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ABSTRACT

A method is developed for estimating the uncertainty (standard error) of observed regional, hemispheric, and
global-mean surface temperature series due to incomplete spatial sampling. Standard errors estimated at the
grid-box level [SE2 5 S2(1 2 r̄)/(1 1 (n 2 1)r̄)] depend upon three parameters: the number of site records (n)
within each box, the average interrecord correlation (r̄) between these sites, and the temporal variability (S2) of
each grid-box temperature time series. For boxes without data (n 5 0), estimates are made using values of S2

interpolated from neighboring grid boxes. Due to spatial correlation, large-scale standard errors in a regional-
mean time series are not simply the average of the grid-box standard errors, but depend upon the effective
number of independent sites (Neff) over the region.

A number of assumptions must be made in estimating the various parameters, and these are tested with
observational data and complementary results from multicentury control integrations of three coupled general
circulation models (GCMs). The globally complete GCMs enable some assumptions to be tested in a situation
where there are no missing data; comparison of parameters computed from the observed and model datasets are
also useful for assessing the performance of GCMs. As most of the parameters are timescale dependent, the
resulting errors are likewise timescale dependent and must be calculated for each timescale of interest. The
length of the observed record enables uncertainties to be estimated on the interannual and interdecadal timescales,
with the longer GCM runs providing inferences about longer timescales. For mean annual observed data on the
interannual timescale, the 95% confidence interval for estimates of the global-mean surface temperature since
1951 is 60.128C. Prior to 1900, the confidence interval widens to 60.188C. Equivalent values on the decadal
timescale are smaller: 60.108C (1951–95) and 60.168C (1851–1900).

1. Introduction

This paper addresses the often asked question: ‘‘How
accurate are the hemispheric and global-mean surface
temperatures records?’’ A related question is: ‘‘How
different must one January’s temperature, or one year’s
temperature, be from another before the two can be
considered significantly different?’’ It is clear that a
greater difference is required for a difference to be sig-
nificant between two Januarys than between two years.
Lengthening the timescale, a smaller difference would
be significant if two annual decadal averages were being
compared. The question posed in the first sentence is
therefore incomplete, as it does not specify the time-
scale.

The issue is not confined to instrumental temperature
records but has application in other areas such as hy-
drology, where the accuracy of mean catchment precip-
itation is an important issue. The issue is, therefore,
common to sciences where averages of correlated time
series are derived.
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The errors in large-scale temperature series discussed
in this paper are just the errors due to sampling. The
other group of errors relate to instrumental reading or
coding mistakes and potential biases or inhomogeneities
in station temperature time series. For regional temper-
ature series, large mistakes will be discovered during
quality control (e.g., outlier checks) while small mis-
takes should be random and any errors will cancel rap-
idly as the number of stations involved increases in size.
Supporting this, Weber and Madden (1995) use optimal
averaging techniques (Gandin 1963) to estimate sam-
pling errors and show that if realistic measurement er-
rors (e.g., after Trenberth et al. 1992) are included, the
value of the optimal average does not substantially
change. Biases or inhomogeneities can lead to system-
atic errors (e.g., due to urbanization effects at land sta-
tions and the bucket/intake problem with sea surface
temperatures). It is assumed here that these have been
adequately dealt with in the station by station homo-
geneity assessment (see Jones 1994; Folland and Parker
1995, and references therein for details). In a related
study, Smith et al. (1994) refer to these errors as data
errors and assume that they are uncorrelated with each
other.

Some of the issues have been addressed before. The
extent to which the more sparsely available nineteenth
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century instrumental networks monitored large-scale
temperatures has been assessed using ‘‘frozen grids’’ by
Jones et al. (1986a,b) and Parker et al. (1994), and using
globally complete fields from the microwave sounding
unit data (Spencer and Christy 1992b) by Karl et al.
(1994). The same question has been investigated using
model-derived grids that, because they are complete, can
assist in assessing the effects of regions always missing
from analyses (Trenberth et al. 1992; Madden et al.
1993; Karl et al. 1994). Although the terminology may
be different, the same issues are explored in optimal
interpolation or averaging by Gandin (1963), Kagan
(1979), Hardin and Upson (1993), Smith et al. (1994),
Shen et al. (1994), and Weber and Madden (1995), and
with kriging techniques by Gunst (1995). [Cressie
(1991, 106), for example, states that optimal averaging,
interpolation, and kriging are essentially the same, hav-
ing been developed in meteorology and geology si-
multaneously.]

The Karl et al. (1994) study specifically addresses the
effect of spatial sampling errors on the estimates of
trends in regional temperature series, concluding that
the error of estimation of the global-mean trend over
the last 100 yr is an order of magnitude smaller than
the trend [;0.58C(100 yr)21] itself. The spatial structure
of the sampling error and its temporal changes is also
a necessary requirement for a complete analysis of the
climate change detection problem (see, e.g., Hegerl et
al. 1996).

Previous work has considered the issue without re-
gard for timescale. Smith et al. (1994), for example,
calculate standard errors for various regional tempera-
ture time series on seasonal and annual interannual
timescales and plot the series after application of a 5-yr
binomial filter for clarity. As will be shown in this paper,
errors on a 5-yr timescale are smaller. There seems to
be no shortcut to transferring errors from one timescale
to another: errors should be calculated over the timescale
of interest or the timescale on which they are to be
displayed.

This paper attempts to bring the previous work and
the timescales together. The key parameter in this and
some earlier studies is the effective number of indepen-
dent samples (Neff) over the domain (region) or globe.
Madden et al. (1993) refer to this as the ‘‘spatial degrees
of freedom.’’ Once the significance of this concept is
grasped and that this effective number reduces with in-
creasing timescale, the more difficult problem of esti-
mating Neff can be addressed. Both instrumental and
coupled ocean–atmosphere general circulation model
(GCM) control run data will be used to estimate Neff

and the relationship between Neff and timescale. De-
pending on one’s viewpoint, the model data can be con-
sidered as providing support for the instrumental data
or as a useful exercise in model validation.

The paper has important implications for monitoring
global temperatures, not the least of which is that the
number of sites required to achieve a certain level of

reliability depends on timescale. Both the methodology
and the techniques can be applied to the regional and
global average estimation of other variables in clima-
tology.

The paper is structured as follows. Section 2 discusses
surface temperature data sources, both observed and
modeled. Section 3 addresses the estimation of standard
errors at the grid-box level. Section 4 considers these
standard errors on the regional-to-global scale, given
the spatial correlation inherent in the data, and addresses
methods to estimate Neff. In section 5 the results of sec-
tions 3 and 4 are applied to instrumental and GCM
temperature data and standard errors on different time-
scales are assessed. Section 6 summarizes the main con-
clusions.

2. Surface temperature data sources

Two versions of observational grid-box temperature
anomaly time series are used. The first is on a 58 3 58
grid-box network and is composed of surface air tem-
perature (SAT) anomalies, referenced to the 1950–79
mean, from land stations combined with sea surface
temperature (SST) anomalies, also from the 1950–79
mean, over oceanic areas. The construction of this da-
taset is described in Jones et al. (1991) and Jones and
Briffa (1992). In this dataset (hereafter JB), both the
constituent datasets (SAT and SST) were available on
a 58 3 58 box grid. They were merged by taking the
average of the two analyses where temperature anom-
alies existed from both SAT and SST. This occurred
around coastlines and islands.

The second dataset, referred to as IPCC, is a merger
of the Jones (1994) SAT anomalies, with respect to
1961–90, with SST anomalies (from in situ measure-
ments only) in the U.K. marine data bank (MOHSST6),
also with respect to 1961–90 (Nicholls et al. 1996).
MOHSST6 uses an underlying SST field for 1961–90
at 18 resolution. The 58 3 58 box value in anomaly terms
is the average of at least one of the 25 constituent 18
box anomaly values. These two constituent datasets
(SAT and SST) were combined using the algorithm de-
veloped by Parker et al. (1994). The land–ocean fraction
was used for coastline boxes, but key ocean island SAT
anomalies were given at least a weight of 0.25 (and,
similarly, small coastal sea patches were given a min-
imum weighting of 0.25). In data-sparse ocean regions,
an island with SAT data is likely to produce a more
reliable estimate of the temperature anomaly than one
from a few SST values in the surrounding ocean.

Both observational datasets make use of SST anom-
alies over the ocean as a surrogate for air temperature
anomalies. It has been shown by a number of authors,
most recently by Parker et al. (1994), that the number
of SST values in a 58 3 58 box is likely to be higher
than for ship-based air temperatures (at least twice as
high, if ship daytime air temperatures are ignored be-
cause of solar heating of decks). Furthermore, Trenberth
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et al. (1992) and Parker et al. (1994) have implicitly
shown that sampling errors are smaller for SST than
ship-based air temperatures. Thus, even if the number
of observations in a 58 3 58 box were the same, the
SST anomaly value should have a smaller error at the
grid-box level.

