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Introduction

The title quantum optics covers a large range of possible courses, and so
this introduction intends to explain what this course does and does not aim
to provide. Regarding the negatives, there are several things this course
deliberately avoids:

• It is not a course on quantum information theory. Some basic notions
of coherent states and entanglement will be assumed, but will not be
the focus.

• It is not a course on relativistic gauge field theories; the majority
of solid state physics does not require covariant descriptions, and so
it is generally not worth paying the price in complexity of using a
manifestly covariant formulation.

• As far as possible, it is not a course on semiclassical electromagnetism.
While at times radiation will be treated classically, this will generally
be for comparison to a full quantum treatment, or where such an
approximation is valid (for at least part of the radiation).

Regarding the positive aims of this course, they are: to discuss how to
model the quantum behaviour of coupled light and matter; to introduce
some simple models that can be used to describe such systems; to dis-
cuss methods for open quantum systems that arise naturally in the context
of coupled light and matter; and to discuss some of the more interesting
phenomena which may arise for matter coupled to light. Semiclassical be-
haviour will be discussed in some sections, both because an understanding
of semiclassical behaviour (i.e. classical radiation coupled to quantum me-
chanical matter) is useful to motivate what phenomena might be expected;
and also as comparison to the semiclassical case is important to see what
new physics arises from quantised radiation.

The kind of quantum optical systems discussed will generally consist
of one or many few-level atoms coupled to one quantised radiation fields.
Realisations of such systems need not involve excitations of real atoms, but
can instead be artificial atoms, i.e. well defined quantum systems with dis-
crete level spectra which couple to the electromagnetic field. Such concepts
therefore apply to a wide variety of systems, and a variety of character-
istic energies of electromagnetic radiation. Systems currently studied ex-
perimentally include: real atomic transitions coupled to optical cavities[1];

v



vi INTRODUCTION

Josephson junctions in microwave cavities (waveguides terminated by re-
flecting boundaries)[2, 3]; Rydberg atoms (atoms with very high princi-
ple quantum numbers, hence small differences of energy levels) in GHz
cavities[4]; and solid state excitations, 1i.e. excitons or trions localised in
quantum dots, coupled to a variety of optical frequency cavities, includ-
ing simple dielectric contrast cavities, photonic band gap materials, and
whispering gallery modes in disks[5].

These different systems provide different opportunities for control and
measurement; in some cases one can probe the atomic state, in some cases
the radiation state. To describe experimental behaviour, one is in gen-
eral interested in calculating a response function, relating the expected
outcome to the applied input. However, to understand the predicted be-
haviour, it is often clearer to consider the evolution of quantum mechanical
state; thus, both response functions and wavefunctions will be discussed.
As such, the lectures will switch between Heisenberg and Schrödinger pic-
tures frequently according to which is most appropriate. When considering
open quantum systems, a variety of different approaches; density matrix
equations, Heisenberg-Langevin equations and their semiclassical approxi-
mations, again corresponding to both Schrödinger and Heisenberg pictures.

The main part of this course will start with the simplest case of a single
two-level atom, and discuss this in the context of one or many quantised
radiation modes. The techniques developed in this will then be applied
to the problem of many two-level atoms, leading to collective effects. The
techniques of open quantum systems will also be applied to describing las-
ing, focussing on the “more quantum” examples of micromasers and single
atom lasers. The end of the course will consider atoms beyond the two-level
approximation, illustrating what new physics may arise. Separate to this
main discussion, the first two lectures stand alone in discusing where the
simple models of coupled light and matter used in the rest of the course
come from, in terms of the quantised theory of electromagnetism.



Lecture 1

Quantisation of
electromagnetism in the
Coulomb gauge

Our aim is to write a theory of quantised radiation interacting with quan-
tised matter fields. Such a theory, e.g. the Jaynes-Cummings model (see
next lecture) has an intuitive form:

HJ.C. =
∑
k

ωka
†
kak +

∑
i,k

[
εiσ

z
i + gi,kσ

+
i ak + H.c.

]
. (1.1)

The operator a†k creates “a photon” in the mode with wavevector k, and so
this Hamiltonian describes a process where a two-level system can change
its state with the associated emission or absorption of a photon. The term
ωka

†
kak then gives the total energy associated with occupation of the mode

with energy ωk. While the rest of the course is dedicated to studying such
models of coupled light-matter system, this (and in part the next) lecture
will show the relation between such models and the classical electromag-
netism of Maxwell’s equations.

To reach this destination, we will follow the route of canonical quan-
tisation; our first aim is therefore to write a Lagrangian in terms of only
relevant variables. Relevant variables are those where both the variable and
its time derivative appear in the Lagrangian; if the time derivative does not
appear, then we cannot define the canonically conjugate momentum, and
so cannot enforce canonical commutation relations. The simplest way of
writing the Lagrangian for electromagnetism contains irrelevant variables
— i.e. the electric scalar potential φ and gauge of the vector potential A;
that irrelevant variables exist is due to the gauge invariance of the theory.
Since we are not worried about preserving manifest Lorentz covariance,
we are free to solve this problem in the simplest way — eliminating the
unnecessary variables.

1



2 LECTURE 1. QUANTISATION OF ELECTROMAGNETISM

1.1 Revision: Lagrangian for electromagnetism

To describe matter interacting with radiation, we wish to write a La-
grangian whose equations of motion will reproduce Maxwell’s and Lorentz’s
equations:

∇×B = µ0J + µ0ε0Ė ∇ ·E = ρ/ε0 (1.2)

∇ ·B = 0 ∇×E = −Ḃ (1.3)
mαr̈α = qα[E(rα) + ṙα ×B(rα)]. (1.4)

Equations (1.3) determine the structure of the fields, not their dynamics,
and are immediately satisfied by defining B = ∇×A and E = −∇φ−Ȧ. Let
us suggest the form of Lagrangian L that leads to Eq. (1.2) and Eq. (1.4):

L =
∑
α

1
2
mαṙα2 +

ε0

2

∫
dV
[
E2 − c2B2

]
+
∑
α

qα [ṙα ·A(rα)− φ(rα)] .

