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Abstract: Climate sensitivity is defi ned as the change in global mean equilibrium temperature 
after a doubling of atmospheric CO2 concentration and provides a simple measure of global 
warming. An early estimate of climate sensitivity, 1.5–4.5°C, has changed little subsequently, 
including the latest assessment by the Intergovernmental Panel on Climate Change. The 
persistence of such large uncertainties in this simple measure casts doubt on our understanding 
of the mechanisms of climate change and our ability to predict the response of the climate system 
to future perturbations. This has motivated continued attempts to constrain the range with 
climate data, alone or in conjunction with models. The majority of studies use data from the 
instrumental period (post-1850), but recent work has made use of information about the large 
climate changes experienced in the geological past. In this review, we fi rst outline approaches 
that estimate climate sensitivity using instrumental climate observations and then summarize 
attempts to use the record of climate change on geological timescales. We examine the limitations 
of these studies and suggest ways in which the power of the palaeoclimate record could be better 
used to reduce uncertainties in our predictions of climate sensitivity.
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I Introduction
The concentration of greenhouse gases 
(CO2, CH4, etc.) in the atmosphere has 
increased substantially during recent decades 
and is likely to continue increasing in the 

future. Predictions of how these changes 
will affect climate are highly uncertain, in 
part because of uncertainties in how much 
of the CO2 will be taken up by the ocean, 
in part because of imperfect knowledge of 
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the terrestrial carbon cycle but most im-
portantly because of uncertainties in the 
sensitivity of the climate system to change. 
The effects of increasing greenhouse gas 
(GHG) concentrations include changes in 
temperature, precipitation, cloudiness and 
the frequency of extreme events; changes 
occur regionally and seasonally and affect 
short-term climate variability (the chaotic 
behaviour of climate over timescales of a few 
years). A simple metric is required to sum-
marize our understanding of future change.

Climate sensitivity is such a metric, 
defi ned as the change in average global tem-
perature after atmospheric CO2 concentra-
tion is doubled and equilibrium is reached 
(Schlesinger and Mitchell, 1987). This defi n-
ition as the equilibrium response distinguishes 
climate sensitivity from the time-dependent, 
or ‘transient’, response of the climate system 
(see for example Collins et al., 2006; Harris 
et al., 2006).

The first estimate of climate sensitivity 
was made over a century ago by Svante 
Arrhenius who made, in his own words, 
‘tedious calculations’ of the atmospheric 
temperature change with a doubling of  
CO2 concentration at various latitudes 
(Arrhenius, 1896). However, the issue of esti-
mating climate sensitivity was not revisited 
until the development of atmospheric gen-
eral circulation models (GCMs) during the 
1960s and 1970s (eg, Manabe and Wetherald, 
1967, 1975) and the necessary computing 
power for these models.

Predictions of climate sensitivity from 
multiple atmospheric GCMs made in the 
1970s and summarized in a report by the 
National Academy of Sciences (NAS) indi-
cated values between 1.5–4.5°C (Charney, 
1979). Twenty years later, the IPCC Third 
Assessment Report presented estimates 
of climate sensitivity based on more sophi-
sticated coupled ocean-atmosphere GCMs 
in the range 2–5.1°C, but concluded with 
the statement that the NAS range ‘encom-
passes the estimates from the current models 
in active use’ (IPCC, 2001). The most recent 

IPCC assessment, published this year, con-
cludes that climate sensitivity is ‘likely to be in 
the range 2 to 4.5°C with a best estimate of 
about 3°C, and is very unlikely to be less than 
1.5°C’, where ‘likely’ is defi ned as greater than 
about 66% probability and ‘very unlikely’ as 
less than about 10% probability (IPCC, 2007).

The persistence of such large uncertainties 
in the estimation of climate sensitivity poses 
serious problems. Attempts to plan for and 
adapt to possible future climate change are 
crucially dependent on knowing the mag-
nitude of that change, which in turn is de-
pendent on the sensitivity of the system. 
This motivates the current drive to constrain 
climate sensitivity either by narrowing 
the range of estimates or by quantifying 
the probability that climate sensitivity lies 
within a given range. Better-constrained 
estimates of climate sensitivity also under-
pin the reliability of predictions of climate 
variables other than temperature, changes 
in climate extremes, and regional climate 
change.

Most attempts to constrain the range of 
climate sensitivity have focused on climate 
changes during the recent past, making use 
of climate observations, alone or in conjunc-
tion with models. However, the changes in 
global temperature during the historic period 
(post-1850) are relatively small compared 
with the change that might be produced by 
a doubling of CO2. More recently, attempts 
have been made to constrain climate sensiti-
vity using information about the large climate 
changes experienced in the geological past, 
including times when temperature and CO2 
concentration were both higher and lower 
than the present day. In this review, we out-
line approaches based on historical climate 
observations since the IPCC Third Assess-
ment Report in 2001, and then summarize 
attempts to use the record of climate change 
on geological timescales. We examine the 
limitations of these studies and suggest ways 
in which the power of the palaeoclimate record 
could be better used to reduce uncertainties 
in our prediction of the future.
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II The feedback parameter
A forcing, broadly speaking, is something 
that perturbs the radiative equilibrium of 
the atmosphere: for example, an increase in 
greenhouse gases (GHGs) that decreases 
the amount of longwave radiation emitted 
to space and thus warms the Earth. Other 
forcings include changes in incoming solar 
radiation (insolation), ice-sheet extent, and 
atmospheric levels of sulphate particles (from 
industrial emissions or volcanic eruptions) or 
black-carbon particles (from industrial emis-
sions or natural fi res). A forcing pushes the 
climate into a warmer or cooler state; this 
change in state is known as the temperature 
response. Depending on the size and type of 
forcing, it may take thousands of years for 
the climate to come into equilibrium. Forcings 
are measured in Watts per metre squared 
(Wm–2) and can be defi ned in various ways 
(Hansen et al., 1997).