Both observational datasets only extend back to the
midnineteenth century. They have changes in spatial
coverage through time, and both have regions (such as
the mid-to-high latitudes of the southern oceans) always
missing. For these reasons, we also make use of surface
air temperature fields derived from the control runs of
three GCMs. These are the 1000-yr control run of the
Geophysical Fluid Dynamics Laboratory (GFDL) model
(Stouffer et al. 1994), the 1000-yr control run of the
latest Hadley Centre (HC) model (HadCM2; Mitchell
et al. 1995), and the last 800 yr of the 1260-yr control
run of the Max-Planck-Institut für Meteorologie (MPI)
model (ECHAM1/LSG; von Storch 1994).

Long GCM control runs provide complete data fields
and have been used before to assess the importance of
missing regions in large-scale temperature averages
(Hansen and Lebedeff 1987; Madden et al. 1993). How
well the GCM reproduces reality in a region with little
data must be an open question, however. If the model
does well in other regions, then it must be reasonable
to place some faith in the variability it reproduces over
the missing regions. In some respects, therefore, using
models to assess error estimates could reasonably be
viewed as a form of model validation.

The longer GCM data are used to assess the changes
to error estimates when considering large-scale and
hemispheric averages on timescales longer than inter-
annual (such as decadal and century). This is not pos-
sible using the instrumental data alone. The ability of
models to produce realistic levels of variability on dif-
ferent timescales is an important issue in anthropogenic
climate change detection (Santer et al. 1995). One of
our only means of assessing how unusual the last 50 yr
have been is to use model-generated estimates of natural
variability. Such model estimates do not include external
forcing variability from solar output changes nor
changes in explosive volcanic frequency. They also have
to be flux adjusted (e.g., Sausen et al. 1988) to avoid
excessive model drift, and there is some controversy
over the effect of these adjustments on apparent long
timescale variability (Kerr 1994; Nakamura et al. 1994).
Paleoclimatic data have the potential to quantify ‘‘real’’
natural variability on these timescales and some initial
comparisons between these and long GCM-run tem-
peratures suggest that model variability may be under-
estimated (Barnett et al. 1996). The situation may be
worse as most paleoclimatic series tend to lose vari-
ability in the reconstruction, the longer the timescale
(see, e.g., Briffa et al. 1996; Cook 1995). This does not
preclude us from using the long GCM control runs to
assist in these estimations; however, we must be very
careful in the conclusions we draw.

It could be argued that any results derived from the
observed data might be biased by the long-term warm-
ing that has occurred this century. To assess this, we
compare the control simulation of the HC model with
a perturbed simulation, also of the HC model. The per-
turbed simulation was forced with estimates of past
greenhouse gas and sulfate aerosol concentrations from
1860 to 1990 (Mitchell et al. 1995). We also remove an
estimate of the long-term warming signal (Wigley et al.
1997) from the observations and compare these results
with the GCM control runs.

3. Error estimation

We begin by considering the error at an individual 58
3 58 grid box. This error will be dependent on the
number of individual stations or SST anomaly values
within the box. The error will not be solely dependent
on the number of observations, but also on the inter-
annual variability of climate in the box. One station in
a maritime region such as Ireland will have a smaller
standard error than a single station value in a continental
climate region such as Siberia. This is because in Siberia
the spatial and interannual variability of air temperature
is considerably higher.

Kagan (1966; see Yevjevich 1972 for an English ver-
sion), in both a theoretical and empirical study, found
that the relationship between single-site precipitation
standard deviations (si) and the standard deviation (Ŝ)
of a multisite mean (of n sites) depended on the average
intersite correlation (r̄); thus,

1 1 (n 2 1)r̄
2 2Ŝ 5 s (n $ 1). (1)i [ ]n

The true areal standard deviation (S) can only be ob-
tained from an infinitely sampled catchment, although
if r̄ is close to 1 (as is the case for annual-mean tem-
perature on a 58 grid), then Ŝ is almost equal to S even
for small n.

Assuming that we have estimates of and r̄ that are2si

unbiased, we can in fact obtain S2 by letting n → ` in
Eq. (1), which becomes

2 2S 5 s r̄.i (2)

Although Eq. (1) is undefined for n 5 0 (the average
of zero sites has no standard deviation defined), Eq. (2)
is simply a relationship between the statistics of points
in a box and the variance of the true areal variance for
the box. It is independent of the number of site records
in a grid box. To obtain accurate estimates of single-
site variance and intersite correlation does, of course,
require there to be some sites in the box, and a higher
density of sites will probably lead to better estimates.
We use Eq. (2) even when n 5 0, with and r̄ estimated2si

by interpolation from the statistics of neighboring boxes
where estimates can be made.

In a later study (Wigley et al. 1984; see also Briffa
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and Jones 1990), the standard error (SE) of estimation
of the areal precipitation series was related to the stan-
dard deviation of the areal series (S); thus,

1 2 r̄
2 2SE 5 S . (3)[ ]1 1 (n 2 1)r̄

This implies that SE2 5 S2 if r̄ 5 0 or n 5 0, but that
the error decreases (SE2 , S2) as the common variance
increases (r̄ . 0). The error decreases hyperbolically as
the number of stations increases (i.e., more rapidly for
low n).

Combination of Eqs. (2) and (3) yields
2s r̄(1 2 r̄)i2SE 5 . (4)

1 1 (n 2 1)r̄

The limiting cases of the above equation are for n 5 0,
SE2 5 r̄ and for n 5 `, SE2 5 0.2si

An alternative to the above might assume S 5 Ŝ in
Eq. (3), combining the result with Eq. (1) (for n . 0
only, as the latter is undefined for n 5 0), to produce

1 2 r̄
2 2ŜE 5 s , (5)i 1 2n

with the implying that this standard error is an estimateˆ
of the true value defined in Eq. (4). Ratioing the last
two equations shows that Eq. (5) would always give
larger (i.e., more conservative) values than does Eq. (4):

2ŜE 1 1 (n 2 1)r̄
5 $ 1. (6)

2SE nr̄

The difference is generally small for temperature data
(see section 3e) as our estimates of r̄ are generally in
the range 0.7–0.95. In the rest of this paper we use Eq.
(4), but give an example of how the estimated standard
errors would increase by using Eq. (5).

Application of the above to the grid-box temperature
data requires estimation of the station standard devia-
tions , r̄, and a value for n. The value of n over land2si

areas is clearly the number of stations, but over ocean
areas the number of SST observations is not the same
quantity. We address this issue and how to estimate 2si

(and hence S2) and r̄ next.

a. Estimation of 2si

We consider the analysis of the observed datasets first.
For the land areas, could be estimated from the stations2si

available in a given month, preferably calculated over a
common period such as the reference period associated
with the grid-box temperature dataset (e.g., 1961–90 for
Jones 1994). Such a calculation is problematic, however,
because station availability is rarely constant and because
a number of stations have only estimated averages for
1961–90. It would seem preferable, therefore, to estimate

for each box from the variance (Ŝ2) of the gridded2si

temperature time series. This ignores differences caused

by varying station density and location of available stations
through time (although the latter is ameliorated by the fact
that there are likely to be only small variations between
individual site si values, the differences being due primarily
to orography and the distance from any coast). We do not
use the grid-box variance (Ŝ2) as S2, since it is not com-
puted from an infinitely sampled dataset. Instead we use
Eq. (1) to estimate as Ŝ2n/(1 1 (n 2 1)r̄), using an Ŝ22si

calculated for a modern reference period and the mean n
during that period.

Over ocean areas, the station concept is not appro-
priate. Here, estimation of is only possible using a2si

grid-box time series (i.e., the method we also use for
the land areas) composed of individual measurements
taken by various ships. The number of observations per
box (m) is also inappropriate to use for n, as the mea-
surements do not form a continuous series as for land
stations. The SST compilations generally accept a grid-
box value if there are at least three to five in situ ob-
servations in an individual month (Jones et al. 1991;
Parker et al. 1994). As in situ observations are used,
there is no need to consider day–night differences in
SSTs that occur with skin temperatures from satellites
(Reynolds 1988). We estimate the effective number of
station time series in an ocean box by dividing the num-
ber of SST observations in a box (m) by 5, ensuring
that n is greater than or equal to 1. We have also used
divisors of 3 and 10, and find differences of no more
than 1% for the standard error of the global mean tem-
perature time series.

For both ocean and land areas, Ŝ2 has been estimated
on the interannual timescale from the grid-box series
using the 1951–80 time period. In this estimation, n is
taken as the average number of stations available over
the 30 yr for land regions and the average number of
SST observations divided by 5 (i.e., 0.2 m) for oceanic
areas. We use 1951–80 because it is the period of best
data coverage and because a longer period, or the 1961–
90 period, might inflate Ŝ2 (and hence ) due to stronger2si

long-term warming signals. For the interdecadal timescale,
the grid-box mean and characteristic station standard
deviations are computed similarly, but using the longer
1901–90 period.