(1.5)
Here, the fields E and B should be regarded as functionals of φ and A.
Note also that in order to be able to extract the Lorentz force acting on
individual charges, the currents and charge densities have been written as:

ρ(r) =
∑
α

qαδ(r− rα), J(r) =
∑
α

qαṙαδ(r− rα). (1.6)

The identification of the Lorentz equation is simple:

d

dt

∂L
∂ṙα

=
d

dt
[mαṙα + qαA(rα)] = mαr̈α + qα(ṙα · ∇)A(rα) + qα

∂

∂t
A(rα)

=
∂L
∂rα

= qα∇ [ṙα ·A(rα)− φ(rα)]

= qα [(ṙα · ∇) A(rα) + ṙα × (∇×A(rα))−∇φ(rα)] ,

thus one recovers the Lorentz equation,

mαr̈α = qα

[
ṙα × [∇×A(rα)]−∇φ(rα)− ∂

∂t
A(rα)

]
. (1.7)

Similarly, the equation that results from φ can be easily extracted; since
∂L/∂φ̇ = 0, this becomes

∂L
∂φ

= ε0∇ ·E−
∑
α

qαδ(r− rα) = 0. (1.8)

Finally, the equations for A are more complicated, requiring the identity

∂

∂A
(∇×A)2 = 2∇× (∇×A), (1.9)

which then gives:

d

dt

∂L
∂Ȧ

= − d

dt
ε0E =

∂L
∂A

= −ε0c
2∇× (∇×A) +

∑
α

qαṙαδ(r− rα),

(1.10)
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which recovers the required Maxwell equation

− ε0
d

dt
E = − 1

µ0
∇×B +

∑
α

qαṙαδ(r− rα). (1.11)

Thus, the Lagrangian in Eq. (1.5), along with the definitions of E and B
in terms of A and φ produce the required equations.

1.2 Eliminating redundant variables

As mentioned in the introduction, we must remove any variable whose
time derivative does not appear in the Lagrangian, as one cannot write
the required canonical commutation relations for such a variable. It is
clear from Eq. (1.5) that the electric scalar potential φ is such a variable.
Since φ̇ does not appear, it is also possible to eliminate φ directly from
the equation ∂L/∂φ; using Eq. (1.8) and the definition of E, this equation
gives:

− ε0∇ · Ȧ− ε0∇2φ− ρ(r) = 0. (1.12)

Rewriting this in Fourier space, one has:

φ(k) =
1
k2

(
ρ(k)
ε0

+ ik · Ȧ(k)
)
. (1.13)

We can now try to insert this definition into the Lagrangian, to eliminate
φ. To do this, we wish to write E2 and B2 in terms of φ and A; it is therefore
useful to start by writing

− Ej(k) = ikjφ(k) + Ȧj(k) = i
kj
ε0k2

ρ(k) +
(
δjk −

kjkk
k2

)
Ȧk(k). (1.14)

This means that the electric field depends on the charge density, and on
the transverse part of the vector potential, which will be written:

A⊥j k =
(
δjk −

kjkk
k2

)
Ȧk(k). (1.15)

The transverse1 part of the vector potential is by definition orthogonal to
the wavevector k, and so the electric field is the sum of two orthogonal
vectors, and so:

|E(k)|2 = |Ȧ⊥(k)|2 +
1

ε2
0k

2
|ρ(k)|2. (1.18)

1The combination:

δ⊥jk(k) =

„
δjk −

kjkk

k2

«
, (1.16)

is the reciprocal space representation of the transverse delta function; with appropriate
regularisation[6, Complement AI ], it can be written in real space as:

δ⊥jk(r) =
2

3
δ(r)δjk +

1

4πr3

“
3
rjrk

r2
− δjk

”
. (1.17)
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Similarly, the squared magnetic field in reciprocal space is given by:

|B(k)|2 = (k×A(k)) · (k×A∗(k))

= k2

(
δjk −

kjkk
k2

)
Aj(k)A∗k(k) = k2|A⊥(k)|2. (1.19)

Thus, the field part of the Lagrangian becomes:

ε0

2

∫
dV
[
E2 − c2B2

]
=

1
ε0
−
∫
d3k

1
k2
|ρ(k)|2

+ ε0−
∫
d3k

(
|Ȧ⊥(k)|2 − c2k2|A⊥(k)|2

)
. (1.20)

The notation −
∫

has been introduced to mean integration over reciprocal
half-space; since A(r) is real, A∗(k) = A(−k), thus the two half spaces
are equivalent. This rewriting is important to avoid introducing redundant
fields in the Lagrangian; the field is either specified by one real variable at
all points in real space, or by two real variables at all points in reciprocal
half-space. Similar substitution into the coupling between fields and matter,
written in momentum space gives:

Lem−matter = 2<−
∫
d3k [J(k) ·A∗(k)− ρ(k)φ∗(k)]

= 2<−
∫
d3k

[
J(k) ·A∗(k)− ρ(k)

(
ρ∗(k)
ε0k2

− ik
k2
· Ȧ∗(k)

)]
.

(1.21)

This can be simplified by adding a total time derivative, L → L + dF/dt;
such transformations do not affect the equations of motion, since they add
only boundary terms to the action. If:

F = 2<−
∫
d3kρ(k)

[
−ik ·A∗(k)

k2

]
, (1.22)

then

Lem−matter +
dF

dt
= 2<−

∫
d3k

[(
J(k)− ρ̇(k)

ik
k2

)
·A∗(k)− |ρ(k)|2

ε0k2

]
.

(1.23)
Then, using conservation of current, ρ̇(k) + ik · J(k) = 0, one finally has:

Lem−matter +
dF

dt
= 2<−

∫
d3k

[
J⊥(k) ·A⊥∗(k)− |ρ(k)|2

ε0k2

]
. (1.24)

Note that this set of manipulations, adding dF/dt has eliminated the longi-
tudinal part of the vector potential from the Lagrangian. The form chosen
for F is such that this procedure is equivalent to a gauge transformation;
the chosen gauge is the Coulomb gauge. Putting everything together, one
has:

Lcoulomb =
∑
α

1
2
mαṙα2 − 1

ε0
−
∫
d3k

1
k2
|ρ(k)|2

+ ε0−
∫
d3k

(
|Ȧ⊥(k)|2 − c2k2|A⊥(k)|2 + 2<

[
J⊥(k) ·A⊥∗(k)

])
. (1.25)
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Thus, the final form has divided the interaction into a part mediated
by transverse fields, described by A⊥, and a static (and non-retarded)
Coulomb interaction. Importantly, there are no irrelevant variables left
in Eq. (1.25) The Coulomb term can also be rewritten:

Vcoul =
1
ε0
−
∫
d3k

1
k2
|ρ(k)|2 =

∑
α,β

qαqβ
8πε0|rα − rβ|

. (1.26)

Note that since the Coulomb interaction is non-retarded, both the Coulomb
and transverse parts of interaction must be included to have retarded in-
teractions between separated charges.

