_t}^e = \frac{\beta^2}{(1-\beta)^2} (\tilde{r}_{k,t} - \bar{r}_k) + \beta^2 \begin{pmatrix} a_{rk} & a_{rv} \end{pmatrix} (I - \tilde{B})^{-1} \tilde{B} [I - \beta B]^{-1} x_t.$$  

Similarly, since

$$(w_{t+i}^e - \bar{w}) = (\tilde{w}_t^e - \bar{w} + w_{t+i}^e - \tilde{w}_t^e) = (\tilde{w}_t^e - \bar{w}) + \tilde{w}_{t+i},$$

$S_{w_t}^e$ can be obtained from

$$S_{w_t}^e = \sum_{j=1}^{\infty} \beta^j (\tilde{w}_t^e - \bar{w}) + \sum_{j=1}^{\infty} \beta^j \tilde{w}_{t+j}$$

$$= \frac{\beta}{1-\beta} (\tilde{w}_t^e - \bar{w}) + \sum_{j=1}^{\infty} \beta^j \begin{pmatrix} a_{wk} & a_{wv} \end{pmatrix} \tilde{B}^j \tilde{x}_t$$

$$= \frac{\beta}{1-\beta} (\tilde{w}_t^e - \bar{w}) + \begin{pmatrix} a_{wk} & a_{wv} \end{pmatrix} \beta \tilde{B} (I - \beta \tilde{B})^{-1} \tilde{x}_t.$$

Finally, we give details concerning the initialization of the parameters under RLS learning discussed in Section 3.1. The initial values of all parameter estimates are set to the initial steady state values under RE, i.e.,

$$\phi_{k,0} = \begin{pmatrix} b_{k,0} \\ a_{kk,0} \\ a_{kv,0} \end{pmatrix} = \begin{pmatrix} (1 - \bar{\lambda}_2) \bar{k} \\ \bar{\lambda}_2 \\ \bar{f}_{kv} \end{pmatrix},$$

$$\phi_{w,0} = \begin{pmatrix} b_{w,0} \\ a_{wk,0} \\ a_{wv,0} \end{pmatrix} = \begin{pmatrix} \bar{w} - \bar{f}_{wk} \bar{k} \\ \bar{f}_{wk} \\ \bar{f}_{wv} \end{pmatrix},$$

$$\phi_{r,0} = \begin{pmatrix} b_{r,0} \\ a_{rk,0} \\ a_{rv,0} \end{pmatrix} = \begin{pmatrix} \tilde{r}_k - \tilde{f}_{rk} \bar{k} \\ \tilde{f}_{rk} \\ \tilde{f}_{rv} \end{pmatrix}.$$

We also initialize the $R$ matrix at the initial steady state. Define the variance/covariance matrix of $\begin{pmatrix} \hat{k}_t \\ \hat{v}_t \end{pmatrix}$ as

$$Cov(k, v) = \begin{pmatrix} \tilde{\sigma}_k^2 & \tilde{\sigma}_{kv} \\ \tilde{\sigma}_{kv} & \tilde{\sigma}_v^2 \end{pmatrix}$$

38
where $\tilde{\sigma}_k^2, \sigma_v^2 (= (1 - \rho^2)^{-1}\sigma_u^2)$ are the variances of the steady state capital and technology shock, and $\tilde{\sigma}_{kv}$ is the covariance between capital and the shock $\nu_t$ in the initial steady state. Using standard techniques we can obtain these variances using equations (25) and (26)\(^{33}\)

\[
vec(Cov(k, \nu)) = (I - B \otimes B)^{-1}vec(\Omega_{kv}),
\]

\[
\Omega_{kv} = \begin{pmatrix} 0 & 0 \\ 0 & \sigma_v^2 \end{pmatrix},
\]

so that $\tilde{\sigma}_k^2, \tilde{\sigma}_{kv},$ and $\sigma_v^2$ are given by the first, second, and fourth elements of $\vec(Cov(k, \nu))$. The second moment matrix of $z_t$ can then be initialized as

\[
\tilde{R} = \begin{pmatrix} 1 & \tilde{k} & 0 \\ \tilde{k} & \tilde{k}^2 + \tilde{\sigma}_k^2 & \tilde{\sigma}_{kv} \\ 0 & \tilde{\sigma}_{kv} & \sigma_v^2 \end{pmatrix},
\]

which gives the starting point for the algorithm for RLS learning.