For the GCM data, values are also estimated from2si

the variances of the grid-box means, but by the appli-
cation of Eq. (2), since we assume that these are true
areal variances (i.e., S2) computed from the effectively
infinitely sampled (i.e., n 5 `) grid-box mean temper-
atures that the GCMs produce.

b. Estimation of r̄

For boxes with many stations, r̄ could be estimated
from the station data. This procedure does not produce
reliable values when few station records exist. It is not
possible for land boxes with only one station present or
any marine boxes. [Over half the boxes in the Jones
(1994) dataset have less than three stations per box (see
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FIG. 1. Zonally averaged correlation decay lengths (km) computed
from annual means of the JB (dotted line) and IPCC (dashed line)
datasets, using the method of Briffa and Jones (1993) to fit the decay
functions. Also shown are the results of using the new method of
fitting the decay functions, applied to the IPCC dataset (continuous
line).

Jones 1995).] It may also be biased by nonuniform dis-
tribution of stations within a box.

To estimate r̄, therefore, we make use of related stud-
ies of temperature correlation decay lengths (Briffa and
Jones 1993; Jones and Briffa 1996). In these papers,
grid-box temperature anomaly values have been used to
derive correlation decay lengths of the form

,2x/x0r 5 e (7)

where r is the correlation between neighboring boxes,
x is the distance between the box centers, and x0 is the
characteristic correlation decay length. This correlation
function [Eq. (7)] is positive definite on a sphere (Yag-
lom 1987). Values of x0 were estimated for each grid
box using seasonal- and annual-mean data in Briffa and
Jones (1993) and for decadal averages in Jones and
Briffa (1996). In both studies only grid boxes within
6208 of latitude and 6458 of longitude of the grid box
were used in the estimation of x0. Alternative functional
forms using Bessel functions have been used by Vin-
nikov et al. (1990; see also Madden et al. 1993), based
on earlier theoretical work by Kagan (1979).

The x0 values calculated in this exercise enable us to
estimate r̄ within an individual grid box by integrating
Eq. (7) up to a distance X (the distance between opposite
corners of a grid box; X being slightly greater for an
equatorial than a polar box). For an individual box, X
is the maximum possible distance between stations with-
in a box:

X

2x /x0Xr̄ 5 e dx, (8)E
0

giving

x0 2X /x0r̄ 5 1 2 e . (9)1 2X

Use of the correlation decay length between grid-box
averages (x0) for estimating correlations between sta-
tions can be shown to be valid (results not shown).

c. Isotropic results

Briffa and Jones (1993) and Jones and Briffa (1996)
fitted Eq. (7) by taking the logarithm of the r values
and using linear regression. Although both studies clear-
ly state they omitted points when r # 0, what effect
does this have on the results? This method is compared
(in appendix A) with an alternative method that fits Eq.
(7) iteratively to the data until the root-mean-squared
error is minimized. The latter method allows all r values
to be retained and does not require the taking of log-
arithms; this is the approach used for the remainder of
this study. A related issue is that estimation based on
Eq. (7) assumes an isotropic reduction in the correlation
with distance. In appendix B we examine this by ex-
panding Eq. (7) to allow for anisotropy and find that

the isotropic assumption is valid in some instances. We
also find, however, that the calculation of r̄ and Neff (see
section 4a) is likely to result in similar values whether
an isotropic or an anisotropic function is used. The iso-
tropic function [Eq. (7)] is, therefore, used for the re-
mainder of this study.

All model and observational (JB and IPCC) results
have been computed using the isotropic function [Eq.
(7)] fitted directly to the full, untransformed set of (cor-
relation, distance) data pairs. Using the IPCC dataset
(Briffa and Jones 1993 used the JB dataset) led to a
considerable reduction in low and midlatitude correla-
tion decay lengths (Fig. 1; cf. dashed and dotted lines).
The possible reason for this is that the JB dataset was
originally constructed over land on a 58 lat 3 108 long
gridpoint basis and was reduced onto the 58 3 58 grid
size used here using an algorithm developed by Parker
et al. (1994). Over continental areas, one 58 3 108 grid
point effectively became two 58 3 58 grid boxes. This
resampling may have led to an excessive correlation
between pairs of grid boxes, as these were originally
the same grid point, and hence to an inflated estimate
of x0.

The new method of fitting the exponential functions
(retain r # 0, fit nonlinearly without taking logarithms)
was applied to the IPCC dataset [Fig. 1; thick continuous
line compared with the dashed line that used the method
of Briffa and Jones (1993) for fitting the decay func-
tions]. As expected from the tests described in appendix
A, a further reduction was obtained (particularly on ei-
ther side of the equatorial maximum). These final results
(using the IPCC dataset and the new fitting procedure)
are used throughout the remainder of this paper.

Figure 2 shows a comparison of the correlation decay
lengths for annual data on the interannual timescale be-
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FIG. 2. Correlation decay lengths (1000 km) of annual-mean tem-
peratures from (a) IPCC observed dataset, (b) HC control run, (c)
GFDL control run, and (d) MPI control run. Contour interval is 1000
km, values ,1500 km are darkly shaded, and missing data are lightly
shaded (here and in all other figures).

tween the new analysis of the observed IPCC data and
the results using the three GCM control runs. Similar
calculations on the seasonal and decadal timescales have
been made but are shown only as zonal averages (Fig.
3). All analyses show tropical maxima on all timescales
(Fig. 3), associated with high x0 over the central Indian

and east-central Pacific Oceans (Fig. 2). This is weaker
in the MPI and GFDL models than in the observations,
but much too strong in the HC model [a bias also noted
by Tett et al. (1997)].

Correlation decay lengths are generally lower in the
extratropics and least in the highest latitudes (although
observed data availability is poorer there). An exception
to this is the region of higher values that occurs over
the Southern Ocean, which is of a similar magnitude
(in the zonal means of the observations and of the GFDL
model) to the tropical values on the interdecadal timescale.
(Note that some of the spikes that occur in the observed
results near the high-latitude extremes are due to the
few grid boxes with sufficient data being sited in lo-
cations of relatively low or high x0.) Poleward of about
308, all models exhibit similar decay lengths, with the
lower values over land in the MPI model (the only da-
taset to exhibit a clear land–sea difference in the extra-
tropics) leading to slightly lower zonal means.

d. The influence of climate change signals

All three models exhibit lower midlatitude correlation
decay lengths than in the observed data, with the dif-
ference being greater (and extending to higher latitudes)
the longer the timescale. Is this difference due to a sys-
tematic error in the models? If so, then it is an important
result from a validation point of view, but it would also
reduce our confidence in applying the model control
integrations to the estimation of errors on longer timescales
where the observed data is poorer or insufficient (de-
cadal and century timescales). Another explanation for
these differences is that the observations contain exter-
nally forced variability in addition to the natural inter-
nally generated variability, whereas the model control
runs contain only internally generated variability. Al-
though volcanic and solar forcings might be important,
the enhanced radiative forcing due to the greenhouse
effect is likely to be the largest external forcing in the
observations. The response of the climate system to this
forcing yields a global warming signal that will be pres-
ent in the observations but absent in the model inte-
grations with their fixed radiative forcing. If the signal
pattern is highly spatially coherent, then it will tend to
raise the correlation decay lengths when it is superim-
posed on the ‘‘natural’’ variability, thus explaining the
differences between model and observations. The in-
crease will be larger on the interdecadal timescale than
on the interannual timescale, since the signal is stronger
(relative to the noise), the longer the timescale.

To test this possibility, two approaches have been
followed. The first is to add the signal to one of the
model control runs, which we do by making use of a
perturbed, historically forced model integration carried
out using the HC model (Mitchell et al. 1995). This has
been forced with past estimates of greenhouse gas and
sulfate aerosol concentrations, and the 130-yr equivalent
to the 1880–1990 period has been analyzed in the same
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FIG. 3. Zonally averaged correlation decay lengths (km) computed from IPCC observed dataset
(thick continuous lines), HC control run (thin continuous lines), GFDL control run (dotted lines),
and MPI control run (dashed lines) on the following timescales and seasons: (a) December–
February (DJF), (b) March–May (MAM), (c) June–August (JJA), (d) September–November
(SON), (e) annual, (f) decadal DJF, (g) decadal MAM, (h) decadal JJA, (i) decadal SON, and (j)
decadal annual.

way as the model control integrations. The second ap-
proach is to subtract the signal from the observed record
and analyze the residuals. The signal is not well known,
however, and simply removing trends or applying a
high-pass filter would also remove any natural century–
timescale variability. Instead, a model-based estimate of
the signal and its time evolution (described in detail in
Wigley et al. 1997) is removed, and the residual data
analyzed.

Results of these tests are given in Fig. 4 for the annual
and decadal means. The observational and HC control
run results are repeated for comparison, and it is clear
that the global warming signal (either what we removed
from the observations or added to the model by using
the perturbed integration) is responsible for at least part
of the differences between models and observations (cf.
Figs. 3e and 3j for the other models). The historically
forced HC model simulation (HC forced) produces
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FIG. 4. Zonally averaged correlation decay lengths (km) computed
from IPCC observed dataset (thick continuous lines), IPCC minus
Wigley et al.’s (1997) climate change signal (thick dotted lines),
Wigley et al.’s (1997) climate change signal alone (dashed line), HC
control run (thin continuous lines), and HC historically forced per-
turbed run (thin dotted lines) for annual means on (a) annual and (b)
decadal timescales.

greater correlation decay lengths than the control run
did in the Southern Hemisphere (Fig. 4a), and the in-
crease is larger on the interdecadal timescale (Fig. 4b).
There is very little difference in the Northern Hemi-
sphere, except for a slight increase in the high latitudes
on the decadal timescale.