1.3 Canonical quantisation; photon modes

We have in Eq. (1.25) a Lagrangian which can now be treated via canon-
ical quantisation. Since only the transverse part of the field A appears in
Eq. (1.25), we can drop the superscript label in A⊥ from here on. To pro-
ceed, we should first identify the canonical momenta and the Hamiltonian,
and then impose canonical commutation relations. Thus,

pα =
∂Lcoulomb

∂ṙα
= mṙα + qαA(rα) (1.27)

Π(k) =
∂Lcoulomb

∂Ȧ(k)∗
= ε0Ȧ(k). (1.28)

Then, constructing the Hamiltonian by H =
∑

i PiṘi − L, one finds:

H =
∑
α

1
2mα

[pα − qαA(rα)]2 + Vcoul

+ ε0−
∫
d3k

(
|Π(k)|2

ε2
0

+ c2k2|A(k)|2
)
. (1.29)

In order to quantise, it remains only to introduce commutation relations
for the canonically conjugate operators. Noting that A(r) has only two
independent components, because it is transverse, it is easiest to write
its commutation relations in reciprocal space, introducing directions ek,n

orthogonal to k with n = 1, 2 ; then:

[ri,α, pj,β] = i~δαβδij (1.30)[
Aek,n

(k),Πek′,n′ (k
′)
]

= i~δ(k− k′)δnn′ . (1.31)

This concludes the quantisation of matter with electromagnetic inter-
actions in the Coulomb gauge. It is however instructive to rewrite the
transverse part of the fields in terms of their normal modes. The second
line of Eq. (1.29) has a clear similarity to the harmonic oscillator, with
a separate oscillator for each polarisation and momentum. Rewriting in
normal modes thus means introducing the ladder operators:

ak,n =
√

ε0

2~ck

[
ckAek,n

(k) +
i

ε0
Πek,n

(k)
]
, (1.32)
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or, inverted one has:

A(r) =
∑
k

∑
n=1,2

√
~

2ε0ωkV
ên
(
ak,ne

ik·r + a†k,ne
−ik·r

)
. (1.33)

Inserting this into Eq. (1.29) gives the final form:

H =
∑
α

1
2mα

[pα − qαA(rα)]2 +
∑
k

∑
n=1,2

~ωka
†
kak + Vcoul. (1.34)

1.4 Dipole, two-level, and rotating wave
approximations

Equation (1.34) applies to any set of point charges interacting with the
electromagnetic field. In many common cases, one is interested in dipoles,
with pairs of opposite charges closely spaced, and much larger distances
between the dipoles. In this case, there are a number of approximations
one can make to simplify calculations. This section will briefly illustrate
these approximations: neglect of the A2 terms, the dipole approximation,
projection to two-level systems, and the rotating wave approximation. The
study of the approximate models that result will be the subject of the rest
of this course.

Neglect of the A2 terms in expanding [pα − qαA(rα)]2 can be justified
in the limit of low density of dipoles; considering only a single radiation
mode, the contribution of the A2 term can be rewritten using Eq. (1.33)
as:

δHA2 =
N

V

q2~
4mε0ω

(
a+ a†

)2
. (1.35)

Thus, this term adds a self energy to the photon field, which scales like the
density of dipoles. The relative importance of this term can be estimated
by comparing it to the other term in the Hamiltonian which is quadratic
in the photon operators, ~ωka†kak. Their ratio is given by:

N

V

q2

4mε0(ωk)2
∝ N

V
a3
B

(
Ryd
~ωk

)2

(1.36)

thus, assuming particles are more dilute than their Bohr radius, neglect
of δHA2 is valid for frequencies of the order of the Rydberg for the given
bound system of charges.

Turning next to the dipole approximation, consider a system with just
two charges: charge +q mass m1 at R+ r/2 and −q mass m2 at R− r/2. If
r � λ where λ is a characteristic wavelength of light, then one may assume
that A(R + r/2) ' A(R − r/2) ' A(R), and so the remaining coupling
between radiation and matter is of the form

δHA·p = q

(
p1

m1
− p2

m2

)
·A(R).
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Then, in the case that one can write H0, a Hamiltonian for the dipole
without its coupling to radiation one can use p/m = ẋ = i[H0, x]/~, thus
giving:

H = H0 − i
q

~
[H0, r] ·A(R) +

∑
k,n=1,2

~ωka
†
kak + Vcoul. (1.37)

To further simplify, one can now reduce the number of states of the
dipoles that are considered; currently, there will be a spectrum of eigen-
states of H0, and transitions are induced between these states according to
〈ψf |r|ψi〉. Finally, restricting to only the two lowest atomic levels and to
a single radiation mode, one has a model of two-level systems (describing
matter) coupled to bosonic modes (describing radiation). This model is
known as the Jaynes-Cummings model:

H =
1
2

(
ε g(a+ a†)

g(a+ a†) −ε

)
+ ~ω0a

†a. (1.38)

Here we have introduced the energy splitting ε between the lowest two
atomic levels. In terms of the upper and lower states, |a〉 and |b〉, the
atom-photon coupling strength g can be written:

gk
2

= q 〈b|[H0, r]|a〉
1√

2ε0~ωkV
=

εek,n · dba√
2ε0~ωkV

, (1.39)

where dba = q 〈b|r|a〉 is the dipole matrix element. The matrix notation
represents the two levels of the dipole. We assumed H0 commutes with the
parity operator x → −x, and so the coupling to radiation appears only in
the off-diagonal terms in the two-level basis. The final approximation to
be discussed here, the rotating wave approximation, is appropriate when
ε ' ω0. Considering g as a perturbation, one can identify two terms:

∆co =
g

2

(
0 a
a† 0

)
, ∆cross =

g

2

(
0 a†

a 0

)
, (1.40)

where ∆co, the co-rotating terms, “conserve energy”; and ∆cross do not.
More formally, the effects of ∆cross give second order perturbation terms
like g2/(ω0 + ε), while ∆co give the much larger g2/(ω0 − ε).

1.5 Further reading

The discussion of quantisation in the Coulomb gauge in this chapter draws
heavily on the book by Cohen-Tannoudji et al. [6].