The climate’s response to a forcing is com-
plicated by the presence of feedbacks, which 
can amplify or reduce the temperature change. 
The melting of ice at the poles in response to 
atmospheric warming produces a positive 
feedback: the surface albedo (reflectivity) 
decreases, which decreases the amount of 
radiation refl ected back to space, and so the 
initial warming is amplifi ed. Some compon-
ents of the climate system, such as dust or 
clouds, can produce either positive or negative 
feedbacks depending on their location and 
internal characteristics. Low, white clouds 
have a high albedo so they refl ect solar radi-
ation back to space, which has a cooling effect; 
high, dark clouds trap and re-emit radiation 
emitted from the Earth, which has a warming 
effect.

The distinction between forcing and 
feedback depends on the timescale under 
consideration, and how it compares with the 
response times of the different components 
of the climate system. The response of polar 
ice sheets to insolation changes, for example, 
which is slow compared with the response 
of the atmosphere, can be considered as a 
forcing on decadal timescales but a feedback 

Aon millennial timescales. This allows us to treat 
the climate system as close to radiative equilib-
rium on timescales of a few centuries, which is 
not necessarily the case when long timescale 
ice sheet dynamics are taken into account.

After a forcing acts to change the radiative 
balance, and the climate reaches equilibrium 
at a new temperature, the global mean tem-
perature change ∆T (K) is related to the forcing 
Q (Wm–2) by:
   
 ∆T

Q
=
λ

 (1)

where λ is the feedback parameter (Wm–2

K–1). The simplest way to estimate climate 
sensitivity is to calculate λ for a known forcing 
and temperature change (Qknown, ∆Tknown), 
and then use λ with the forcing of doubled 
CO2 (Q2×CO2 = 3.7Wm–2) to estimate the 
temperature change ∆T2×CO2. This makes 
the assumption that the feedback para-
meter is the same in both the known and 
doubled CO2 climates.

III Using the instrumental record
There are three basic approaches to using 
modern (post-1850) climate data to estimate 
climate sensitivity: to infer climate sensitivity 
directly from observations (using Qknown, 
∆Tknown as described in the previous section); 
to compare model simulations to observa-
tions in order to increase confidence in a 
model’s estimate of climate sensitivity; or 
to weight predictions of climate sensitivity 
from several different models according to 
the degree of agreement between the model 
simulations and the observations.

Climate sensitivity has been inferred by 
comparing the change in forcing during the 
instrumental period with observations of 
atmospheric warming, taking into account 
the fact that the climate is not at equilibrium 
(Gregory et al., 2002; Forster and Gregory, 
2006). This is a conceptually simple approach, 
but has practical diffi culties. The change in 
forcing between 1850 and the present day 
includes changes in solar radiation, atmos-
pheric GHG concentrations, and atmospheric 
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particulate levels including sulphate aerosols. 
Although the changes in CO2 during this 
period are well-known, measurements of 
several of the other forcings only began re-
cently so the change in total forcing must be 
estimated from a combination of observa-
tions and modelling studies. The transient 
state of the climate is estimated from the 
rate of heat uptake by the ocean (Gregory 
et al., 2002), which is quite uncertain, or the
net radiative flux imbalance at the top of 
the atmosphere (Forster and Gregory, 2006), 
which has only been measured for a short 
time. A further difficulty is caused by the 
fact that the global temperature change 
from 1850 to the present is small (around 
0.7°C) and the trend is complicated by natural 
variability. Because of the large uncertainties 
in estimating the forcing and ocean heat 
uptake, the estimate of climate sensitivity by 
Gregory et al. (2002) has only a lower limit 
(1.6°C) (Table 1, Figure 2). In a later study, 
Forster and Gregory (2006) use satellite 
measurements of the radiative imbalance 
at the top of the atmosphere and this yields 
a stronger constraint on climate sensitivity 
(1–4°C). These estimates based on modern 
climate observations do not include the 
albedo forcing due to changes in land cover; 
it has been estimated that deforestation 
could have decreased global mean temper-
ature by up to 0.25°C with larger regional 
changes (Betts, 2001; Brovkin et al., 2006; 
Davin et al., 2007).

Climate sensitivity has also been esti-
mated by comparing model simulations of 
the historic period with observations. Models 
incorporate the major processes that govern 
climate so, providing these processes are 
well-represented in the models, they can be 
used to estimate the impact of each forcing 
during the historic period and thus the climate 
sensitivity. The instrumental record can be 
used for ‘model validation’, which increases 
confi dence in a model’s estimate of climate 
sensitivity (Barnett et al., 2001; Yokohata et 
al., 2005), or else to constrain a range of model 

estimates directly. Ranges of estimates arise 
because of problems inherent in estimating 
climate sensitivity from model experiments. 
Firstly, not all processes and feedbacks are 
incorporated even in state-of-the-art models. 
Furthermore, some processes are represented 
in a simplified fashion (parameterized) and 
require the specifi cation of parameter values 
from observations; parameterizations vary 
from model to model and, in many cases, 
modern observations yield a range of plaus-
ible values for each parameter.