The correlation decay lengths of the signal alone are
very high (Fig. 4b), with an interhemispheric asym-
metry due to the Northern Hemisphere response to
smaller-scale sulfate aerosol forcing patterns. Once sub-
tracted from the observations, the correlation decay
lengths reduce. Once again, the difference is greatest in
the Southern Hemisphere, and largest on the longer
timescale (Fig. 4b). The fact that a reduction does occur
increases our confidence that the model-derived signal
is reasonable, since subtracting a coherent pattern that
is not in the observations raises the correlation decay

lengths (it is equivalent to adding the negative of the
pattern).

On the basis of these additional analyses, it appears
that there is no significant difference between model
results and observations in the Southern Hemisphere
extratropics. In the Tropics, the GFDL and (to a lesser
extent) the MPI models still underestimate interannual
x0, but not interdecadal x0. The overestimate there by
the HC model now appears even greater. In the Northern
Hemisphere extratropics, interannual decay lengths are
still slightly underestimated by all models. On the in-
terdecadal timescale, the GFDL and HC models are poor
between 208 and 508N, whereas the MPI model produces
values that are too low throughout the hemisphere.

Global average correlation decay lengths have been
produced by a number of authors. Mann and Park (1993)
quote 1500 km, presumably for monthly data although
the timescale is not stated. Madden et al. (1993) found
a value of 1200 km from a perpetual January GCM
simulation. The global-mean x0 values found here are
given in Table 1. They agree quite well with the earlier
work, although considerably extending those analyses.

e. Observed values of x0 and r̄

On the interannual timescale, Briffa and Jones (1993)
and this study find that observed values of x0 range from
a minimum of about 750 km in the eastern North Pacific,
to about 4500 km over the tropical parts of the Pacific
and Indian Oceans. This characteristic distance is where
the correlation with the central point falls to 1/e. Equa-
tion (9) gives r̄ values ranging from about 0.7 at 208–
408 of latitude over the Pacific Ocean and American
continents to near 0.95 over the tropical Pacific and
Indian Oceans. Extending this type of analysis to the
decadal timescale gives an average observed x0 value
for the globe of about 3700 km, compared to 2100 km
on the interannual timescale. Additional global-mean
values are given in Table 1. All r̄ values given there are
computed using X [see Eq. (8)] for 58 3 58 grid boxes
(see section 5 for details of the conversion from model
grids to observed grid). Model r̄ values are lower than
observed values, due in part to the influence of the glob-
al warming signal in the observed record on x0.

We are now in a position to estimate standard errors
for all boxes with data, by making estimates at each
grid box of and r̄ and knowing n. At this point it is2si

possible to use Eqs. (4) and/or (5) to support a number
of intuitive statements. For example, if a new station is
being considered, it is best not only to locate it in a box
without data, but also in one with a lower r̄ value.
Searches for additional data are most valuable in regions
with few stations per box and where r̄ is low. The above
arguments explain why additional station data in interior
parts of Asia, Africa, or South America would produce
a greater reduction in standard errors than additional
data in Europe or North America. Such arguments only
hold during the twentieth century, as even in ‘‘data rich’’
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TABLE 1. Variability and correlation parameters computed from observational and model datasets, for seasonal and annual results on
interannual and interdecadal timescales. Values are given for global-mean grid-box temperature standard deviation (S̄ in 8C), global-mean
correlation decay length (x0 in km), global-mean intragrid-box cross correlation (r̄), and the number of independent samples over the globe
[Neff, estimated using Eqs. (14) and (15)]. Values in parentheses for Neff were estimated from Eq. (10).

DJF MAM JJA SON Annual

S̄ OBS
HC
GFDL
MPI

0.74
0.87
0.98
0.73

0.63
0.83
0.94
0.67

0.56
0.81
0.83
0.56

0.60
0.82
0.91
0.61

0.43
0.56
0.54
0.40

x0 OBS*
HC
GFDL
MPI

1509
1699
1073
1053

1490
1920
1059
1021

1450
1767
1058
1067

1505
1636
1071
1067

2093
2295
1364
1272

r̄ OBS*
HC
GFDL
MPI

0.77
0.78
0.72
0.71

0.77
0.79
0.72
0.70

0.77
0.78
0.72
0.71

0.78
0.78
0.72
0.71

0.83
0.81
0.77
0.74

Neff OBS
HC
GFDL
MPI

37.6 (17)
30.1 (54)
72.5 (75)
75.2 (138)

38.6 (12)
24.0 (34)
74.4 (62)
79.9 (146)

40.6 (13)
28.0 (43)
74.5 (50)
73.3 (117)

37.9 (14)
32.3 (43)
72.8 (58)
73.3 (123)

20.5 (7)
17.4 (20)
45.6 (27)
52.2 (83)

Decadal DJF Decadal MAM Decadal JJA Decadal SON Decadal

S̄ OBS
HC
GFDL
MPI

0.30
0.31
0.33
0.26

0.28
0.29
0.34
0.24

0.27
0.28
0.30
0.21

0.28
0.28
0.32
0.22

0.23
0.22
0.22
0.16

x0 OBS*
HC
GFDL
MPI

2862
2152
1521
1383

3152
2350
1482
1328

2691
2387
1566
1394

2896
2268
1583
1409

3726
3091
2388
1792

r̄ OBS*
HC
GFDL
MPI

0.83
0.82
0.78
0.75

0.84
0.82
0.78
0.74

0.83
0.82
0.78
0.75

0.83
0.82
0.78
0.75

0.87
0.86
0.85
0.79

Neff OBS
HC
GFDL
MPI

11.9 (5)
19.5 (21)
37.1 (21)
44.4 (75)

10.2 (3)
16.7 (18)
38.9 (19)
48.1 (81)

13.2 (4)
16.2 (21)
35.1 (17)
43.8 (46)

11.7 (4)
17.8 (15)
34.4 (18)
42.9 (50)

7.8 (3)
10.5 (10)
16.2 (9)
27.3 (39)

* These values are from the observed fields after infilling missing data (see section 5a). December–February (DJF), March–May (MAM),
June–August (JJA), and September–November (SON).

regions the number of available stations falls in the nine-
teenth century. Significantly improved estimation of
global-mean temperatures requires additional data in
data-sparse regions and times with sparse coverage and
not by simply increasing the number of stations used.

4. Hemispheric and global estimates of standard
errors

The basis for estimating hemispheric, global, and re-
gional estimates of the standard errors from grid-box
errors is Smith et al.’s (1994; henceforth S94) Eq. (7).
In our notation this is

5 S2/Neff,2Sglobal (10)

where S2 is the regional mean of the S2 values defined
in Eq. (2), and is the temporal variance of the2Sglobal

regional mean temperature time series. Here, Neff is the
effective number of independent points, a number that
will be considerably less than the number of grid boxes.

S94’s purpose in introducing this equation was both
to define and estimate Neff. In their study, considering
only marine regions of the world, no attempt was made
to estimate the contribution of unsampled regions to the
overall sampling error as the present study does. In their
Table 1, therefore, Neff values for 13 decades from the
1860s to the 1980s are highly dependent upon data
availability. As the coverage increases, so does Neff (al-
though results are very dependent upon the regions
where data is available—S94).

For a complete globe, the value for Neff will be timescale
dependent but should be relatively stable, perhaps vary-
ing slightly on decadal-to-century timescales due to cli-
mate change. In section 3d, the influence of strong cli-
mate signals was shown to raise x0 and this will reduce
Neff. On millennial scales, for example, Neff would be
larger during the Holocene (the last 10 000 yr) than
during the preceding 10 000 yr, because the latter would
be dramatically influenced by the glacial/interglacial cli-
mate change. Climatic variability is the only means by
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FIG. 5. The dependence of the effective independent sample size
on global-mean correlation decay length, plus values computed from
the IPCC observed dataset.

which Neff can change; coverage changes should be un-
important, although they seriously affect the calculation
when globally incomplete temperature fields are used.

If an estimate of Neff could be made, could be2Sglobal

estimated. Analogous to this, the large-scale standard
error would be

5 SE2/Neff,2SEglobal (11)

where

N Ng g

2 2SE 5 SE cos(lat ) cos(lat ), (12)O Oi i i@i51 i51

where Ng is the total number of grid points (for the NH
there will be a maximum 1296 for 58 3 58 grid boxes).