**B Details of RE solution with policy change**

We obtain the RE solution under a policy change as in Ljungqvist and Sargent (2004) p. 352, to get

\[
U_c(c_t, n_t) = \beta E_t[U_c(c_{t+1}, n_{t+1})\{1 + (r_{k,t+1} - \delta)\}], \quad (49)
\]

\[
U_n(c_t, n_t) = -w_t = -(1 - \alpha)v_t(k_t/n_t)^{\alpha}, \quad (50)
\]

\[
r_{k,t+1} = \alpha v_t(n_{t+1}/k_{t+1})^{1-\alpha}, \quad (51)
\]

\[
c_t = v_t k_t^{\alpha} n_t^{1-\alpha} + (1 - \delta)k_t - g_t - k_{t+1}. \quad (52)
\]

We have for the utility function (2)

\[
U_c(c_t, n_t) = c_t^{-\sigma}, U_n(c_t, n_t) = -\zeta(1 - n_t)^{-\epsilon}
\]

and using these, (50) simplifies to

\[
\frac{\zeta c_t^{-\sigma}}{(1 - n_t)^\epsilon} = (1 - \alpha)v_t(k_t/n_t)^{\alpha}.
\]

\(^{33}\text{Here } vec \text{ denotes the operator that stacks the columns of a matrix into a vector.}\)
Using (52) to eliminate consumption we get

\[ \zeta (v_t k_t^{\alpha} n_t^{1-\alpha} + (1 - \delta)k_t - g_t - k_{t+1})^\sigma - (1 - \alpha)v_t \left( \frac{k_t}{n_t} \right)^\alpha (1 - n_t)^\epsilon = 0. \]  

(53)

Under policy changes, this (and all subsequent) equations will be linearized around the final steady state.\(^{34}\) Linearizing (53) we get

\[ 0 = G_{g0}(g_t - \bar{g}) + G_{k0}(k_t - \bar{k}) + G_{k1}(k_{t+1} - \bar{k}) + G_{n0}(n_t - \bar{n}) + G_{v0}(v_t - \bar{v}). \]  

(54)

\(G_{k0}\) denotes the partial derivatives evaluated for capital at the current time period \(t\) (e.g. \(k_t\)) and \(G_{k1}\) denotes the partial derivatives evaluated for capital at next period \(t + 1\) (e.g. \(k_{t+1}\)) etc. At the steady state these derivatives are

\[
\begin{align*}
G_{k0} &= \zeta \sigma e^\sigma (\bar{r}_k + 1 - \delta) - (1 - \alpha)\bar{r}_k \left( \frac{1 - \bar{n}}{\bar{n}} \right), \\
G_{k1} &= -\zeta \sigma e^\sigma, \\
G_{n0} &= \zeta \sigma e^\sigma \bar{w} + (1 - \alpha)\bar{v} \bar{k}^{\alpha} \{\alpha \bar{n}^{-\alpha - 1}(1 - \bar{n})^\epsilon + \epsilon \bar{n}^{-\alpha}(1 - \bar{n})^{\epsilon - 1}\}, \\
G_{v0} &= \zeta \sigma e^\sigma \bar{w} - \alpha^{1-\alpha} \bar{k} \bar{n}^{-\alpha}(1 - \bar{n})^\epsilon, \\
G_{g0} &= -\zeta \sigma e^\sigma, \\
G_{v0} &= \bar{w}(1 - \bar{n})^\epsilon.
\end{align*}
\]

(49) on using (52) becomes

\[
\begin{align*}
(v_t k_t^{\alpha} n_t^{1-\alpha} + (1 - \delta)k_t - g_t - k_{t+1})^{-\sigma} \\
= \beta E_t \left\{ v_{t+1} k_{t+1}^{\alpha} n_{t+1}^{1-\alpha} + (1 - \delta)k_{t+1} - g_{t+1} - k_{t+2} \right\}^{-\sigma} \\
\{ 1 + (\alpha v_{t+1} \left( \frac{n_{t+1}}{k_{t+1}} \right)^{1-\alpha} - \delta) \} \right].
\end{align*}
\]

We can linearize this to obtain a solution of the form

\[
0 = \begin{align*}
H_{k0}(k_t - \bar{k}) + H_{k1}(k_{t+1} - \bar{k}) + H_{k2} E_t (k_{t+2} - \bar{k}) + H_{n0}(n_t - \bar{n}) + \\
H_{n1} E_t (n_{t+1} - \bar{n}) + H_{g0}(g_t - \bar{g}) + H_{g1} E_t (g_{t+1} - \bar{g}) + H_{v0}(v_t - \bar{v}) + \\
H_{v1} E_t (v_{t+1} - \bar{v}).
\end{align*}
\]