Questions

Question 1.1: Transverse delta function
Prove that Eq. (1.17) is the Fourier transform of Eq. (1.16). It is helpful

to consider a modified version of Eq. (1.17), with a factor exp(−mk2), and
take m→ 0 only at the end of the calculation.
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Question 1.2: Thomas-Reiche-Kuhn sum rule
Prove the equality:

[rα, [H0, rβ]] =
~2δαβ
m

, (1.41)

stating the most general form of H0 for which this is true.
From the expectation of this commutator, show that the dipole matrix

elements between any state a and all other states b obeys the relation:∑
b

|dab|2(Eb − Ea) =
∑
α

~2q2
α

2m
(1.42)

.



Lecture 2

Gauge transformations, and
quantum electrodynamics in
other gauges

In the previous section, we choose to work in the Coulomb gauge, adding
a total time-derivative to the Lagrangian which had the effect of removing
all dependence of the Lagrangian on A‖. This choice, which is equivalent
to choosing to impose A‖ ≡ 0 hugely simplified the subsequent algebra, but
is not strictly necessary. This chapter describes the consequences of mak-
ing other choices for A‖; such choices turn out to correspond to making a
unitary transformation in the quantum problem. In the special case of one
or a few localised systems of charge — where charges within a system are
separated by far less than the wavelength of light — a change of gauge to
the electric dipole gauge can simplify calculations, and provides further un-
derstanding of the relation between the instantaneous Coulomb interaction
and the photon-mediated terms in Eq. (1.34).

2.1 Freedom of choice of gauge and classical
equations

The classical Lagrangian in the previous section depended on the longitu-
dinal part of the vector potential only in the coupling between matter and
electromagnetic fields, Eq. (1.21)

Lem-matter = 2<−
∫
d3k [J(k) ·A∗(k)− ρ(k)φ∗(k)]

= 2<−
∫
d3k

[
J(k) ·A∗(k)− ρ(k)

(
ρ∗(k)
ε0k2

− ik
k2
· Ȧ∗(k)

)]
.

(1.21)

9
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Using the continuity equation ρ̇ + ik · J = 0 to eliminate J‖ = iρ̇/k and
breaking A into transverse and longitudinal parts yields

Le-m = 2<−
∫
d3k

[
J⊥(k) ·A∗⊥(k) +

i

k
ρ̇(k)A∗‖(k)− |ρ(k)|2

ε0k2
+
i

k
ρ(k)Ȧ∗‖(k)

]
.

(2.1)
It is therefore clear that taking any functional form for A‖ = g(A⊥) leads
to a change to the Lagrangian which may be written as:

δLgauge =
d

dt

{
2<−
∫
d3k

[
i

k
ρg∗ (A⊥)

]}
. (2.2)

The choice of A‖ is the choice of gauge; by choosing A‖ as a function of
A⊥, one can ensure, for example, that n ·A(r) = 0 for some fixed n. Since
such a condition corresponds only to an additional total derivative, the
action changes only by boundary terms, and so the equations of motion are
not affected. The definition of canonical momentum however does change.
Rewriting

δLgauge =
∂

∂t

{
2<−
∫
d3k

[
i

k
ρg∗ (A⊥)

]}
+ 2<−

∫
d3k

[
i

k
ρ
∂g∗ (A⊥)
∂A∗⊥

Ȧ⊥(k)∗
]
,

(2.3)
the canonical momentum thus becomes:

Π(k) =
∂L

∂Ȧ⊥(k)∗
= ΠCoulomb(k) +

iρ(k)
k

∂g∗ (A⊥)
∂A⊥

(2.4)

Quantum formalisms resulting from different gauges

Once we have found the canonical momentum in a given gauge, we can
quantise in this gauge by promoting the dynamical variables and their
canonical conjugates to operators, and imposing canonical commutation re-
lations. This means [A⊥n(k),Πn′(k′)] = i~δ(k− k′)δnn′ , with Π(k) being
the new canonical momentum in the new gauge: The canonical momentum
corresponds to a different combination of physical fields in different gauges.
If we write

F (A⊥, ρ) = 2<−
∫
d3k

[
i

k
ρg∗ (A⊥)

]
, (2.5)

then we may compare the two formalisms:

A⊥,new(k) =A⊥,old(k) (2.6)

Πnew(k) =Πold(k) +
∂F

∂A⊥,new(k)
. (2.7)

If we consider a state |π〉 which is an eigenstate of the old momentum,
Πold(k)|π〉 = λπ|π〉, then in the new formalism, this state obeys:

λπ|π〉 =
[
Πnew(k)− ∂F

∂A⊥,new(k)

]
|π〉 (2.8)

=
[
−i~ ∂

∂A⊥,new(k)
− ∂F

∂A⊥,new(k)

]
|π〉 (2.9)

= eiF (A⊥,ρ)/~
[
−i~ ∂

∂A⊥,new(k)

]
e−iF (A⊥,ρ)/~|π〉. (2.10)
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Hence, the eigenstates of the momenta of the old and new formalism are re-
lated by the unitary transform exp[−iF (A⊥, ρ)/~] — one can immediately
see that this relation of eigenstates of operators works for all canonical mo-
menta, as well as working for the position operators which commute with
the unitary transforms. It is worth stressing that the statement proved here
is that all gauge transforms correspond to unitary transforms of the quan-
tum formalism, and not the other way around. It is also worth highlighting
(as was implicit in the calculation), that this occurred because the gauge
transforms corresponded classically to canonical transformations of the La-
grangian (addition of a total time derivative), and that it is more generally
true that canonical transformations of classical dynamical systems corre-
spond to unitary transformations of the associated quantum problem.

Formal equivalence of gauges

Formally, since a gauge transformation corresponds to a unitary transfor-
mation, calculations of physical quantities in different gauges should exactly
match, i.e.〈

ψ(1)
∣∣∣O(1)

∣∣∣ψ(1)
〉

=
〈
ψ(1)

∣∣∣U †UO(1)U †U
∣∣∣ψ(1)

〉
=
〈
ψ(2)

∣∣∣O(2)
∣∣∣ψ(2)

〉
.