A further consideration with the definition of Neff is
that its true value should be independent of the grid-
box size used in the calculations. Increasing the grid-
box size will lead to smaller values of S2 [an expected
result of Eq. (1)] relative to so Neff must decrease2Sglobal

according to Eq. (10). The maximum value that Neff can
have is the number of grid boxes used (Ng). Here, S94’s
definition, Eq. (10), will be shown later (using GCM
data) to be grid-box-size dependent. For the grid-box
sizes used here (of the order 58 3 58), the dependence
is small. It could become a serious problem if the error
estimation technique proposed here were applied to, for
example, the land-only dataset developed by Hansen and
Lebedeff (1987) with 40 near-equal area boxes in each
hemisphere.

a. Estimation of Neff

A number of techniques have been proposed to es-
timate Neff (see discussion in Livezey and Chen 1983;
Madden et al. 1993; Jones and Briffa 1996). One pos-
sible approach to estimation is to use principal com-
ponents analysis of the global grid-box dataset. The ef-
fective independent sample size might then be the num-
ber of ‘‘significant’’ eigenvectors. Unfortunately there
is no universally accepted criterion for judging ‘‘sig-
nificance’’ in this context and different criteria give dif-
ferent results (Preisendorfer et al. 1981).

In our study we use the approach suggested by Mad-
den et al. (1993) to calculate a characteristic space or
area A0 between independent samples. We use the spatial
correlation decay function [Eq. (7)] in Madden et al.’s
(1993) Eq. (A2); thus,

pR

2x /x0A 5 2pR e sin(x/R) dx, (13)0 E
0

where R is the radius of the earth. The number of in-
dependent samples is then A0 divided into the surface
area of the earth (4pR2). A little algebra yields

Neff 5 2R/F, (14)

where

2pR /x0e 1 1 1
F 5 1 1 , (15)2 2@[ ] [ ]R R x R0

where x0 is the area-weighted [using cosines as in Eq.
(10)] average x0 value. Estimating Neff in this way, its
value is dependent on the correlation decay function as
measured by x0, and since x0 is independent of grid-box
size, so is Neff. This assumes that x0 calculated here from
58 3 58 boxes would have been similar to having used
the original station data. As over half the land boxes
have only one station in them and few marine boxes
contain more than 10 observations per month, this seems
a reasonable assumption.

b. Comparison of Neff estimation methods using Eqs.
(10)–(15)

Table 1 shows seasonal and annual Neff values for the
interannual and decadal timescales for the observations
and the three GCMs. Figure 5 shows Neff estimated from
Eqs. (14) and (15) as a function of x0 and labels the
values computed from the observed annual and decadal
means.

For the GCMs we can also easily calculate Neff using
S94’s method [Eq. (10) here]. The average global-mean
temperature time series for each GCM can be used to
calculate . Values using this approach are also giv-2Sglobal

en in Table 1 for comparison. The much larger values
of Neff [from Eq. (10)] for MPI compared to HC and
GFDL is because MPI values are much lower. The2Sglobal

MPI model has been shown to have little spectral power
at interannual-to-interdecadal timescales compared to
HC, GFDL, and observations (Santer et al. 1996, their
Fig. 8.1). Much lower , yet only slightly lower2Sglobal

variance at the grid-box level, implies greater canceling
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of S2 values because of lower spatial coherence, hence
higher values of Neff. Despite this, the correlation decay
lengths did not reflect the weaker spatial coherence.

The differences between the two methods are not very
consistent, varying with model and season. Equation
(10) tends to give higher values for two GCMs (HC and
MPI) and lower values for GFDL. The reasons for this
are possibly related to how well the exponential decay
of correlation with distance [Eq. (7)] was a good ap-
proximation of the GCM temperature field and how re-
alistic the GCM is. Reducing the difference between the
two estimates may be achieved by different functional
forms instead of Eq. (7). Other functional forms have
been suggested (see Vinnikov et al. 1990; Madden et
al. 1993).

Using these, Madden et al. (1993) obtained Neff 5
135 for January results from a National Center for At-
mospheric Research (NCAR) model integration and
they calculate a value of 127 for annual data from the
observational data of Vinnikov et al. (1990). The dif-
ferences between these and Eqs. (10), (14), and (15)
can be partly explained by the different timescale and
by different forms of Eq. (7) used in Eqs. (14) and (15).
Madden et al. (1993) estimate x0 to be approximately
1200 km (for NCAR model results), and our Eqs. (14)
and (15) would then give Neff 5 58. Vinnikov et al.’s
(1990) estimates use only land-based stations where x0

is somewhat lower (Fig. 2).
In the previous section we stated that Eq. (10) was

dependent upon grid-box size. We show this by aver-
aging grid-box values from the HC GCM, first by av-
eraging pairs of adjacent boxes in the zonal direction,
then groups of four boxes (two zonal by two meridio-
nal). Using Eq. (10) to estimate Neff for annual data, it
decreases on the interannual timescale from 20.2 (orig-
inal data) to 19.7 (two-box dataset) and then to 18.7
(four-box dataset), and on the interdecadal timescale
from 9.6 to 9.3 (two box) and to 9.0 (four box). In these
calculations, S2 had to be recalculated for the new coars-
er datasets, while is unchanged. Dependence is a2Sglobal

relatively small but nonnegligible factor.
While GCM data may help in making a better choice

of functional forms, the ultimate aim of this work has
been estimation of the observed SEglobal. Even if all three
GCMs agreed on the best functional form, it might still
differ from reality. Table 1 also includes estimates of
Neff for observed data using Eq. (10) for the 1901–90
period. As stated earlier, this is not easy and a number
of assumptions must be made. Grid boxes that are al-
ways missing are ignored (i.e., this Neff applies to only
the region of the globe with data, and this varies through
time so that it is a representative value for an area whose
size is approximately half the globe; see, e.g., Fig. 1a).
The values calculated are between one-third and one-
half of those obtained from Eqs. (14) and (15), mar-
ginally lower than might be expected given the data
coverage used.

The interannual timescale results are only partly com-

parable to those of S94, because we use land and marine
regions, and because the number of independent samples
will be reduced by the long-term warming that occurred
during the 1901–90 period that we used (see section
3d), a reduction that would not be captured by the sep-
arate decades used by S94. Based on these intercom-
parisons, we choose to use Eqs. (14) and (15) to estimate
Neff from the observed data in section 5. We acknowl-
edge, however, that there is some uncertainty over the
exact number of effectively independent samples cov-
ering the globe.

Equations (10), (14), and (15) also apply to all other
fields where estimation of the standard errors of global
averages are made. In particular, Christy et al. (1995)
estimate errors in their global average temperature (mid-
dle tropospheric, MSU2R, and lower stratospheric,
MSU4) assuming a large number (;20 000) of tem-
perature estimates every day. As the effective number
of independent samples at the relevant levels in the at-
mosphere will be no greater than the number measured
at the surface, the error estimates quoted for the MSU
time series must be at least 10 times larger than those
quoted in Spencer and Christy (1992a,b) and Christy et
al. (1995).

The influence of the global warming signal on x0, and
hence on Neff, was explained in section 3d. Part of the
reason why the effective independent sample size com-
puted from the observed record is lower than that com-
puted from the models (Table 1) is the influence of this
signal. So what value of Neff should be used? The answer
depends upon the application. If it is only natural vari-
ability that is of interest, then the higher, model-derived
sample size would be more applicable. If, as here, errors
are required for a record containing both variability and
signal, then the lower, observationally derived sample
size is applicable. This leads to an important result:
fewer stations are required to observe the warming sig-
nal (because of its larger spatial scale) than are required
to observe natural variability (at least over recent cen-
turies).

5. Application of standard error estimates to the
observed data

a. Example calculations using observed data

The entire sequence of calculations required to esti-
mate the standard error of the global-mean temperature
time series is described now for the annual-mean ob-
servations on the interannual timescale and in the next
section for the model results.

The first step is to compute annual-mean temperature
anomalies for each grid box. For the period 1951–80
the variances (Ŝ2) of these grid-box means are computed
(Fig. 6a). The mean number of stations (or equivalent
stations over the oceans; see section 3a) contributing to
each box (n; Fig. 6b) during that period is also required.
The characteristic station variance (an estimate of ,2si
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FIG. 6. Fields computed from annual means of the IPCC observed dataset of (a) grid-box mean variance (8C2) for 1951–80, (b) mean
number of observations per box for 1951–80, (c) mean intersite correlation between stations in each box, (d) mean station variance (8C2),
(e) mean station variance infilled to cover the globe (8C2), (f) mean number of observations per box for 1921–30, (g) mean standard error
of each grid-box temperature for 1921–30 (8C), and (h) global mean of grid-box SE2 (thin lines) and SE of global-mean temperature (thick
lines) from observed results (continuous lines) and HC control run results (dashed lines). Dark shading indicates values less than (a) 0.4,
(c) 0.8, (d) 0.4, (e) 0.4, and (g) 0.3.

but compensating for the effect of changes in station
availability) can then be computed from Eq. (1), given
Ŝ2, n, and r̄. The latter is computed via Eq. (9) from the
correlation decay length (x0; Fig. 2a). The technique
used for computing x0 was given in section 3.