(55)

\(^{34}\)For convenience we now use \(\bar{g}, \bar{k}\), etc., to denote the final steady state. Of course, for temporary policy changes, the initial and final steady states are the same.
Define the $H$ coefficients here.

\[
\begin{align*}
H_{k0} &= -\sigma c^{-\sigma-1}(\bar{r}_k + 1 - \delta), \\
H_{k1} &= \sigma c^{-\sigma-1} + \beta \sigma \bar{c}^{-\sigma-1}(\bar{r}_k + 1 - \delta)\bar{r} + \beta(1 - \alpha)\bar{c}^{-\sigma}(\alpha \bar{v} \bar{n}^{1-\alpha} \bar{k}^{\sigma-2}), \\
H_{k2} &= H_{g1} = -\beta \sigma \bar{c}^{-\sigma-1} \bar{r} = -\sigma \bar{c}^{-\sigma-1}, \\
H_{n0} &= -\sigma \bar{c}^{-\sigma-1} \bar{w}, \\
H_{n1} &= \beta \sigma \bar{c}^{-\sigma-1} \bar{w} \bar{r} - \beta \bar{c}^{-\sigma}(\alpha(1 - \alpha) \bar{v} \bar{n}^{\alpha} \bar{k}^{-1}), \\
H_{g0} &= \sigma \bar{c}^{-\sigma-1}, \\
H_{v0} &= -\sigma \bar{c}^{-\sigma-1} \bar{k}^{\alpha} \bar{n}^{1-\alpha}, \\
H_{v1} &= \beta \sigma \bar{c}^{-\sigma-1} \bar{k}^{\alpha} \bar{n}^{1-\alpha} \bar{r} - \beta \bar{r}_k \bar{c}^{-\sigma}, \\
H_{r_k1} &= \beta \bar{c}^{-\sigma}(\bar{r}_k - \delta).
\end{align*}
\]

From (54) we get

\[n_t - \bar{n} = -G_{n0}^{-1}[G_{g0}(g_t - \bar{g}) + G_{k0}(k_t - \bar{k}) + G_{k1}(k_{t+1} - \bar{k}) + G_{v0}(v_t - \bar{v})] \quad (56)\]

which implies

\[E_t[n_{t+1} - \bar{n}] = -G_{n0}^{-1}[G_{g0}E_t(g_{t+1} - \bar{g}) + G_{k0}(k_{t+1} - \bar{k}) + G_{k1}E_t(k_{t+2} - \bar{k}) + G_{v0}E_t(v_{t+1} - \bar{v})] \quad (57)\]

$k_{t+1}$ is known in period $t$, so there is no expectation before this term.

(56) and (57) are substituted in (55) to eliminate $n_t$ and $n_{t+1}$ which gives an equation involving only the endogenous variable capital stock

\[0 = J_{k0}(k_t - \bar{k}) + J_{k1}(k_{t+1} - \bar{k}) + J_{k2}E_t(k_{t+2} - \bar{k}) + J_{g0}(g_t - \bar{g}) + J_{g1}E_t(g_{t+1} - \bar{g}) + J_{v0}(v_t - \bar{v}) + J_{v1}E_t(v_{t+1} - \bar{v}) \quad (58)\]

Define the coefficients $J$ below

\[
\begin{align*}
J_{k0} &= H_{k0} - H_{n0} G_{n0}^{-1} G_{k0}, \\
J_{k1} &= H_{k1} - H_{n0} G_{n0}^{-1} G_{k1} - H_{n1} G_{n0}^{-1} G_{k0}, \\
J_{k2} &= H_{k2} - H_{n1} G_{n0}^{-1} G_{k1}, \\
J_{g0} &= H_{g0} - H_{n0} G_{n0}^{-1} G_{g0}, \\
J_{g1} &= H_{g1} - H_{n1} G_{n0}^{-1} G_{g0}, \\
J_{v0} &= H_{v0} - H_{n0} G_{n0}^{-1} G_{v0}, \\
J_{v1} &= H_{v1} - H_{n1} G_{n0}^{-1} G_{v0}, \\
H_{r_{t0}} &= -H_{n0} G_{n0}^{-1} G_{r_{t0}}, \\
H_{r_{t1}} &= -H_{n1} G_{n0}^{-1} G_{r_{t0}},
\end{align*}
\]
and \( H_{\tau k_1} \) is defined after (55).