One way to estimate the uncertainties 
caused by incomplete models and poorly con-
strained parameters is to run different versions 
of a given model, and to compare the climate 
simulated by each version with observations 
in order to assess which is the most realistic. 
There are two approaches to creating a group 
of model versions, or ‘ensemble’. The fi rst 
is to explicitly vary the climate sensitivity of 
the model, which is usually only possible in 
simpler models (Andronova and Schlesinger, 
2001; Forest et al., 2002, 2006; Harvey and 
Kaufmann, 2002; Knutti et al., 2002; Frame 
et al., 2005; Wigley et al., 2005). The second is 
to vary the parameters that affect the physics 
in the model, within ranges that are thought 
to be reasonable (Murphy et al., 2004; Piani 
et al., 2005; Stainforth et al., 2005; Knutti 
et al., 2006). These are referred to as ‘climate 
sensitivity’ and ‘perturbed physics’ ensembles 
respectively.

Ensembles provide a powerful tool to 
explore climate sensitivity. Each ensemble 
member has a different value of climate 
sensitivity and each simulates the modern 
climate somewhat differently. The range of 
climate sensitivity values from the models 
is expressed as a ‘probability distribution 
function’ (pdf) to show which estimates of 
climate sensitivity are most likely (Figure 1); 
this fi rst, or ‘prior’, distribution shows only 
the predictions of each model and thus refl ects 
the choice of model versions in creating the 
ensemble (these choices may be referred to as 
a ‘uniform prior’ if intended to be neutral, or an 
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Table 1 Estimates of climate sensitivity that use modern climate data (post-1850) as 
a constraint (CL: confi dence limits)

Authors Instrumental data Climate sensitivity

Inferred from data
Gregory et al., 2002 Ocean and surface air temperature Lower limit 1.6°C (95% CL)
Forster and Gregory, 
2006

Net fl ux imbalance at top of the 
atmosphere; 
surface air temperature

1.0–4.1°C (95% CL)

Model validation
Barnett et al., 2001 Ocean temperature 2.1°C consistent with data
Yokohata et al., 2005 Surface air temperature (volcanic 

cooling)
4°C consistent with data; 
6.3°C not consistent 

Climate sensitivity ensemble
Andronova and 
Schlesinger, 2001

Surface air temperature 1.0–9.3°C (90% CL)

Knutti et al., 2002 Ocean and surface air temperature Lower limit 1.2°C
Harvey and 
Kaufmann, 2002

Ocean and surface air temperature 
(inc. volcanic cooling)

1.0–3.0°C favored;
2°C most likely

Forest et al., 2002 Ocean, surface air and upper air 
temperature

1.4–7.7 (90% CL) with uniform prior;
1.3–4.2 (90% CL) with expert prior 

Wigley et al., 2005 Surface air temperature (volcanic 
cooling)

Agung: 2.83°C (2σ limits 1.28–6.32°C); 
El Chichón: 1.54°C (2σ limits 0.30–7.73°C);
Pinatubo: 3.03°C (2σ limits 1.79–5.21°C)

Frame et al., 2005 Surface air temperature 1.2–11.8°C (90% CL)
Forest et al., 2006 As for Forest et al., 2002 2.1–8.9°C (90% CL) with uniform prior;

1.9–4.7°C (90% CL) with expert prior 
Perturbed physics ensemble
Murphy et al., 2004 Large range of present-day 

observations 
2.4–5.4°C (90% CL)

Stainforth et al., 2005 Present-day annual mean 
temperature, sea level pressure, 
precipitation and atmosphere-
ocean sensible and latent heat fl ux 

1.9 –11.5°C
unconstrained range of ensemble; 
(95.8% of ensemble < 8°C)

Piani et al., 2005 As for Stainforth et al. (2005), 
plus relative humidity, zonal and 
meridional winds, outgoing LW 
and SW radiation

2.2–6.8°C (90% CL)

Knutti et al., 2006 Present-day surface temperature 
seasonal cycle 

Lower limit 1.5–2°C (90% CL);
Upper limit 5–6.5°C (90% CL)

‘expert prior’ if intended to include a greater 
degree of opinion: Forest et al., 2002, 2006; 
Table 1; Figure 2). Each ensemble member 
is then weighted by its success at simulating 
the modern climate. The weightings alter the 
shape of the climate sensitivity pdf, assigning 

a higher probability to the predictions of the 
most successful ensemble members and 
producing the ‘posterior’ distribution. The 
posterior distribution is thus made up of the 
predictions of the ensemble constrained by 
the climate observations (Figure 1).
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Figure 1 Probability distributions of climate sensitivity (adapted from Murphy 
et al., 2004). These were obtained from a large perturbed physics ensemble (grey 
histogram), using linear interpolation to predict the results from additional parameter 
combinations. The pdfs are shown with and without weighting according to the 
agreement between model versions and present day climate observations

Several different instrumental records 
have been used in the ensemble approach, in-
cluding observations of present-day climate 
(Murphy et al., 2004; Piani et al., 2005; 
Stainforth et al., 2005; Knutti et al., 2006), the 
long-term warming trends of the atmosphere 
and ocean in the 19th and 20th centuries 
(Andronova and Schlesinger, 2001; Forest et 
al., 2002, 2006; Harvey and Kaufmann, 2002; 
Knutti et al., 2002; Frame et al., 2005), and 
observations of cooling after recent volcanic 
eruptions (Wigley et al., 2005).