A minimum of 50 yr of data has previously been
considered necessary for calculating the correlation de-
cay lengths (e.g., Jones and Briffa 1996). Applying this
criterion here, however, results in some boxes having
values of Ŝ2 (and hence values that contribute to regional
and hemispheric averages) and nonzero n, but no x0 (and
hence no r̄). On the interannual timescale, useful (if
slightly noisy) information for these boxes can be ob-
tained by relaxing this threshold to just 10 yr of data
and spatially smoothing the results. These values are
then used to fill in the field of x0 values where there is
an Ŝ2 value available. For the interdecadal timescale,

where the threshold is just seven decades of data (i.e.,
the correlations are computed from seven to nine pairs
of values), the results are already quite noisy, and noth-
ing is gained by lowering the threshold. Instead, the grid
boxes are infilled by interpolating (smearing) values
from surrounding grid boxes that do have data. This is
done via the application of a Gaussian-weighted spatial
filter with half-widths of 158 of latitude and 258 of equa-
torial longitude. Note that it is important to do this
smoothing on the x0 values, rather than on the r̄ values,
due to the dependence of the latter on grid-box size [X
in Eq. (9)], which decreases with increasing latitude.

After this filling in, r̄ can be calculated (Fig. 6c) and
used in computing the field of . These variances show2si

minima in the western tropical oceans, higher values
over land, and highest values over the high-latitude
Northern Hemisphere landmasses (Fig. 6d). These val-
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TABLE 2. Standard errors (8C) of global and hemispheric mean temperature estimated on the interannual timescale from observational and
model datasets, for three different periods of the observational record.

Observational

DJF MAM JJA SON Annual

Models (annual only)

HC GFDL MPI

Global
1851–1900
1901–50
1951–95

0.112
0.095
0.078

0.112
0.092
0.078

0.113
0.094
0.073

0.104
0.086
0.064

0.091a

0.072b

0.054c

0.119
0.095
0.078

0.073
0.057
0.046

0.060
0.049
0.042

NH
1851–1900
1901–50
1951–95

0.239
0.179
0.143

0.157
0.118
0.094

0.091
0.070
0.055

0.146
0.114
0.093

0.120
0.090
0.070

0.175
0.133
0.107

0.112
0.085
0.068

0.101
0.082
0.069

SH
1851–1900
1901–50
1951–95

0.092
0.083
0.075

0.158
0.141
0.124

0.221
0.186
0.156

0.148
0.129
0.113

0.136
0.115
0.096

0.162
0.136
0.112

0.092
0.076
0.061

0.059
0.052
0.045

a Using the alternative, more conservative, method [Eq. (5)] yields errors of 0.099.
b Using the alternative, more conservative, method [Eq. (5)] yields errors of 0.078.
c Using the alternative, more conservative, method [Eq. (5)] yields errors of 0.063.

ues are used to compute a standard error for each grid
box and then globally averaged for computing the stan-
dard error of the global-mean time series.

In order to get an estimate of the standard error for
the whole globe, SE must be estimated for grid boxes
with no observations. (Note also that the estimate of
Neff represents the number of independent samples over
the globe, not the number of independent samples over
the observed fraction of the globe.) Equation (4), which
we use for computing SE, is defined for n 5 0 (it reduces
to 5 SE2 5 r̄); but if n 5 0, there is no way of2si

computing the right-hand side. The missing boxes in
the fields of (Fig. 6d) and r̄ (Fig. 6c) have, therefore,2si

to be infilled by the application of the same spatial
smoothing used for interdecadal x0 (see above).

This method of filling in is unrealistic for over2si

Antarctica, where it is reasonable to assume that the
station variances are higher than elsewhere in the
Southern Hemisphere (SH) [high-latitude Northern
Hemisphere (NH) landmasses have high observed val-
ues, and GCM data show high variance over Antarctica],
yet they would be filled in in some parts of the continent
using data with low variance values from over the
Southern Ocean. To compensate for this, the filled-in
values obtained south of 508S are averaged (with equal
weighting) with computed from the HC GCM control2si

run for the same location and timescale. This GCM field
was first scaled such that the means of modeled and
observed over the observed fraction of the Southern2si

Hemisphere were identical (this scaling factor was gen-
erally close to 1). The results of this infilling procedure
are again shown for the interannual timescale (Fig. 6e).

The SEs of each grid-box temperature value can now
be computed from Eq. (4). But now, the n that is used
is the time-varying number of observations per box.
Thus, the field of standard errors will also vary with
time. For this analysis, a single SE field has been com-
puted for each decade (and for each timescale), although

it is likely that there would be small changes in SE
within each decade, and certainly between seasons, due
to short-term variations in the coverage of observations.
As an example, the field of n for 1921–30 and the cor-
responding field of SE are shown in Figs. 6f and 6g,
respectively. The larger errors occur over the poorly
observed locations (high latitudes and the interiors of
most continents). Conversely, lower errors are estimated
over Europe, United States, and the Suez Canal–Red
Sea shipping route where there are many observations.
Lower errors over the low latitudes are due to lower
temperature variability there.

The globally averaged standard errors based on grid-
box annual-mean temperatures have been computed us-
ing the data coverage of each decade from the 1850s to
the 1990s (Fig. 6h). Improvements in data coverage
have halved this error when the 1850s are compared to
the 1950s. Application of Eqs. (14) and (15) using the
observed globally averaged correlation decay length (x0

5 2093 km on the interannual timescale) gives Neff 5
20 independent samples (Table 1). The standard error
(SEglobal) of the globally and annually averaged temper-
ature time series (Fig. 6h) is then computed [via Eq.
(11)] to be less than 0.078C for the last seven decades,
although somewhat higher before 1930. Average errors
for the three periods, 1851–1900, 1901–50, and 1951–
90, are given in Tables 2 and 3.

b. Example calculations using model-generated data

The sequence of calculations is very similar for the
model results, except for changes introduced by three
differences in the input data: (i) there are no missing
data for the model results, so filling in is not necessary;
(ii) the models already produce true areal-mean time
series for each grid box; and (iii) the models have a
different grid size from the observed data (for which
the error estimates are required). The application of the
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TABLE 3. As in Table 2 but for the interdecadal timescale.

Observational

DJF MAM JJA SON Decadal

Model (decadal only)

HC GFDL MPI

Global
1851–1900
1901–50
1951–95

0.088
0.068
0.057

0.097
0.078
0.063

0.093
0.073
0.057

0.078
0.063
0.051

0.078
0.060
0.048

0.057
0.044
0.035

0.052
0.039
0.030

0.034
0.028
0.024

NH
1851–1900
1901–50
1951–95

0.147
0.110
0.089

0.103
0.076
0.061

0.066
0.048
0.038

0.082
0.061
0.048

0.093
0.068
0.054

0.087
0.065
0.051

0.061
0.046
0.037

0.050
0.041
0.035

SH
1851–1900
1901–50
1951–95

0.084
0.073
0.064

0.169
0.144
0.118

0.192
0.154
0.121

0.140
0.117
0.098

0.126
0.102
0.081

0.072
0.059
0.048

0.086
0.065
0.047

0.042
0.036
0.031

HC model control run results to the estimation of ob-
served errors of annual means on the interannual times-
cale is illustrated here.

The variance field of grid-box mean temperatures (S2)
shows lowest variability in the tropical and some mid-
latitude oceans, higher variability over some landmass-
es, and highest variability over the Arctic Ocean and
the Ross Sea (Fig. 7a). These true areal-mean variances
cannot be applied directly to Eq. (3), since they are the
variances on the finer HC model grid (and consequently
are larger than the variance of a 58 3 58 areal mean).
They are, instead, used to compute an effective station
variance for the model [via Eq. (2)], which can then be
resampled onto the grid of the observed dataset (it is
the sampling error of the observed dataset, after all, that
we require, albeit using parameters of spatial and tem-
poral temperature variability from the GCM control
runs).

For each grid box, therefore, we require the model
estimate of r̄, for use in Eq. (2). The correlation decay
length derived from the model results on this timescale
(x0; Fig. 2b) shows the enhanced tropical coherence that
characterizes the HC model and little other structure.
Comparison with other model integrations has been giv-
en in section 3c. From x0, r̄ can be computed for each
model grid box (Fig. 7b). The intrabox cross correlations
between stations implied by the model results is above
0.9 in the Tropics and in some high-latitude regions.

Equation (2) is now used to estimate . For the models,2si

is an effective value only because there are no stations;2si

it is the value implied by the grid-box mean variables
(variance and r̄). (Similarly, r̄ is only an effective mean
correlation between stations, computed from the way cor-
relation decays with distance between the box means
themselves, as detailed in section 3.) The field of , thus2si

computed, can be resampled onto the observed grid be-
cause it is independent of grid-box size. The result is
shown in Fig. 7c. This can be compared with the observed
field of (Fig. 6d) with greater confidence than could2si

the fields of S2, due to the latter’s dependence on grid
size. The impact of using is greatest where r̄ is lowest2si

and is always small here since r̄ rarely falls below 0.7

(Fig. 7b). If fields that had much lower r̄ values were
being compared (e.g., daily temperature or daily precip-
itation), then the effect of different grid sizes on the var-
iances would be greater.