(58) is a second order difference equation for \( k_t \) in terms of the exogenous policy variables \( g_t \) and the shock \( v_t \) with a condition for initial capital stock \( k_0 \). The linear approximation to the solution for the equilibrium \( k_t \) sequence is obtained by solving the stable root backward and the unstable root forward (see Ljungqvist and Sargent (2004), Chapter 11 for the details). We finally write (58) as

\[
E_t(k_{t+2} - \bar{k}) + A_{k1}(k_{t+1} - \bar{k}) + A_{k0}(k_t - \bar{k}) = A_{g0}(g_t - \bar{g}) + A_{g1}E_t(g_{t+1} - \bar{g}) + A_{v0}(v_t - \bar{v}) + A_{v1}E_t(v_{t+1} - \bar{v}), (59)
\]

where

\[
\begin{align*}
A_{k1} &= J_{k1}J^{-1}_{k2}, \\
A_{k0} &= J_{k0}J^{-1}_{k2}, \\
A_{g0} &= -J_{g0}J^{-1}_{k2}, \\
A_{v0} &= -J_{v0}J^{-1}_{k2}, \\
A_{v1} &= -J_{v1}J^{-1}_{k2}, \\
A_{\tau k1} &= -H_{\tau k1}J^{-1}_{k2}, \\
A_{\tau v0} &= -H_{\tau v0}J^{-1}_{k2}, \\
A_{\tau v1} &= -H_{\tau v1}J^{-1}_{k2}.
\end{align*}
\]

For this model, one can show that

\[
A_{g0} = \frac{1}{1 + \frac{\alpha}{d_1}}, \quad A_{g1} = -1,
\]

\[
n_1 = \alpha \beta c^\sigma \bar{k}^\alpha (1 - \bar{n})^{1-\epsilon} \left( \frac{\bar{n}}{\bar{k}} \right)^{1+\alpha \bar{n} - \alpha} > 0,
\]

\[
d_1 = \beta^{-1} \{ (1 - \bar{n})\alpha + \bar{n} \epsilon \} > 0,
\]

so that \( 0 < A_{g0} < 1 \) and hence \( A_{g1} + A_{g0} < 0 \).

The government spending process implies \( E_t g_{t+1} = \bar{g}_{t+1} \). Also given the process for \( v_t \)

\[
E_t(v_{t+j} - \bar{v}) = \rho^j (v_t - \bar{v}).
\]

Assuming

\[
E_t k_{t+2} = k_{t+2} + \eta_{t+1}; \quad E_t \eta_{t+1} = 0,
\]

(59) becomes

\[
(k_{t+2} - \bar{k}) + A_{k1}(k_{t+1} - \bar{k}) + A_{k0}(k_t - \bar{k}) = A_{g0}(g_t - \bar{g}) + A_{g1}(\bar{g}_{t+1} - \bar{g}) + A_{v0}(v_t - \bar{v}) + A_{v1}\rho(v_t - \bar{v}) - \eta_{t+1}(60)
\]

42
The stochastic process (60) can be solved using the techniques in Sargent (1987), p. 393. This yields

\[ k_{t+1} - \bar{k} = \lambda_2(k_t - \bar{k}) - \lambda_2A_{k0}^{-1}\sum_{j=0}^{\infty} \lambda_1^{-j} E_t[A_{g0}(g_{t+j} - \bar{g}) + A_{g1}(\bar{g}_{t+j+1} - \bar{g}) + (A_{v0} + \rho A_{v1})(v_{t+j} - \bar{v}) - \eta_{t+j+1}] \]

\[ = \lambda_2(k_t - \bar{k}) - \lambda_2A_{k0}^{-1}\sum_{j=0}^{\infty} \lambda_1^{-j} E_t[A_{g0}(g_{t+j} - \bar{g}) + A_{g1}(\bar{g}_{t+j+1} - \bar{g}) + (A_{v0} + \rho A_{v1})(v_{t+j} - \bar{v})]. \]

This finally gives the stochastic process for capital (using the hatted values for deviations from RE steady state)

\[ \hat{k}_{t+1} = \lambda_2\hat{k}_t - \lambda_2A_{k0}^{-1}\sum_{j=0}^{\infty} \lambda_1^{-j} E_t[A_{g0}(g_{t+j} - \bar{g}) + A_{g1}(\bar{g}_{t+j+1} - \bar{g}) + (A_{v0} + \rho A_{v1})\hat{v}_{t+j}, \]

(61)

Here \( \lambda_1, \lambda_2 \) are given by the roots of the quadratic equation (see Ljungqvist and Sargent (2004) p. 345)

\[ \lambda^2 + A_{k1}\lambda + A_{k0} = 0, \]

\[ \lambda_1\lambda_2 = A_{k0}, \]

where it is assumed that \( \lambda_1 > 1 \) and \( 0 < \lambda_2 < 1 \).