Climate sensitivity estimates from en-
sembles are usually expressed as 5–95% 
confi dence limits (CL), which are the upper 
and lower limits of the central 90% area of 
the pdf. Most studies predict an asymmetric 

climate sensitivity pdf, with a long high tail that 
would indicate there is a small chance of very 
high climate sensitivity (eg, Andronova and 
Schlesinger, 2001; Forest et al., 2002, 2006; 
Murphy et al., 2004; see also IPCC, 2007).

The observational weightings usually 
narrow the width of the climate sensitivity 
pdf, leading to narrower 5–95% confi dence 
limits, because they contribute information as 
to which are the most successful predictions. 
However, the pdf is also infl uenced by ex-
perimental choices: whether it is a ‘climate 
sensitivity’ or a ‘perturbed physics’ ensemble, 
and the ranges and sampling of input para-
meters (Forest et al., 2002, 2006; Frame et 
al., 2005; Rougier, 2007). This is a natural 
outcome of the Bayesian framework of the 
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Figure 2 Climate sensitivity estimates obtained using modern climate data as a 
constraint, divided into three groups: inference of climate sensitivity directly from data; 
ensemble studies in which climate sensitivity is varied; and ensemble studies in which 
physics process parameters are varied. Wigley et al. (2005) base their estimates on 
three different volcanic eruptions (Table 1). The narrower ranges of Forest et al. (2002, 
2006) include additional specifi cations for the values of the ensemble input parameters. 
Confi dence limits, or other defi nitions of the estimate, are given. The vertical bands 
indicate the IPCC 2007 (2-4.5°C) and NAS (1.5-4.5°C) ranges (see text)
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ensemble approach. Probabilistic results in 
the Bayesian sense are defi ned according to 
the knowledge available for the analysis – not 
only the observational data but also the set of 
hypotheses embodied in the prior distribution 
(Rougier, 2007).

Ensembles must be large for the results 
to be statistically sound, and most advanced 
climate models use substantial amounts of 
computing time so it may be necessary to use 
interpolation methods to fi ll the gaps between 
a limited number of ensemble simulations 
(Murphy et al. 2004; Knutti et al. 2006). 
Despite these various diffi culties, the ensemble 
methodology has been the most signifi cant 
advance in obtaining probabilistic estimates 
of climate sensitivity. Uncertainty ranges are 
more rigorously defined, and the causes of 
uncertainty are better identifi ed (eg, Webb 
et al., 2006).

However, the ensemble approach has not 
resulted in narrower ranges of climate sensitivity 
estimates (Figure 2). Many estimates have a 
width of about 3°C, some much larger, with 
the upper limit particularly poorly constrained, 
and many estimates with the same confi dence 
limits are quite different. This is due both to 
problems inherent in using the historic period 
as a reference, which include the small climate 
signal and uncertainties in the forcings and 
ocean heat uptake, and to problems inherent 
in the ensemble approach, which include 
the sensitivity to experimental choices, the 
uncertainty associated with interpolation 
between members of a small ensemble 
(if used), and the uncertainty inherent in the 
model itself. The effects of these choices and 
uncertainties are diffi cult to quantify, and in 
some studies no attempt is made to do so.

IV Using the palaeorecord
The geological record includes times when 
the change in forcing and the climate response 
were large compared with the changes of 
the recent past or those expected as a result 
of doubling CO2. The pre-instrumental or 
palaeorecord thus provides a strong test 
of how well we understand and can model 

different climates, and an opportunity to 
estimate climate sensitivity in radically dif-
ferent climates. For the most recent glacial-
interglacial cycles, the ice core record (eg, 
EPICA community members, 2004) provides 
direct information on global atmospheric 
GHG concentrations and isotopic measure-
ments of Antarctic surface temperatures. 
Climates in other eras and in other regions 
are reconstructed from chemical, isotopic, 
sedimentological or biological data which 
reflect the response of these ‘sensors’ to 
climate change. However, our knowledge of 
the climate response to changes in forcing on 
palaeo-timescales is necessarily less precise 
than in modern climates, because of the 
nature of the records and the patchiness of 
the spatial coverage.

1 Inferring climate sensitivity directly from 
palaeodata
Just as for modern climates, inferring climate 
sensitivity from palaeodata records requires 
estimates of the forcings, the temperature 
response and the heat uptake by the ocean. 
However, the rate of ocean heat uptake is 
usually treated as negligible as it is assumed 
the ocean is at, or close to, equilibrium, so only 
∆Tpalaeo and Qpalaeo are required (Equation 1). 
Estimates of climate sensitivity have been 
made based on three geological periods: the 
Mid-Cretaceous (Hoffert and Covey, 1992; 
Barron, 1993), the early Eocene (Covey 
et al., 1996) and the Last Glacial Maximum 
(Hoffert and Covey, 1992; Hansen et al., 
1993).