(2.11)
Despite this formal equivalence, there have been long and convoluted

arguments about gauge invariance in approximate methods. One particu-
larly dangerous feature of such transformations is that the “natural” iden-
tification of a bare and perturbation Hamiltonian can be different between
different gauges (this is true of the discussion below), and so eigenstates
of the bare Hamiltonian are not a gauge invariant quantity. Two general
solutions to such problems are

• To use a basis of states that correspond to eigenstates of a physical
(i.e. gauge invariant) operator, such as the mechanical momentum,
physical fields, and the total energy.

• To use only the formal equivalence, and demand a transformation of
states as well as of operators when switching between gauges.

2.2 Transformation to the electric dipole gauge

The preceeding working allows us to directly transform between two quan-
tum pictures, rather than needing to changes gauges classically and re-
quantize. As an illustration of this in a case where it is particularly clear,
this section describes the transformation to the electric dipole gauge for a
problem of two systems of localised charges, where each system is overall
neutral. We consider a hierarchy of scales, such that within a given system
all charges are within a distance l and l � λ, |RA −RB|, where RA,B are
the centres of mass of the two systems. This is illustrated in Fig. 2.1.

Since l � λ, we can approximate the electromagnetic fields as being
those at the centre of mass of each system. In the Coulomb gauge, this
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Figure 2.1: Two localised systems, consisting of charges which
are closely spaced in each system.

then can be written following the notation in Eq. (1.34) as:

H =
∑
α

1
2mα

[pα − qαA⊥(RA)]2 +
∑
β

1
2mβ

[pβ − qβA⊥(RB)]2

+
∑
k,n

ωk~a†kak + V AA
coul + V BB

coul + V AB
coul , (2.12)

in which the Coulomb interaction has been divided into parts limited to each
subsystem as well as a cross term. This cross term is instantaneous (as all
the Coulomb terms are), while the real physical interaction is retarded. To
recover this retardation it is however necessary to include the transverse
parts of the fields. From this point onwards we will set ~ = 1

Transformation of Hamiltonian

The unitary transformation that will simplify the results is of the form:

U = exp [idA ·A⊥(RA) + idB ·A⊥(RB)] , dA =
∑
α

qα(rα −RA),

(2.13)
in which we have introduced the dipole moments dA,B of the two sys-
tems. This transformation clearly commutes with the position operator,
and ought to commute with the transverse vector potential (this is shown
to be true explicitly below). However, it does not commute with pα nor
a†k, ak. One instead finds:

U †pαU = pα − i
∂

∂rα

(
i
∑
α

qα(rα −RA) ·A⊥(RA)

)

= pα + qαA⊥(RA)−

(
∂RA

∂rα

∑
α′

qα′

)
·A⊥(RA) +O

(
l

λ

)
.

(2.14)

In this, the term
∑

α qα = 0 due to neutrality of each subsystem, and the
higher order terms in l/λ are ignored due to the long wavelength approxi-
mation. Hence all that remains is U †pαU ≈ pα + qαA⊥(RA).
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For the photon annihilation operators no approximations are needed.
The unitary transformation can be rewritten as

U = exp

i∑
k,n

ên√
2ε0ωkV

·
[
dAe−ik·RA + dBe−ik·RB

]
a†k + H.c.

 , (2.15)

which has the form of a shift operator for the annihilation operators:

U †akU = ak + i
ên√

2ε0ωkV
·
[
dAe−ik·RA + dBe−ik·RB

]
(2.16)

From this we can reconfirm that the unitary matrix commutes with the
transverse vector potential,

A⊥(r) =
∑
k,n

ên√
2ε0ωkV

[
e−ik·ra†k + eik·rak

]
, (2.17)

hence,

U †A⊥(r)U = A⊥(r)

+
∑
k,n

iên
2ε0ωkV

[
ên · dAeik·(r−RA) + ên · dBeik·(r−RB) −H.c.

]
. (2.18)

It is clear that due to the antisymmetry of the sum under k ↔ −k the
sum vanishes, so A⊥(r) commutes with the transformation. Hence, the
transformed form of the Hamiltonian is given by:

H̃ = U †HU =
∑
α

p2
α

2mα
+
∑
β

p2
β

2mβ
+ V AA

coul + V BB
coul + V AB

coul

+
∑
k,n

ωk

a†kak +
∑

S=A,B

i
ên · dS√
2ε0ωkV

(
e−ik·RSa†k − e

ik·RSak

)
+

1
2ε0V

[
(ên · dA)2 + (ên · dB)2 + (ên · dA) (ên · dB) 2eik·(RA−RB)

]}
,

(2.19)

where the last line has relabelled the sum via k↔ −k.

Transformation of physical fields

To simplify this expression, we need two connected things:

• To identify the combination of photon operators that appears in the
second line as the light-matter coupling.

• To simplify the cross terms between the A and B systems.
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It is tempting to use the definition of the transverse electric field in the
old gauge,

E⊥(r) = i
∑
k,n

ên

√
ωk

2ε0V

[
e−ik·ra†k − e

ik·rak

]
, (2.20)

to identify the combination of operators, however this relation between
the physical operators and the annihilation operators is true only in the
Coulomb gauge, not the electric dipole gauge. Transforming this electric
field using Eq. (2.16) gives:

U †E⊥U = E⊥−
∑
k,n

ên
2ε0V

[
ên ·

[
dAeik·(r−RA) + dBeik·(r−RB)

]
+ H.c.

]
.

(2.21)

This sum is symmetric under k ↔ −k and so does not vanish. Instead
it can be identified in terms of the polarisation. Since the dipole matrix
element of system A is dA, we can write PA(r) = dAδ(r−RA); this places
the polarisation at the centre of charges, and is measured w.r.t a reference
state in which all the charges are at the centre of mass, i.e. ∀rα = RA. If
we then use the transverse delta function to find the transverse part of this
expression, we find that:

PA,⊥(r) =
1
V

∑
k,n

ên
[
ên · dAeik·(r−RA)

]
(2.22)

and hence:

i
∑
k,n

ên

√
ωk

2ε0V

[
e−ik·ra†k − e

ik·rak

]
= E⊥(r) +

P⊥(r)
ε0

=
D⊥(r)
ε0

(2.23)

This solves our first question; the second is also considerably simplified
when we note that the term:∑

k,n

1
ε0V

(ên · dA) (ên · dB) eik·(RA−RB) =

∫
d3r

ε0

 1
V

∑
k,n

ên
[
ên · dAeik·(r−RA)

] ·
 1
V

∑
k,n

ên
[
ên · dBeik·(r−RB)