We now specialize the analysis and summarize the details for obtaining a linear approximation to the equilibrium RE capital sequence under a permanent policy change of the type considered in the paper.\(^{35} \) The capital sequence is given by (61) i.e.

\[ \hat{k}_{t+1} = \lambda_2\hat{k}_t - \lambda_2A_{k0}^{-1}(S_g(t) + S_v(t)). \]

(62)

where

\[ S_g(t) = \sum_{j=0}^{\infty} \lambda_1^{-j} E_t\{A_{g0}(\bar{g}_{t+j} - \bar{g}) + A_{g1}(\bar{g}_{t+j+1} - \bar{g})\}, \]

(63)

\[ S_v(t) = \sum_{j=0}^{\infty} \lambda_1^{-j} E_t(A_{v0} + \rho A_{v1})\hat{v}_{t+j} = (A_{v0} + \rho A_{v1})\sum_{j=0}^{\infty} \lambda_1^{-j}\rho^j\hat{v}_t. \]

(64)

\(^{35} \)The summations below assume \( T_p \geq 2 \). If \( T_p = 1 \), then the policy change is immediate and is termed a surprise (from the point of view of the agents) change which is the benchmark case considered in the paper. Equation (62) still gives the dynamics of capital for the surprise permanent policy change by setting \( S_g(t) \equiv 0 \).
We have

\[ \bar{\gamma}_t - \bar{\gamma} = \begin{cases} \bar{\gamma}' - \bar{\gamma}, & 1 \leq t < T_p, \\ 0, & t \geq T_p, \end{cases} \]

\[ \bar{\gamma}_{t+j} - \bar{\gamma} = \begin{cases} \bar{\gamma}' - \bar{\gamma}, & t + j < T_p, \\ 0, & t + j \geq T_p. \end{cases} \]

One can show that \( A_{g1} = -1 \) in (63) which gives us

\[ A_{g0}(\bar{\gamma}_{t+j} - \bar{\gamma}) + A_{g1}(\bar{\gamma}_{t+j+1} - \bar{\gamma}) = \begin{cases} (A_{g0} - 1)(\bar{\gamma}' - \bar{\gamma}), & t + j \leq T_p - 2, \\ A_{g0}(\bar{\gamma}' - \bar{\gamma}), & t + j = T_p - 1, \\ 0, & t + j \geq T_p. \end{cases} \]

We first compute (64). For all \( t \geq 1 \), we have

\[ S_v(t) \equiv (A_{so} + \rho A_{s1})\hat{\nu}_t \sum_{j=0}^{\infty} \lambda_1^{-j} \rho^j = \frac{(A_{so} + \rho A_{s1})\hat{\nu}_t}{1 - \frac{1}{\lambda_1}}. \]  

(65)

Then we compute (63). If \( 1 \leq t \leq T_p - 2 \), we have

\[ S_g(t) \equiv \sum_{j=0}^{T_p-2-t} \lambda_1^{-j}(A_{g0} - 1)(\bar{\gamma}' - \bar{\gamma}) + \lambda_1^{-(T_p-1-t)}A_{g0}(\bar{\gamma}' - \bar{\gamma}) \]

and if \( t = T_p - 1 \), then we have

\[ S_g(t) \equiv A_{g0}(\bar{\gamma}' - \bar{\gamma}) \]

and \( S_g(t) = 0 \) for \( t \geq T_p \).