The Mid-Cretaceous, about 100 million 
years ago, was a warm period with atmos-
pheric CO2 concentrations about 2–6 times 
greater than the present day (Covey et al., 
1996). Climate sensitivity estimates based 
on the Mid-Cretaceous (Table 2; Figure 3) 
include 3.8 ± 2.0°C (Barron, 1993) and 
2.5 ± 1.2°C (Hoffert and Covey, 1992), and 
the difference between these largely refl ects 
uncertainties in the climate forcing. Barron 
(1993) considers only CO2 forcing, while 
Hoffert and Covey (1992) also include forcing 
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due to albedo changes which approximately 
doubles the total forcing. Their global mean 
temperature estimates are similar: Hoffert 
and Covey (1992) obtain the value 9 ± 2°C, 
using latitudinal reconstructions by Barron 
(1983) from a variety of data including for-
aminifera, coral reefs and the lack of per-
manent ice, while Barron (1993) uses 7 ± 2°C, 
an updated estimate. The larger forcing thus 

results in the lower estimate of climate sen-
sitivity (Covey et al., 1996). The early Eocene, 
55 million years ago, was also a warm period 
with atmospheric CO2 concentrations about 
2–6 times greater than the preindustrial era. 
Covey et al. (1996) estimate a climate sensitiv-
ity of between 0.7–2.5°C, where the low end of 
the range corresponds to the highest estimates 
of atmospheric CO2 concentrations.

Table 2 Estimates of climate sensitivity that use palaeoclimate data (pre-1850) as a 
constraint

Authors Era Climate sensitivity

Inferred from data
Genthon et al., 1987 Last 160 000 years 5.4–15.0°C
Lorius et al., 1990 Last 160 000 years 3–4°C (1σ)
Hoffert and Covey, 
1992

LGM; Mid-Cretaceous LGM: 2 ± 0.5°C (1σ);
Mid-Cretaceous: 2.5 ± 1.2°C (1σ)

Hansen et al., 1993 LGM 3 ± 1°C (1σ)
Barron, 1993 Mid-Cretaceous 3.8 ± 2.0°C (1σ)
Covey et al., 1996 Eocene 1.6 ± 0.9°C (1σ)
Lea, 2004 Last 360 000 years Tropical sensitivity: 5.1 ± 0.8°C (1σ)

Model validation
Manabe and Broccoli, 
1985

LGM 2.3°C and 4.0°C consistent with data

Barron et al., 1995 Mid-Cretaceous 3°C
Hewitt and Mitchell, 
1997

LGM 2.9°C reasonably consistent with data

Broccoli, 2000 LGM 3.2°C 
Hewitt et al., 2001 LGM; modern 3.3°C and 2.8°C consistent with 

palaeodata; 2.8°C better agreement with 
modern data

Rind et al., 2004 Maunder Minimum 4.4°C not consistent with the data;
1.1°C would be consistent

Crucifi x, 2006 LGM 2.1–3.9°C (unconstrained model range)

Perturbed physics ensemble
Annan et al., 2005 LGM Greater than 6°C hard to reconcile with 

data; greater than 8°C virtually impossible
Schneider von 
Deimling et al., 2006

LGM 1.2–5.3°C (90% CL)

Combining constraints
Hegerl et al., 2006 20th century; last 700 years 1.5–6.2°C (90% CL)
Annan and 
Hargreaves, 2006

20th century; volcanic cooling; 
LGM cooling

1.7–4.9°C (95% CL)
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The Last Glacial  Maximum (LGM: 
ca 21,000 years ago), corresponding to the 
global but not necessarily local maximum in 
ice volume, is characterized by large northern-
hemisphere ice sheets, low sea levels, low 
levels of GHGs and high atmospheric levels 
of dust (Peltier, 2004; Flückiger et al., 1999; 
Dällenbach et al., 2000; Monnin et al., 2001; 
Claquin et al., 2003). The difference in forcing 
from the present is large and reasonably 
well-known. Climate sensitivity estimates 
based on the LGM include 2 ± 0.5°C (Hoffert 
and Covey, 1992) and 3 ± 1°C (Hansen et al., 
1993). Hoffert and Covey estimate global 
mean temperature from the ice core data and 
the gridded sea surface temperature (SST) 
reconstructions by the Climate: Long range 
Investigation Mappings and Predictions 
(CLIMAP) project. The gridded CLIMAP 
data are known to be too warm (Broccoli and 
Marciniak, 1996; Kucera et al., 2005). Hoffert 
and Covey (1992) also assume that cooling 
over land is the same as cooling over the ocean 
at the same latitudes, though this was not the 
case (Farrera et al., 1999). So their estimate 
of LGM global mean cooling, –3 ± 0.6°C, is 
probably too warm and thus yields too small 
a climate sensitivity (Covey et al., 1996). 
Hansen et al. (1993) assume LGM global mean 
cooling is –5 ± 1°C, which results in the larger 
estimate of climate sensitivity.

Climate sensitivity has also been esti-
mated from cyclical climate changes. The 
Quaternary era, the last 2.6 million years, 
has been characterized by the occurrence 
of periodic ice age cycles, each lasting about 
100,000 years, which are paced by changes in 
the Earth’s orbit. The relationship between 
CO2 levels and temperature during these 
cycles is complicated, because CO2 is both 
a forcing and a feedback, and the relative 
timescales of the records are difficult to 
calibrate. Genthon et al. (1987) and Lorius 
et al. (1990) use linear regression to analyse 
the relationship between CO2 and tem-
perature during the last 160,000 years. 
However, they obtain very different results: 

5.4–15.0°C (Genthon et al., 1987) and 3–4°C 
(Lorius et al., 1990). Lorius et al. (1990) obtain 
a lower estimate because they assume a 
smaller Antarctic temperature change 
(5°C compared with 9°C; the latest estimate 
is around 11°C: Jouzel et al., 2003), and 
attribute a larger proportion of the change 
to CO2 forcing (40% of the temperature 
response compared with 20%) than Genthon 
et al. (1987). Lea (2004) takes advantage 
of a new timescale calibration between the 
ice core and marine records to analyse a 
longer period, 360,000 years, and estimates 
that the ‘tropical climate sensitivity’ is 
5.1 ± 0.8°C. This is extremely high: global 
sensitivity is expected to be larger than 
tropical sensitivity, due to the large positive 
feedback of the polar ice sheets.