We now have model estimates of for the observed2si

grid, to use in Eq. (4) for computing standard errors.
Also required are values of r̄ for the observed grid. Like
S2, r̄ cannot simply be resampled onto the observed grid
due to the dependence of r̄ on grid-box size. This is the
highest resolution of the models used (2.58 lat 3 3.758
long) and is most different from the coarser-resolution
observed grid (58 3 58). The larger the grid box, the
lower the mean correlations between stations within a
box, since the mean station separation increases.

Although r̄ cannot be resampled onto the observed
grid, x0 can because it is independent of grid-box size.
Then, r̄ can be recomputed for the observed grid, using
the observed grid-box sizes for X. Due to the larger grid
boxes, r̄ is significantly lower for the observed grid than
for the model grid (cf. Figs. 7d and 7b), supporting the
statement that r̄ could not simply be resampled onto
different grids.

Now that model estimates of and r̄ have been com-2si

puted for the observed grid, they can be combined with
observed n (see Fig. 6f for an example from 1921–30)
in Eq. (4) to produce the standard error of each grid-
box temperature (see Fig. 7e for the 1921–30 period).
This is in reasonable agreement with that computed from
the observations (Fig. 6g), except that errors computed
from the model statistics are slightly higher over the
poorly observed landmasses. As with the observations,
the errors can be squared and then globally averaged
(Fig. 6h) and divided by the effective number of in-
dependent samples to produce a standard error estimate
[via Eq. (11)] of the global-mean temperature record
(Fig. 6h).

The errors computed using the spatial and temporal
characteristics of the HC model variability are a little
greater than those based solely on the observations (Fig.
6h), due mainly to the higher temporal variability of the
model (cf. Figs. 7c and 6d).
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FIG. 7. Fields computed from annual means of HC control run of
(a) grid-box mean variance (8C2), (b) mean intersite correlation be-
tween stations in each model box size, (c) mean station variance
(8C2), (d) mean intersite correlation between stations in each observed
grid box size, and (e) mean SE of each grid-box temperature for
1921–30 (8C). Dark shading indicates values less than (a) 0.4, (b)0.8,
(c) 0.4, (d) 0.8, and (e) 0.3.

FIG. 8. Decadal timescale surface temperature record for (a) global,
(b) Northern Hemisphere, and (c) Southern Hemisphere means, with
61 SE (shaded) and 62 SE (thin lines) indicated. Anomalies (8C)
relative to 1961–90 mean.

c. Comparison and implications of results on all
timescales

These analyses have been repeated for all datasets
and for seasonal and annual values on interannual and
interdecadal timescales. A summary of these results
is given in Tables 2 and 3, showing the mean standard
errors of the global-mean temperature record for three

periods. Also shown, for the observed annual means
on the interannual timescale (Table 2) are the standard
errors obtained using Eq. (5) as an alternative to Eq.
(4). The more conservative approach to estimation
[Eq. (5)] leads to larger standard errors on the global
scale by about 10% (see footnotes to Table 2). This
record is shown in Fig. 8a, together with 61 and 62
standard error ranges obtained from the observed
data, for the interdecadal timescale.

Hemispheric errors have been estimated too, by av-
eraging SE2 over the appropriate hemisphere only, and
dividing by the effective number of independent sam-
ples for that hemisphere [Neff(NH) or Neff(SH)]. The
latter values are computed by putting the mean x0

value for that hemisphere only into Eqs. (14) and (15),
which gives the number of such samples over the
globe. Halving this gives the hemispheric Neff value.
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TABLE 4. Ratio of number of independent samples in each hemi-
sphere for interannual and interdecadal timescales, from observa-
tional results.

Timescale Neff (NH)/Neff (SH)

Interannual DJF
Interannual MAM
Interannual JJA
Interannual SON
Interannual annual
Interdecadal DJF
Interdecadal MAM
Interdecadal JJA
Interdecadal SON
Interdecadal annual

0.74
1.03
1.41
0.98
1.29
1.30
2.23
1.81
1.77
1.54

TABLE 5. The dependence of correlation decay length, intragrid-
box cross correlations, and number of independent samples on time-
scale, from Hadley Centre model results.

x0 (km) r̄ Neff

Interannual DJF
Interannual MAM
Interannual JJA
Interannual SON
Interannual annual
5-yr annual
10-yr annual
50-yr annual
100-yr annual

1699
1920
1767
1636
2295
2797
3091
4134
5553

0.78
0.79
0.78
0.78
0.81
0.84
0.86
0.90
0.91

30.1
24.0
28.0
32.3
17.4
12.4
10.5

6.7
4.5

These hemispheric errors are also given in Tables 2
and 3, and (on the interdecadal timescale only) in
Figs. 8b,c.

Observational standard errors are generally larger
than for the three models except for the HC model
on the interannual timescale. The MPI model error is
always smaller than that of GFDL. As would be ex-
pected, most observational errors are greater for the
Southern Hemisphere compared to the Northern
Hemisphere and least for the global mean.

The winter hemisphere has fewer independent sam-
ples (Table 4) than the summer hemisphere, due to
longer correlation decay lengths. This is also true on
the interdecadal timescale, although this seasonality
is superposed upon an increase in the Northern Hemi-
sphere Neff relative to the Southern Hemisphere value,
as timescale increases. This is due to the Northern
Hemisphere continentality and orographic features
lowering the mean correlation decay length there.

The computation of the correlation decay length
and the effective sample size has been extended to
longer timescales for the HC model control run (Table
5). The calculation shows a continued increase of x0

on the longer timescales, and Neff falls to less than 5
for the century timescale. Presumably, Neff for a model
simulation that also contained anthropogenic climate
change signals would be lower still, but note that the
results may be biased by unrealistically high x0 in the
Tropics.

6. Conclusions

We have developed a method for estimating the
standard errors of any regional/hemispheric/global
time series of a climatic variable. It is timescale de-
pendent and grid-box-size independent. The SEs are
first computed for the constituent grid-box series us-
ing the formula SE2 5 r̄(1 2 r̄)/[1 1 (n 2 1)r̄],2si

where is the characteristic variance of station time2si

series within the grid box and r̄ is the average intersite
correlation between the n stations in the box. Methods
are proposed and explored for estimating and r̄. The2si

latter is estimated using correlation decay lengths (x0)

between neighboring grid-box time series and the cen-
tral one.

Estimation of the regional standard errors of the
time series are dependent upon the areally weighted
values of all the grid-box SE2s (assuming a value of
S 2 for all boxes with no data) and an estimate of the
number of spatially independent grid boxes over the
earth’s surface (Neff). The result of two different meth-
ods for estimating Neff using three long (800–1000 yr)
GCM control integrations and observations are com-
pared. The differences relate principally to our choice
of the exponential correlation decay with distance
[Eq. (7)], although a small fraction may be due to one
method being grid-box-size dependent. Some benefit
may be gained from further work with different func-
tional forms to Eq. (7).

Standard errors of global average temperature es-
timated from the observational dataset are slightly
larger than those estimated from the GCMs. Part of
this difference may be due to the presumed anthro-
pogenically induced trends in the observational da-
taset inflating correlation coefficients between neigh-
boring grid-box time series. The long GCM control
integrations do not incorporate changes in external
forcing of the climate system. If an estimate of the
course of anthropogenically induced temperature
change this century is subtracted from the observed
data, or the results of a GCM with external forcing
from a perturbed integration are used, the differences
are reduced.

Typical standard errors estimated for annual data
on the interannual timescale since 1951 are 0.0598C,
implying that individual years need to be at least
0.128C apart before they can be classed as being sig-
nificantly different from one another. The reduction
in data availability prior to 1950 increases errors as-
sociated with annual estimates. For the second half
of the ninteenth century the standard error is 0.0918C,
making it harder for two years to be significantly dif-
ferent from one another. The standard errors reduce
on the annual interdecadal timescale to 0.0488C
(1951–95) and 0.0788C (1851–1900).

Reducing the standard error can only be achieved
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FIG. A1. (a) Scatterplot of correlation against separation distance,
between HC control run temperatures of the grid box centered at
12.58N, 3.758E and surrounding grid boxes. Isotropic exponential
decay functions are shown fitted by four alternative methods (see
appendix A). (b) As in (a), but correlations are plotted against an
effective distance computed by normalizing the zonal and meridional
distances by their anisotropic decay lengths and combining them.

by increasing the density of stations over land areas
and the number of measurements per month for ocean
squares. The most likely improvement in the near fu-
ture will come through the incorporation of satellite
estimates of SSTs. At present, the Southern Hemi-
sphere has 60%–65% of the surface area with obser-
vations. This could increase to about 90% when the
Southern Ocean satellite SST data become available.
A further increase in this hemisphere could be
achieved by a greater density of stations in the Ant-
arctic. In both instances, it would require sufficient
years of temperature records to derive background
fields of average temperature; for example, for a 30-yr
(the current base is 1961–90) period.

The methodology provides a framework for making
assessments of changes to standard error estimates if
some new data (such as Southern Ocean satellite
SSTs) were to become available. It also provides a
means for the rationalization of climate networks at
the regional, hemispheric, and global scale, recog-
nizing that each climate variable has a different spatial
and temporal structure to its inherent variability.
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APPENDIX A

Fitting Correlation Decay Functions

Briffa and Jones (1993) and Jones and Briffa (1996)
fitted the correlation decay function [Eq. (7)] by tak-
ing the logarithm of the r values and using linear
regression. Although both studies clearly state they
omitted points when r # 0, what effect does this have
on the results?