To summarize,

\[ S_g(t) = \begin{cases} (A_{g0} - 1)\frac{1 - \lambda_1^{-(T_p-1-t)}}{1 - \lambda_1} + \lambda_1^{-(T_p-1-t)}A_{g0})(\bar{\gamma}' - \bar{\gamma}), & 1 \leq t \leq T_p - 1, \\ 0, & t \geq T_p. \end{cases} \]

(66)

Using the formulas in (65) and (66), we can compute the linearized capital dynamics under RE from (62) for a permanent change in government spending under a balanced budget. This is the dynamics which we compare with the learning dynamics.
### Tables

<table>
<thead>
<tr>
<th>Impact</th>
<th>Surp</th>
<th>Surp</th>
<th>$T_p = 5$</th>
<th>$T_p = 5$</th>
<th>$T_p = 29$</th>
<th>$T_p = 29$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects</td>
<td>RE</td>
<td>RLS</td>
<td>RE</td>
<td>RLS</td>
<td>RE</td>
<td>RLS</td>
</tr>
<tr>
<td>$c_t$</td>
<td>$-0.90$</td>
<td>$-0.34$</td>
<td>$-0.66$</td>
<td>$-0.31$</td>
<td>$-0.10$</td>
<td>$-0.22$</td>
</tr>
<tr>
<td>$n_t$</td>
<td>$1.47$</td>
<td>$0.55$</td>
<td>$1.08$</td>
<td>$0.51$</td>
<td>$0.17$</td>
<td>$0.36$</td>
</tr>
<tr>
<td>$i_t$</td>
<td>$2.49$</td>
<td>$-2.07$</td>
<td>$5.38$</td>
<td>$2.55$</td>
<td>$0.86$</td>
<td>$1.78$</td>
</tr>
<tr>
<td>$y_t$</td>
<td>$0.98$</td>
<td>$0.37$</td>
<td>$0.72$</td>
<td>$0.34$</td>
<td>$0.12$</td>
<td>$0.24$</td>
</tr>
<tr>
<td>$k_t/n_t$</td>
<td>$-1.45$</td>
<td>$-0.55$</td>
<td>$-1.07$</td>
<td>$-0.51$</td>
<td>$-0.17$</td>
<td>$-0.36$</td>
</tr>
<tr>
<td>$w_t$</td>
<td>$-0.49$</td>
<td>$-0.18$</td>
<td>$-0.36$</td>
<td>$-0.17$</td>
<td>$-0.06$</td>
<td>$-0.12$</td>
</tr>
<tr>
<td>$r_t$</td>
<td>$0.04$</td>
<td>$0.015$</td>
<td>$0.03$</td>
<td>$0.014$</td>
<td>$0.005$</td>
<td>$0.009$</td>
</tr>
</tbody>
</table>

Table 1: Impact effects on key variables of a permanent policy change under rational expectations (RE) and under learning (RLS) for the surprise and announced changes.
<table>
<thead>
<tr>
<th>Impact Effects</th>
<th>RE</th>
<th>RLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_t$</td>
<td>-0.41</td>
<td>-0.04</td>
</tr>
<tr>
<td>$n_t$</td>
<td>0.68</td>
<td>0.063</td>
</tr>
<tr>
<td>$i_t$</td>
<td>-1.46</td>
<td>-4.51</td>
</tr>
<tr>
<td>$y_t$</td>
<td>0.45</td>
<td>0.04</td>
</tr>
<tr>
<td>$k_t/n_t$</td>
<td>-0.67</td>
<td>-0.063</td>
</tr>
<tr>
<td>$w_t$</td>
<td>-0.22</td>
<td>-0.02</td>
</tr>
<tr>
<td>$r_t$</td>
<td>0.02</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Table 2: Impact effects on key variables of the temporary policy change under rational expectations (RE) and under learning (RLS)
Figure 1: Dynamic paths for a surprise permanent increase in government spending. The solid lines are the learning paths while the dashed lines are the RE paths. The horizontal dashed lines depict the old and the new steady states. Mean paths over 20,000 simulations.
Figure 2: Dynamic paths for an anticipated permanent increase in government spending taking place in period 5. The solid lines are the learning paths while the dashed lines are the RE paths. The horizontal dashed lines depict the old and new steady states. Mean paths over 20,000 simulations.
Figure 3: Dynamic paths for an anticipated permanent increase in government spending taking place in period 29. The solid lines are the learning paths while the dashed lines are the RE paths. The horizontal dashed lines depict the old and new steady states. Mean paths over 20,000 simulations.
Figure 4: Dynamic paths for a surprise temporary increase in government spending that lasts for two years. The solid lines are the learning paths while the dashed lines are the RE paths. The horizontal dashed lines depict the (unchanged) steady state. Mean paths over 20,000 simulations.
Figure 5: Effects under RE of fiscal policy in deterministic RBC model; based on Heijdra (2009), Figures 15.1-15.2.
ABOUT THE CDMA