Inferences of climate sensitivity based on 
palaeodata yield estimates that are broadly 
similar to those obtained from consideration 
of the instrumental era (Table 1, Table 2; 
Figure 2, Figure 3,  uncertainty limits of 1σ 
correspond to 68% CL and 2σ to 95% CL). 
However, these palaeodata-based estimates 
must be regarded with caution. The forcings 
are very uncertain (including the division 
between forcings and feedbacks, and the 
CO2 component of the total), particularly for 
eras before the ice core record. The global 
mean temperature is also very uncertain, 
as it has been estimated from relatively few 
data points. And in early periods such as the 
Eocene and Mid-Cretaceous the geography 
was radically different. These issues lead to 
a wide range of estimates for the feedback 
parameter from each era.

So these estimates based on earlier periods 
may not be trustworthy, and these studies 
may only be useful because the changes are 
generally thought to be due to higher CO2 
levels than we will experience in the next 
century. The following section describes a 
better approach: using a climate model to 
simulate global mean temperature and using 
palaeodata to evaluate the model.
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Figure 3 Climate sensitivity estimates obtained using palaeoclimate data as a 
constraint, divided into three groups: inference of climate sensitivity directly from 
palaeodata; ensemble studies in which physics process parameters are varied; 
and results from combining estimates from different eras. Hoffert and Covey 
base their estimates on two eras: the LGM (solid line) and Mid-Cretaceous 
(dashed line)
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2 Constraining model estimates of climate 
sensitivity with palaeodata
An alternative to the palaeodata-based ap-
proach is to validate palaeoclimate simula-
tions using palaeodata and use the validated 
models to estimate climate sensitivity. Model 
validations may take the form of qualitative 
comparisons to mapped palaeodata or 
quantitative comparisons to reconstructed 
temperature changes. Several eras have 
been used for validation: the Mid-Cretaceous 
(Barron et al., 1995), the LGM (Manabe and 
Broccoli, 1985; Hewitt and Mitchell, 1997; 
Broccoli, 2000; Hewitt et al., 2001), and 
the Maunder Minimum (1645–1715), during 
which sunspots were rare and insolation 
was low (Rind et al., 2004). After validation, 
climate sensitivity is estimated either from 
the palaeoclimate simulation, using ∆Tpalaeo 
and Qpalaeo (Barron et al., 1995; Rind et al., 
2004), or from a doubled CO2 simulation 
from the same model, obtaining ∆T2×CO2 
directly (Manabe and Broccoli, 1985; Hewitt 
et al., 2001). One advantage of estimating 
climate sensitivity from a doubled CO2 simu-
lation is that it does not assume the feedback 
parameter (Equation 1) is constant in different 
climate states. Comparisons of LGM and 
doubled CO2 simulations (eg, Hewitt and 
Mitchell, 1997; Broccoli, 2000) indicate 
that the feedback parameter is probably not 
constant.

These climate sensitivity estimates are 
based on palaeoclimate simulations from 
individual models. However, the Palaeo-
climate Modelling Intercomparison Project 
(PMIP: Braconnot et al., 2007) has shown 
that even robust responses to changes in 
forcing vary in magnitude from model to 
model (Joussaume et al., 1999). Uncertainty 
in climate sensitivity estimates may there-
fore be explored by comparing palaeoclimate 
simulations from different models to each 
other and to palaeodata. Four of the PMIP 
models have estimates of climate sensitivity 
in the range 2.1–3.9°C (Crucifi x, 2006). The 
models have similar estimates of the feedback 

parameter at the LGM (λLGM), but differ in 
estimates of the feedback parameter in the 
doubled CO2 climate (λ2×CO2) and do not 
agree whether λ2×CO2 is smaller or larger than 
λLGM. These differences are largely due to the 
different behaviour of the cloud feedback in 
each model (Crucifi x, 2006). In this study, the 
limited amount of LGM data used in evaluating 
the simulations (regional temperature averages 
over Antarctica, Greenland and the tropical 
oceans) do not distinguish which is the best 
model at simulating the LGM and thus most 
likely to be successful at estimating climate 
sensitivity.

Perturbed physics ensembles have been 
used to test the impact of model uncertainties 
on climate sensitivity and LGM climate 
simulations (Annan et al., 2005; Schneider 
von Deimling et al., 2006). In both studies, 
a regional temperature change in LGM 
simulations (∆TLGM

regional) is plotted as a function 
of global temperature change in doubled CO2 
simulations (∆T2xCO2), with one point for each 
ensemble member (Figure 4). Reconstructions 
of the LGM temperature change (SST changes 
averaged over the tropics or other regions) 
provide numerical constraints on the ensemble 
estimates of climate sensitivity. Schneider von 
Deimling et al. (2006) use the 1σ limits of the 
palaeodata to defi ne the limits of acceptance 
in the ensemble, while Annan et al. (2005) 
weight the ensemble members by assuming 
the palaeodata uncertainties have a Gaussian 
distribution. The ensemble methodology has 
the advantage that there is no need to quantify 
the feedback parameter for either the palaeo- 
or doubled CO2 climates.