]
=
∫
d3r

ε0
PA,⊥(r)PB,⊥(r). (2.24)

Thus, we can write:

H̃ =
∑
α

p2
α

2mα
+
∑
β

p2
β

2mβ
+ V AA

coul + V BB
coul + V AB

coul

+
∑
k,n

ωka
†
kak + D⊥(RA) · dA + D⊥(RB) · dB

+ ΣA
dipolar + ΣB

dipolar +
∫
d3r

ε0
PA,⊥(r)PB,⊥(r). (2.25)
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Instantaneous nature of interaction

To complete the simplification, it is necessary to write the cross-term in
the Coulomb interaction similarly to Eq. (2.24). The Coulomb interaction
arose by writing the longitudinal part of the electric field in terms of the
charge density. Inverting this procedure easily gives:

V AB
coul =

ε0

2

∫
d3r

[(
E‖,A(r) + E‖,A(r)

)2 −E‖,A(r)2 −E‖,A(r)2
]

(2.26)

= ε0

∫
d3rE‖,A(r) ·E‖,A(r) =

1
ε0

∫
d3rP‖,A(r) ·P‖,A(r). (2.27)

The last step made use of the reference distribution of charges; since this
distribution has no net charges (each system is neutral, and all charges
coincide), then ∇ ·D = 0, i.e. D‖ = 0, so E‖ = P‖/ε0. This allows us to
combine:

V AB
coul +

∫
d3r

ε0
PA,⊥(r)PB,⊥(r) =

∫
d3r

ε0
PA(r)PB(r) = 0 (2.28)

where the last line follows from the definition of the polarisation, which is
zero outside each region of charge.

Hence, the final Hamiltonian is:

H̃ =
∑
α

p2
α

2mα
+
∑
β

p2
β

2mβ
+ V AA

coul + V BB
coul + ΣA

dipolar + ΣB
dipolar

+
∑
k,n

ωka
†
kak + D⊥(RA) · dA + D⊥(RB) · dB. (2.29)

This transformation has therefore removed the instantaneous interac-
tion between the two systems; all interaction is now described by the quan-
tised D field. Since D‖ = 0, the transverse and total fields are equivalent,
hence the transverse D field is physical and retarded.

2.3 Electric dipole gauge for semiclassical
problems

The previous section showed the unitary transformation to the electric
dipole gauge for quantised radiation coupled to quantised matter. For
the simpler case of a single localised system, the transformation would be
U = exp[id ·A⊥(0)], yielding:

H̃ =
∑
α

p2
α

2mα
+ Vcoul + Σdipolar +

∑
k,n

ωka
†
kak + D⊥(0) · d. (2.30)

For comparison, this section describes the even simpler transformation
that applies when the radiation is assumed to be classical; i.e. it has no
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free dynamics, but rather the operator A⊥ is replaced by a time depen-
dent field corresponding to some incident radiation. In this case the initial
Hamiltonian is:

Hs.c. =
∑
α

1
2mα

[pα − qαA⊥(0, t)]2 + Vcoul. (2.31)

The gauge transformation is formally the same as before, but as now A⊥
is not an operator but a time-dependent field we must use the result:

i∂tU |ψ〉 = Ui∂t|ψ〉+ (i∂tU)|ψ〉 = HU |ψ〉 (2.32)

i∂t|ψ〉+ (U †i∂tU)|ψ〉 = U †HU |ψ〉 (2.33)

and so:
H̃ = U †HU − U †i∂tU. (2.34)

The transformation of pα is exact as in Eq. (2.14). Since A⊥ is a c-
number, it commutes with the unitary transformation, and so the final
result is:

H̃s.c. =
∑
α

p2
α

2mα
+ Vcoul − i∂t [id ·A⊥(0)]

=
∑
α

p2
α

2mα
+ Vcoul − d ·E⊥(0) (2.35)

Relating S-matrix elements in different gauges

In the semiclassical case, as well as the formal equivalence between gauges,
there are “less formal” relations that can be shown to hold. One example
arises if we consider a field A⊥(t) = A0λ(t) cos(ωt), where λ(t) is a function
that goes to 0 at ±∞, but λ(t) = 1 for t1 < t < t2, with smooth interpola-
tion between: Since this means U(t) = exp[iλ(t)d ·A0 cos(ωt)], it is clear

(t)λ

Figure 2.2: Form of λ(t) for S-matrix

that at long times U(t) = 1, and hence eigenstates in the two gauges are
coincident.

This allows us to consider the S-matrix:

Sab = 〈b| eiH0t2U(t2, t1)e−iH0t1 |a〉 . (2.36)

Since U = 1 at long times the bare Hamiltonian H0 is also the same between
the two gauges, so this S-matrix should be gauge invariant. Let us consider
its calculation perturbatively in the two gauges
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Calculation in A · p gauge

In the Coulomb gauge, the perturbation Hamiltonian (to first order in A0)
is given by:

Hint(t) = −
∑
α

pαqα
mα

·A0 cos(ωt). (2.37)

Using the result of time-dependent perturbation theory:

U(t2, t1) = 1− i
∫ t2

t1

dτe−iH0(t2−τ)Hint(τ)e−iH0(τ−t1) + . . . (2.38)

we have:

Sab = δab − i
∫ t2

t1

dτeiωbaτ 〈b|Hint(τ) |a〉 (2.39)

= δab + i

∫ t2

t1

dτeiωbaτ cos(ωt)A0 · 〈b|
∑
α

pαqα
mα

|a〉

= δab + i2π
δ(ωba + ω) + δ(ωba − ω)

2
A0 · 〈b| i

∑
α

[H0, rαqα] |a〉

= δab − π [δ(ωba + ω) + δ(ωba − ω)]ωbaA0 · 〈b|d |a〉 . (2.40)

In the last line we have used the fact that the bare Hamiltonian depends
only on pα via p2

α/2mα, allowing one to rewrite the matrix element of
momentum in terms of the dipole matrix element.

Calculation in E · r gauge

In the electric dipole gauge, the perturbation is instead

Hint(t) = −d ·E(t). (2.41)

where E(t) = −Ȧ(t) ≈ A0ω sin(ωt), and so starting from Eq. (2.39) we
have:

Sab = δab + i

∫ t2

t1

dτeiωbaτ sin(ωt)ωA0 · 〈b|d |a〉

= δab − π [δ(ωba − ω)− δ(ωba + ω)]ωA0 · 〈b|d |a〉 , (2.42)

where we have made the same resonant approximation as above. Although
functionally different, the two expressions do match, because ωba = ω is
ensured by the delta function. For a further example of this kind of equiv-
alence, see question 2.1.