The Centre for Dynamic Macroeconomic Analysis was established by a direct grant from the University of St Andrews in 2003. The Centre facilitates a programme of research centred on macroeconomic theory and policy. The Centre is interested in the broad area of dynamic macroeconomics but has particular research expertise in areas such as the role of learning and expectations formation in macroeconomic theory and policy, the macroeconomics of financial globalization, open economy macroeconomics, exchange rates, economic growth and development, finance and growth, and governance and corruption. Its affiliated members are Faculty members at St Andrews and elsewhere with interests in the broad area of dynamic macroeconomics. Its international Advisory Board comprises a group of leading macroeconomists and, ex officio, the University’s Principal.

Affiliated Members of the School
Dr Fabio Aricò.
Dr Arnab Bhattacharjee.
Dr Tatiana Damjanovic.
Dr Vladislav Damjanovic.
Prof George Evans (Co-Director).
Dr Gonzalo Forgue-Puccio.
Dr. Michal Horvath
Dr Laurence Lasselle.
Dr Peter Macmillan.
Prof Rod McGrattie.
Prof Kaushik Mitra (Director).
Dr. Elisa Newby
Dr Geetha Selvaretnam.
Dr Ozge Senay.
Dr Gary Shea.
Prof Alan Sutherland.
Dr Kannika Thampanishvong.
Dr Christoph Thoenissen.
Dr Alex Trew.

Senior Research Fellow
Prof Andrew Hughes Hallett, Professor of Economics, Vanderbilt University.

Research Affiliates
Prof Keith Blackburn, Manchester University.
Prof David Cobham, Heriot-Watt University.
Dr Luisa Corrado, Università degli Studi di Roma.
Prof Huw Dixon, Cardiff University.
Dr Anthony Garratt, Birkbeck College London.
Dr Sugata Ghosh, Brunel University.
Dr Aditya Goenka, Essex University.
Dr Michal Horvath, University of Oxford.
Prof Campbell Leith, Glasgow University.
Prof Paul Levine, University of Surrey.
Dr Richard Mash, New College, Oxford.
Prof Patrick Minford, Cardiff Business School.
Dr Elisa Newby, University of Cambridge.
Prof Charles Nolan, University of Glasgow.

Dr Gulcin Ozkan, York University.
Prof Joe Pearlman, London Metropolitan University.
Prof Neil Rankin, Warwick University.
Prof Lucio Sarno, Warwick University.
Prof Eric Schaling, South African Reserve Bank and Tilburg University.
Prof Peter N. Smith, York University.
Dr Frank Smets, European Central Bank.
Prof Robert Sollis, Newcastle University.
Prof Peter Tinsley, Birkbeck College, London.
Dr Mark Weder, University of Adelaide.

Research Associates
Mr Nikola Bokan.
Mr Farid Boumediene.
Miss Jinyu Chen.
Mr Johannes Geissler.
Mr Ansgar Rannenberg.
Mr Qi Sun.