In the published studies, the results differ 
in part due to experimental choices: they 
use different forcings, analyse different 
regions, compare to different temperature 
reconstructions, and furthermore Annan et 
al. (2005) estimate only the upper limit of 
climate sensitivity because their ensemble has 
few members with low climate sensitivity. 
However, the results also differ due to differ-
ences in the models. The model used by 
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Schneider von Deimling et al. (2006) has a 
strong linear correlation between ∆TLGM

regional 
and ∆T2×CO2, which may reflect the simple 
structure of their ‘intermediate complexity’ 
model. The model used by Annan et al. (2005) 
is a complex GCM, albeit with low resolution 
and a simplifi ed ocean, and it has a broader, 
more scattered relationship: in other words, 
perturbing the physics parameters does not
affect the LGM and 2×CO2 climate simula-
tions equally. When the models are com-
pared using the same forcings and regional 
temperature, and compared with the same 
palaeodata (Figure 4; Annan, private com-
munication; Schneider von Deimling, private 

communication), it can be seen that the 
model differences result in different climate 
sensitivity estimates.

The relationship between ∆TLGM
regional and 

∆T2×CO2 in the model simulations (Figure 4) is a 
measure of the relationship between λLGM and 
λ2×CO2, which differs between the two models. 
Hargreaves et al. (2007) further analyse the 
ensemble of Annan et al. (2005) and fi nd that 
most members predict that λLGM is larger than 
λ2×CO2 but about one fi fth predict the opposite. 
This result, along with that of Crucifi x (2006), 
illustrates how much uncertainty remains 
in modelling the response of the Earth to 
different forcings.

Figure 4 Climate sensitivity as a function of tropical sea surface temperature change 
between the pre-industrial and the LGM for three model ensembles: the MIROC3.2 
model with PMIP LGM boundary conditions (Annan, private communication); 
the CLIMBER-2 model with PMIP LGM boundary conditions; and CLIMBER-
2 with additional dust and vegetation forcings (Schneider von Deimling, private 
communication). For comparison, fi ve PMIP 2 coupled ocean-atmosphere GCMs are 
shown (Crucifi x, 2006; this paper). The MIROC3.2 ensemble uses a simpler version 
of the model than PMIP 2 (see text). The vertical lines indicate the 1σ limits 
of reconstructed tropical SST change at the LGM from Ballantyne et al. (2005)
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V Combining instrumental and 
palaeorecord constraints
Palaeoclimate estimates of climate sensitiv-
ity are useful because they examine large 
climate changes but suffer from increased 
uncertainties in the climate and forcing 
estimates, while modern climate estimates 
have the reverse characteristics. Recent 
studies (Annan and Hargreaves, 2006; Hegerl 
et al., 2006) have therefore combined the 
two types of constraint. Hegerl et al. (2006) 
constrain a climate sensitivity ensemble of 
the last 700 years using both the instrumental 
period (Frame et al., 2005) and palaeodata, 
while Annan and Hargreaves (2006) combine 
results from 20th century warming, volcanic 
cooling and LGM cooling. Both studies narrow 
the range in the estimated climate sensitivity. 
However, these studies raise a number of 
issues about combining information from 
different experiments, including whether it 
is appropriate to assume that the feedback 
parameter is constant for different types 
of forcing (volcanic sulphate aerosols and 
GHGs affect the climate in very different 
ways), how to combine qualitative and 
quantitative estimates of climate, and how 
best to deal with subjective choices that must 
be made about which estimates to combine.

VI Discussion
Attempts to estimate climate sensitivity using 
palaeodata produce a range of estimates, just 
as those obtained using modern observations 
do (Figure 2; Figure 3). Thus, although the 
palaeorecord offers advantages over the 
modern observations because the climate 
change signal is large compared to the short-
term natural variability, attempts to use this 
record have so far done little to constrain the 
uncertainties in estimating climate sensitivity. 
To some extent, and especially for earlier 
periods in the Earth’s history, this refl ects the 
large uncertainties in specifying the change 
in forcing. A more important issue, however, 
is the limited use that has been made of 
palaeodata to constrain the simulations.

Most of the attempts to constrain climate 
sensitivity using palaeodata are based on 
regional averages of point-based climate 
reconstructions (eg, Annan et al., 2005; 
Crucifi x, 2006; Hegerl et al., 2006; Schneider 
von Deimling et al., 2006). However, and 
especially as one goes back further in time, 
the number of sites for which quantitative 
reconstructions have been made becomes 
more limited. There are large uncertainties 
involved in averaging a limited amount of 
point data together to create a regional aver-
age, and this is especially true when the dis-
tribution of the point data is irregular and 
when there may be no data available for 
some areas. In these circumstances, spatially-
explicit comparisons of simulated climates 
with palaeoclimate reconstructions provide 
a stronger assessment of the ability of a 
model to reproduce palaeoclimates than com-
parisons based on regional averages. Coupled 
ocean-atmosphere models may simulate 
very different spatial patterns of climatic 
variables such as SST (Figure 5). It is highly 
plausible that estimates of climate sensitivity 
will be improved by taking the patterns of 
climate change into account: part of the 
uncertainty in climate sensitivity is related to 
cloud cover, and especially the formulation of 
stratocumulus, which is strongly infl uenced by 
spatial patterns in SST (Webb et al., 2006).