2.4 Pitfalls of perturbation

The idea of writing the free Hamiltonian H0 is in fact rather subtle to define
correctly: Atoms are held together by electromagnetic forces, and as men-
tioned above, separation into transverse, photon mediated, and Coulomb
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terms leads to apparently non-retarded interactions. Further, H0 differs
between different gauges.

The question of most practical relevance is how the parameters in a
semi-phenomenological model of a coupled light-matter system should be
related to experimentally measured quantities.

2.5 Further reading

The majority of this chapter is also based on discussions in the book by
Cohen-Tannoudji et al. [6]. The subtlety mentioned briefly, about how
one can define a “free Hamiltonian” for atoms when the binding within an
atom is due to the electromagnetic field has been discussed in the context
of which gauge should be used in calculating off-resonant transitions. See
for example [7–9].

Questions

Question 2.1: Two-photon transitions
If we choose states |b〉, |a〉 such that 〈b|d |a〉 = 0, then the leading order

contribution to the transition comes from two photon processes. Assuming
a 6= b, the leading order contribution to the S-matrix can be written:

Sab = −
∫ t2

t1

dτ

∫ τ

t1

dτ ′eiωbcτeiωcaτ ′ 〈b|Hint(τ) |c〉 〈c|Hint(τ ′) |a〉 (2.43)

2.1.(a) Making the resonant approximation, show that the expressions
for Sab in the two gauges can be written as:

SA·p
ab = 2π

δ(ωba − 2ω)
4

∑
c

ωbcωca
ωca − ω

A0 · 〈b|d |c〉A0 · 〈c|d |a〉 (2.44)

SE·r
ab = 2π

δ(ωba − 2ω)
4

∑
c

ω2

ωca − ω
A0 · 〈b|d |c〉A0 · 〈c|d |a〉 (2.45)

2.1.(b) Prove the equivalence of these expressions by showing that:

D =
∑
c

ωbcωca − ω2

ωca − ω
· 〈b| di |c〉 · 〈c| dj |a〉 = 0 (2.46)

if 2ω = ωba.
[Hint: use the two-photon resonance condition to show that

D ∝
∑
c

(ωbc − ωca) · 〈b| di |c〉 · 〈c| dj |a〉 , (2.47)

then rewrite this sum in terms of the commutator [[H0, di], dj ].]



Lecture 3

One two-level system
coupled to photons: the
Jaynes-Cummings model

The aim of this first section is to discuss the interaction between a single
two-level system and various different configurations of photon fields. We
will begin by discussing the interaction with a semiclassical light field, then
consider a single quantised mode of light in an initially coherent state, and
finally consider a continuum of quantised modes. In future lectures we will
then consider combinations of these cases, to describe realistic cavity QED
systems, in which the cavity picks out a particular mode, but coupling to a
continuum of background modes also exists. Even in the case of a classical
applied field, the behaviour of a two-level system is not entirely trivial,
as the two-level system is non-linear, i.e. it does not have an harmonic
spectrum.

3.1 Semiclassical limit

On applying a classical light field to a two-level system, we can adapt
the Jaynes-Cummings model by neglecting the dynamics of the photon
field, and replacing the photon creation and annihilation operators with
the amplitude of the time-dependent classical field. This gives the effective
Hamiltonian:

H =
1
2

(
ε gλe−iω0t

gλeiω0t −ε

)
. (3.1)

We have made the rotating wave approximation, and hence only included
the positive/negative frequency components of the classical field in the rais-
ing/lowering operators for the two-level system. To solve this problem, and
find the time-dependent state of the two-level atom, it is convenient to
make a transformation to a rotating frame. In general, if

U =
(
eif(t) 0

0 e−if(t)

)
, (3.2)

19
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then

H → H̃ =
(
H11 + ḟ(t) H12e

−2if(t)

H21e
2if(t) H22 − ḟ(t)

)
, (3.3)

thus, in this case we use f = −ωt/2, giving:

H =
1
2

(
ε− ω gλ
gλ −(ε− ω)

)
. (3.4)

Since this transformation affects only the phases of the wavefunction, we can
then find the absorption probability by considering the time averaged prob-
ability of being in the upper state. The eigenvalues of Eq. (3.2) are ±Ω/2
where Ω =

√
(ε− ω)2 + g2λ2. Writing the eigenstates as (cos θ, sin θ)T ,

and (− sin θ, cos θ)T corresponding respectively to the ± roots (assuming
tan(θ) > 0). Substituting these forms, one finds the condition: tan(2θ) =
gλ/(ε − ω). This form is sufficient to find the probability of excitation. If
the two-level system begins in its ground state, then the time-dependent
state can be written as:(

ψ↑
ψ↓

)
= sin θ

(
cos θ
sin θ

)
e−iΩt/2 + cos θ

(
− sin θ

cos θ

)
eiΩt/2 (3.5)

Pex = |ψ↑|2 = |2 sin θ cos θ sin(Ωt/2)|2 =
[

1− cos(Ωt)
2

]
(gλ)2

(gλ)2 + (ε− ω)2
.

(3.6)
Thus, the probability of excitation oscillates at the Rabi frequency Ω =√

(ε− ω)2 + (gλ)2, and the amplitude of oscillation depends on detuning.
On resonance (ε = ω), one can engineer a state with |ψ↑| = |ψ↓| = 1/

√
2,

or a state with |ψ↑| = 1 by applying a pulse with a duration (gλ)t = π/2
or π respectively.

3.2 Single mode quantum model

Let us now repeat this analysis in the case of a quantised mode of radiation,
starting with the Jaynes-Cummings model in the rotating wave approxima-
tion.

H =
1
2

(
ε ga
ga† −ε

)
+ ω0a

†a. (3.7)

Rabi oscillations in the Jaynes-Cummings model

In the rotating wave approximation the total number of excitations Nex =
σz + a†a is a conserved quantity, thus if we start in a number state of the
light field:

|n, ↓〉 =
(a†)n√
n!
|0, ↓〉 , (3.8)

then the general state at later times can always be written:

|ψ(t)〉 = α(t) |n− 1, ↑〉+ β(t) |n, ↓〉 . (3.9)
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Inserting this ansatz in the equation of motion gives

i∂t

(
α(t)
β(t)

)
=
[(
n− 1

2

)
ω1 +

1
2

(
(ε− ω) g

√
n

g
√
n −(ε− ω)

)](
α(t)
β(t)

)
.