Advisory Board
Prof Sumru Altug, Koç University.
Prof V V Chari, Minnesota University.
Prof John Driffill, Birkbeck College London.
Dr Sean Holly, Director of the Department of Applied Economics, Cambridge University.
Prof Seppo Honkapohja, Bank of Finland and Cambridge University.
Dr Brian Lang, Principal of St Andrews University.
Prof Anton Muscatelli, Heriot-Watt University.
Prof Charles Nolan, St Andrews University.
Prof Peter Sinclair, Birmingham University and Bank of England.
Prof Stephen J Turnovsky, Washington University.
Dr Martin Weale, CBE, Director of the National Institute of Economic and Social Research.
Prof Michael Wickens, York University.
Prof Simon Wren-Lewis, Oxford University.
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDMA10/06</td>
<td>The Timing of Asset Trade and Optimal Policy in Dynamic Open Economies</td>
<td>Ozge Senay (St Andrews) and Alan Sutherland (St Andrews and CEPR)</td>
</tr>
<tr>
<td>CDMA10/07</td>
<td>Endogenous Price Flexibility and Optimal Monetary Policy</td>
<td>Ozge Senay (St Andrews) and Alan Sutherland (St Andrews and CEPR)</td>
</tr>
<tr>
<td>CDMA10/08</td>
<td>Does Ricardian Equivalence Hold When Expectations are not Rational?</td>
<td>George W. Evans (Oregon and St Andrews), Seppo Honkapohja (Bank of Finland) and Kaushik Mitra (St Andrews)</td>
</tr>
<tr>
<td>CDMA10/09</td>
<td>Scotland: A New Fiscal Settlement</td>
<td>Andrew Hughes Hallett (St Andrews and George Mason) and Drew Scott (Edinburgh)</td>
</tr>
<tr>
<td>CDMA10/10</td>
<td>Learning about Risk and Return: A Simple Model of Bubbles and Crashes</td>
<td>William A. Branch (California) and George W. Evans (Oregon and St Andrews)</td>
</tr>
<tr>
<td>CDMA10/11</td>
<td>Monetary Policy and Heterogeneous Expectations</td>
<td>William A. Branch (California) and George W. Evans (Oregon and St Andrews)</td>
</tr>
<tr>
<td>CDMA10/12</td>
<td>Finance and Balanced Growth</td>
<td>Alex Trew (St Andrews)</td>
</tr>
<tr>
<td>CDMA10/13</td>
<td>Economic Crisis and Economic Theory</td>
<td>Mark Weder (Adelaide, CDMA and CEPR)</td>
</tr>
<tr>
<td>CDMA10/14</td>
<td>A DSGE Model from the Old Keynesian Economics: An Empirical Investigation</td>
<td>Paolo Gelain (St Andrews) and Marco Guerrazzi (Pisa)</td>
</tr>
<tr>
<td>CDMA10/15</td>
<td>Delay and Haircuts in Sovereign Debt: Recovery and Sustainability</td>
<td>Sayantan Ghosal (Warwick), Marcus Miller (Warwick and CEPR) and Kannika Thampanishvong (St Andrews)</td>
</tr>
<tr>
<td>CDMA11/01</td>
<td>The Stagnation Regime of the New Keynesian Model and Current US Policy</td>
<td>George W. Evans (Oregon and St Andrews)</td>
</tr>
<tr>
<td>CDMA11/02</td>
<td>Notes on Agents’ Behavioral Rules Under Adaptive Learning and Studies of Monetary Policy</td>
<td>Seppo Honkapohja (Bank of England), Kaushik Mitra (St Andrews) and George W. Evans (Oregon and St Andrews)</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>CDMA11/03</td>
<td>Transaction Costs and Institutions</td>
<td>Charles Nolan (Glasgow) and Alex Trew (St Andrews)</td>
</tr>
<tr>
<td>CDMA11/04</td>
<td>Ordering Policy Rules with an Unconditional</td>
<td>Tatjana Damjanovic (St Andrews), Vladislav Damjanovic (St Andrews) and Charles Nolan (Glasgow)</td>
</tr>
<tr>
<td>CDMA11/05</td>
<td>Solving Models with Incomplete Markets and Aggregate Uncertainty</td>
<td>Michal Horvath (Oxford and CDMA)</td>
</tr>
<tr>
<td>CDMA11/06</td>
<td>Variety Matters</td>
<td>Oscar Pavlov (Adelaide) and Mark Weder (Adelaide, CDMA and CEPR)</td>
</tr>
<tr>
<td>CDMA11/07</td>
<td>Foreign Aid—a Fillip for Development or a Fuel for Corruption?</td>
<td>Keith Blackburn (Manchester) and Gonzalo F. Forgues-Puccio (St Andrews)</td>
</tr>
<tr>
<td>CDMA11/08</td>
<td>Financial intermediation and the international business cycle: The case of small countries with big banks</td>
<td>Gunes Kamber (Reserve Bank of New Zealand) and Christoph Thoenissen (Victoria University of Wellington and CDMA)</td>
</tr>
<tr>
<td>CDMA11/09</td>
<td>East India Company and Bank of England Shareholders during the South Sea Bubble: Partitions, Components and Connectivity in a Dynamic Trading Network</td>
<td>Andrew Mays and Gary S. Shea</td>
</tr>
<tr>
<td>CDMA11/10</td>
<td>A Social Network for Trade and Inventories of Stock during the South Sea Bubble</td>
<td>Gary S. Shea (St Andrews)</td>
</tr>
</tbody>
</table>

For information or copies of working papers in this series, or to subscribe to email notification, contact:

Kaushik Mitra  
Castlehill, School of Economics and Finance  
University of St Andrews  
Fife, UK, KY16 9AL  
Email: km91@at-andrews.ac.uk; Phone: +44 (0)1334 462443; Fax: +44 (0)1334 462444.