Spatially-explicit reconstructions of cli-
matic variables, based on a variety of differ-
ent palaeoenvironmental records (including 
pollen-based vegetation reconstructions, tree-
rings, isotopic and noble gas measurements 
from the terrestrial realm, and biological and 
chemical proxies from the marine realm), 
exist for epochs such as the last interglacial, 
the LGM and intervals during the last glacial-
interglacial cycle (Bartlein et al., 1986; LIGA 
Members, 1991; Cheddadi et al., 1997; Peyron 
et al., 1998, 2000; Farrera et al., 1999; de 
Vernal et al., 2000). Although these data sets 
have been routinely used in model evaluation 
exercises (eg, Joussaume et al., 1999; Pinot 
et al., 1999; Peyron et al., 2006), only a limited 
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subset of the information has been used in 
attempts to quantify climate sensitivity. 
This is partly a refl ection of the failure of the 
community to make up-to-date reconstruc-
tions readily available. But it also reflects 
serious concerns about climate reconstruc-
tions due to uncertainties in, for example, 
the direct role of CO2 changes through plant 
physiology in infl uencing terrestrial biology 
(Cowling and Sykes, 1999; Harrison and 
Prentice, 2003). Forward-modelling techniques 
which take into account the effects of non-
climatic parameters on vegetation changes 
have been developed (Prentice et al., 2007), 
but have yet to be applied to continental-
scale terrestrial data sets. Again, use of these 
reconstructions will provide a stronger con-
straint on the ability of a model to reproduce 
observed palaeoclimate changes. Finally, 
there are many sorts of palaeoenvironmental 
data that reflect changes in climate but 
which do not yield climate reconstructions. 

Large-scale syntheses of changes in climate 
sensors such as, for example, vegetation 
cover, the extent of lakes, snowline elevation, 
mineral-dust deposition and charcoal records 
of palaeofires (Hoelzmann et al., 1998; 
Prentice et al., 2000; Kohfeld and Harrison, 
2001, 2003; Mark et al., 2005) also provide 
information about the nature of palaeo-
climate conditions at a given time. With 
the advent of more complex climate models 
which explicitly simulate vegetation, fire 
disturbance, land-surface hydrology and 
biogeochemical cycles (including the dust 
cycle), these data could also be used to pro-
vide better constraints on model-based 
estimates of climate sensitivity. Comparing 
simulations of climate sensors (such as veg-
etation) directly with palaeodata, rather 
than using statistical reconstructions of  
climate variables, uses as much information 
from the palaeodata as possible and this 
increases confi dence in the constraints.

Figure 5 Annual mean sea surface temperature changes between the pre-industrial 
and the LGM, simulated by four coupled ocean-atmosphere GCMs from PMIP 2 
(Braconnot et al., 2007): CCSM, HadCM3M2, IPSL-CM4-V1-MR and MIROC3.2
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Although the use of palaeoclimate targets 
has not reduced the uncertainty associated 
with estimates of climate sensitivity, these 
studies have reinforced our understanding 
that climate sensitivity is affected by the type 
of forcing (Wigley, 1994; Hansen et al., 1997; 
Joshi et al., 2003). Estimates of the feedback 
parameter based on other forcings than CO2, 
such as volcanic forcing, will not necessarily 
yield similar results and could lead to an 
arbitrary narrowing of the range for climate 
sensitivity (see, for example, Hegerl et al., 
2006). Comparison of LGM, Eocene, Mid-
Cretaceous and modern studies suggest that 
the feedback parameter may also be affected 
by the size and sign of CO2 forcing.

VII Summary
Current estimates of climate sensitivity based 
on modern climate data, either used alone 
or in conjunction with models, are largely in 
the range 1.5–5°C. Despite improvements 
in methodology and progress in quantifying 
the uncertainty, this range has changed little 
since the fi rst estimates of climate sensitivity 
were made. This is in large part because the 
global temperature changes during the 19th 
and 20th centuries are small, and there are 
uncertainties associated with some com-
ponents of the forcing (eg, insolation, sulphate 
aerosol forcing) and with the rate of ocean 
heat uptake.

Past geological periods offer the opportu-
nity to examine climate sensitivity when the 
climate was radically different from the pre-
sent, and thus the signal-to-noise ratio is much 
improved compared to the instrumental period. 
However, attempts to constrain climate sen-
sitivity using palaeoclimate data have not 
yet succeeded in substantially reducing the 
range of estimates. This is in part because 
the uncertainties associated with the forcings 
are larger than the uncertainties associated 
with recent changes in forcing, but also refl ects 
a less-than-optimal use of the palaeoclimate 
data. Uncertainties also arise from assuming 
that the behaviour of feedbacks is the same 
in palaeoclimates as in doubled CO2 climates, 

and in some studies due to the calibration of 
timescales (eg, in records of glacial cycles) 
and the assumption that the climate is at 
equilibrium (eg, at the LGM).

Nevertheless, work to date suggests that 
palaeodata can help to improve constraints on 
climate sensitivity. We suggest that a strategy 
to derive more robust constraints on climate 
sensitivity should involve:

1. Comparing model simulations to spatially-
located data rather than regional averages

2. Using more of the available palaeo-
data  syntheses  and pa laeoc l imate 
reconstructions

3. Comparing model simulations of climate 
sensors directly with palaeodata, rather 
than climate reconstructions

4. Creating new palaeodata syntheses and 
reconstructions, and working towards 
well-defi ned confi dence levels for these

5. Extending the current range of palaeo-
climate model ensembles

6. Combining constraints from different 
eras.
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