Ignoring negative r points clearly overestimated
values of x0. This was partly compensated for by fit-
ting the exponential function through the centroid
points (x, logr) and the origin (x 5 0, logr 5 0). A
true least squares fit (in transformed units) would put
the line higher (see Fig. A1a, for an example point

from the HC model results) as x0 is then equal to 2S
/S xiri. The centroid fit gave x0 5 2S xi/S logri.2xi

Negative r values should ideally be included in the
analysis, but the difficulty is that log r is then un-
defined, making it impossible to fit Eq. (7) to the data
analytically. To try to correct the problem of the fit
looking poor in the untransformed units, we experi-
mented with a number of options. These are

1) linear regression (least squares fit) after taking log-
arithms, with all negative r values ignored;

2) linear regression (centroid fit) after taking loga-
rithms, with all negative r values ignored (as used
by Briffa and Jones 1993);

3) an iterative least squares fit of nonlinear Eq. (7),
without taking logarithms and with negative r val-
ues ignored; and

4) as in option 3 but with all r values retained, re-
gardless of sign.
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TABLE A1. Correlation decay lengths (x0 in km) and goodness of fits (rms error) computed for three test points of the HC model results,
via four different isotropic methods and one anisotropic method. Two different domain sizes for computing the cross correlations were tested.
The location of the test points and the size of the domains are also given. See text for explanation of the four methods of fitting the decay
lengths.

Test-point location:
67.58N 3.758E1V
12.58N 3.758E2V
2.58S 137.258W3V

Latitude/longitude domain size:
6258 / 66081M
622.58 / 67582M

Method

Point 1V

Region 1M Region 2M

Point 2V

Region 1M Region 2M

Point 3V

Region 1M Region 2M

Isotropic

(i) x0

rmse
1247

0.35
1218

0.28
3568

0.27
4904

0.31
7659

0.44
9258

0.40
(ii) 1251

0.35
1231

0.28
3127

0.27
3977

0.29
6839

0.44
8263

0.40
(iii) 1443

0.35
1429

0.29
3706

0.27
4594

0.30
10089

0.46
11513

0.42
(iv) 1231

0.35
1170

0.28
2996

0.27
3568

0.29
5804

0.43
7427

0.40
Anisotropic

xz0

xm0

Ï(xz0)(xm0)
Rmse

1081
1457
1255

0.35

993
1541
1237

0.28

4255
1861
2814

0.25

5921
1684
3158

0.26

29990
1965
6271

0.32

27994
1995
6319

0.31

The results of this exercise are also illustrated in Fig.
A1a, and in Table A1 for three example grid boxes,
for the first 120 yr only of the HC model control run
results. In addition, the domain of interest was varied
in size as well. The original study used a domain
around each central point 6208 in the meridional di-
rection and 6458 in the zonal direction. Somewhat
larger domain sizes have also been used (6258/6608
and 622.58/6758)

For one of the example points (Fig. A1a and point
2 in Table A1) none of the curve fitting methods pro-
duces a good fit to the data, since the HC model cor-
relations do not follow a simple exponential decay
with distance at this particular point; indeed, the fits
are quite poor in much of the Tropics. In the extra-
tropics, Eq. (7) does describe the data quite well [the
explained variance of the fit is between 30% and 50%
as also found in Briffa and Jones (1993)]. The fit in
the Tropics can be greatly improved by taking into
account anisotropy, as we show in appendix B. How-
ever, even for the isotropic model [Eq. (7)] the method
of fitting to the data can alter x0 by as much as 30%.

There are three causes of bias. First, the omission
of the negative r values leads to an overestimate of
the correlation decay lengths. This is apparent by
comparing the dotted line (nonlinear fit, negative val-
ues ignored) against the thick continuous line (non-
linear fit, negative values included) in Fig. A1a, the
latter being lower. This result carries over to the other
two test points (Table A1). Second, taking logarithms
(to allow linear regression) outweighs the low r values
relative to the higher r values. This tends to produce
an underestimate of x0 (see Table A1), although not

for point 2 [Fig. A1a: compare method (i) versus
method (iii)]. Third, the use of the centroid fit, after
taking logarithms (dashed line), resulted in a lower
x0 value than using a least squares fit (thin continuous
line).

The overall combination of these biases is that the
centroid fit, after removing all r # 0 and taking log-
arithms (as used by Briffa and Jones 1993), causes a
small overestimate of the correlation decay length
compared to the better method of fitting nonlinear Eq.
(7) iteratively to the full, untransformed data (as is
used here, for all subsequent analyses). It is the first
bias, therefore, that dominates.

Finally, note that the nonlinear fitting methods are
somewhat less sensitive to the domain of interest
used, particularly compared to the centroid fit. The
sensitivity remains high, however, which introduces
some uncertainty into the x0 values found here.

APPENDIX B

Anisotropic Correlation Decay

The exponential function [Eq. (7)] assumes that the
correlation decays at the same rate in the zonal and
meridional directions. At many boxes over the earth’s
surface and particularly in the tropical regions, tem-
perature correlations decay much more rapidly in the
meridional direction than in the zonal direction. A
function was developed:

2 22Ï(xz /xz ) 1(xm /xm )0 0r 5 e , (B1)

where xz and xm are the distances in the zonal and
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FIG. B1. Ratio of zonal to meridional correlation decay length
computed from annual-mean HC control run temperatures. Isolines
are at 0.5, 1, 2, 4, and 8; values ,1 are shaded.

FIG. B2. Zonally averaged correlation decay lengths on (a) annual
and (b) decadal timescales from HC control run. Isotropic decay (thin
continuous lines), zonal decay (dotted lines), meridional decay
(dashed lines), and the geometric mean of the zonal and meridional
decays (thick continuous lines).

meridional directions and xz0 and xm0 the zonal and
meridional correlation decay lengths. Equation (B1)
reduces to Eq. (7) when xz0 5 xm0.

The anisotropic function has been fitted (nonlin-
early) to the same three HC model test points used in
appendix A, and the results are included in Table A1.
The new function provides a better fit (lower rms er-
ror) than the isotropic function, particularly for the
two tropical points (2 and 3). The difference between
the decay lengths is also greater there. For test point
2, the scatter of points and the fit of the anisotropic
decay function are shown in Fig. A1b, by plotting the
r values against an effective distance, xeff 5 x0[(xz/
xz0)2 1 (xm/xm0)2]1/2. This transforms the bivariate
decay into a univariate decay, and r decays with length
x0 (the same decay length computed for the isotropic
case; Fig. A1a and Table A1). The improved fit of the
anistropic function (Fig. A1b) over the isotropic func-
tion (Fig. A1a) is clear, although neither decay ex-
plains the full variance of r.

The analysis has been extended to the full model
fields, for the annual-mean temperature anomalies on
an interannual timescale. A zonality index (Fig. B1;
defined as the ratio of the zonal decay length to the
meridional decay length) indicates that it is mainly
the tropical region where the anisotropic function is
required; elsewhere the index is near 1, indicating
near isotropy. As noted above, the coherence of the
HC model results appears to be too strong in the Trop-
ics (Fig. 3) compared to the analysis of observations,
and the anisotropic analysis indicates that it is the
zonal coherence that is the cause (as found by Tett et
al. 1997). The zonality index is also higher over the
midlatitude oceans, compared to the land areas at cor-
responding latitudes, with the exclusion of the eastern
ocean boundaries.

The computation of r̄ [Eqs. (8) and (9)] uses the
correlation decay length. These computations could
be generalized to include different meridional and
zonal decay lengths, but it is simpler to utilize a par-
ticular characteristic of the decay length functions

used [Eqs. (7) and (B1)]. This is that, surrounding a
point, the area for which r . e21 is p if the isotropic2x0

function is used, or p(xz0)(xm0) for the anisotropic
function. An equivalent isotropic decay length can,
therefore, be defined for the anisotropic case, where
x0 5 [(xz0)(xm0)]1/2. This equivalent decay length has
been computed for the HC model results and then
zonally averaged (Fig. B2). The zonal decay lengths
are particularly large at some latitudes and have been
limited to one-half of the earth’s circumference at that
latitude (;20 015 km at the equator). The reason be-
ing that once the ellipse of influence extends halfway
around the world in each direction, it cannot get any
bigger without overlapping itself. Also shown are the
zonal and meridional components and the isotropic
decay length computed directly, as before.

It is clear that the isotropic model is satisfactory
poleward of 258, where the two components are of
similar magnitude. The important result is that the
equivalent isotropic decay length, computed from the
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anisotropic components, is virtually identical to the
directly computed isotropic decay length. There are
slightly larger differences on the interdecadal time-
scale (Fig. B2b) than on the interannual (Fig. B2a),
but they are still smaller than other sources of un-
certainty. This provides justification for using the iso-
tropic approach for the observations and for the other
model results, and for the application of these results
in the remainder of this paper.
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