(3.10)
After removing the common phase variation exp[−i(n−1/2)ωt[, the general
solution can be written in terms of the eigenvectors and values of the matrix
in Eq. (3.10), and reusing the results for the semiclassical case, we have the
state(

α(t)
β(t)

)
= e−i(n−1/2)ωt

[
sin θe−iΩt/2

(
cos θ
sin θ

)
+ cos θeiΩt/2

(
− sin θ

cos θ

)]
,

(3.11)
and the excitation probability is thus:

Pex =
[

1− cos(Ωt)
2

]
g2n

g2n+ (ε− ω)2
(3.12)

where we now have tan(2θ) = g
√
n/(ε− ω) and Ω =

√
(ε− ω)2 + g2n.

Collapse and revival of Rabi oscillations

Restricting to the resonant case ε = ω, let us discuss what happens if the
initial state does not have a well defined excitation number. Since the oscil-
lation frequency depends on n, the various components of the initial state
with different numbers of excitations will oscillate at different frequencies.
We can therefore expect interference, washing out the signal. This is indeed
seen, but in addition one sees revivals; the signal reappears at much later
times, when the phase difference between the contributions of succesive
number state components is an integer multiple of 2π.

Let us consider explicitly how the probability of being in the excited
state evolves for an initially coherent state

|ψ〉 = e−|λ|
2/2 exp(λa†) |0, ↓〉 = e−|λ|

2/2
∑
n

λn√
n!
|n, ↓〉 . (3.13)

If resonant, the general result in Eq. (3.11) simplifies, as θ = π/4. Following
the previous analysis, the state at any subsequent time is given by:

|ψ〉 = e(−|λ|2+iωt)/2

×
∑
n

(λe−iωt)n√
n!

[
cos
(
g
√
nt

2

)
|n, ↓〉+ sin

(
g
√
nt

2

)
|n− 1, ↑〉

]
. (3.14)

Thus, the probability of being in the excited atomic state, traced over all
possible photon states, is given by

Pex =
∑
n

|〈n, ↑ |ψ〉|2 = e−|λ|
2
∑
n

|λ|2n

n!
sin2

(
g
√
nt

2

)
=

1
2
− 1

2
e−|λ|

2
∑
n

|λ|2n

n!
cos
(
g
√
nt
)
. (3.15)



22 LECTURE 3. JAYNES CUMMINGS MODEL

We consider the case λ� 1. In this case, one may see that the coefficients
|λ|2n/n! are sharply peaked around n ' |λ|2 by writing:

|λ|2n

n!
=

1√
2πn

exp[−f(n)], f(n) = n ln(n)− n− n ln(|λ|2), (3.16)

By differentiating f twice, one finds f ′(n) = ln
(
n/|λ|2

)
, f ′′ = 1/n, and

hence one may expand f(n) near its minimum at n = |λ|2 to give:

f(n = |λ|2 + x) ' −|λ|2 +
x2

2|λ|2
(3.17)

Using this in Eq. (3.15) gives the approximate result:

Pex '
1
2
− 1

2
√

2π|λ|2
<

{∑
m

exp
[
− m2

2|λ|2
+ igt

√
|λ|2 +m

]}
, (3.18)

where it is assumed that |λ|2 is large enough that the limits of the sum may
be taken to ±∞.

Three different timescales affect the behaviour of this sum. Concentrat-
ing on the peak, near m = 0, there is a fast oscillation frequency gλ, de-
scribing Rabi oscillations. Then, considering whether the terms in the sum
add in phase or out of phase, there are two time scales: collapse of oscilla-
tions occurs when there is a phase difference of 2π across the range of terms
|m| < σm contributing to this sum, i.e. when gTcollapse(

√
|λ|2 + σm−|λ|) =

π. Taking σm = |λ| from the Gaussian factor, this condition becomes
gTcollapse ' 2π. On the other hand, if the phase difference between each suc-
cessive term in the sum is 2π, then they will rephase, and a revival occurs,
with the condition gTrevival(

√
|λ|2 + 1− |λ|) = 2π, giving gTrevival = 4π|λ|.

Thus, the characteristic timescales are given by:

Toscillation '
1
g|λ|

, Tdecay '
1
g
, Trevival '

|λ|
g
. (3.19)

and the associated behaviour is illustrated in Fig. 3.1.
Let us now consider how this behaviour may be approximated ana-

lytically. The simplest approach might be to replace the sum over number
states by integration, however this would inevitably lose the revivals, which
are associated with the discreteness of the sum allowing rephasing. Thus,
it is necessary to take account of the discreteness of the sum, and hence the
difference between a sum and an integral. For this, we make use of Poisson
summation which is based on the result:∑

m

δ(x−m) =
∑
r

e2πirm ⇒
∑
m

f(m) =
∑
r

∫
dxe2πirxf(x). (3.20)

This allows us to replace the summation by integration, at the cost of
having a sum of final results, however in the current context this is very
helpful, as the final sum turns out to sum over different revivals. Applying
this formula, we may write Pex ' 1

2 [1−
∑

r <{Λ(r, |λ|, t)}] where

Λ(r, |λ|, t) =
∫

dx√
2π|λ|2

exp
[
2πirx− x2

2|λ|2
+ igt

(
|λ|+ x

2|λ|
− x2

8|λ|3

)]
(3.21)
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Figure 3.1: Collapse and revival of Rabi oscillations, plotted for
λ =
√

200.

Completing the square yields:

Λ(r, |λ|, t) =
eigt|λ|√
2π|λ|2

∫
dx exp

[
− 1

2|λ|2

(
1 +

igt

4|λ|

)
x2 + i

(
2πr +

gt

2|λ|

)
x

]
=

eigt|λ|√
2π|λ|2

exp

[
−|λ|

2

2
(2πr + gt/2|λ|)2

1 + igt/4|λ|

]

×
∫
dx exp

[
− 1

2|λ|2

(
1 +

igt

4|λ|

)(
x− i|λ|2 2πr + gt/2|λ|

1 + igt/4|λ|

)2
]

=
eigt|λ|√

1 + igt/4|λ|
exp

[
−|λ|

2

2
(2πr + gt/2|λ|)2

1 + igt/4|λ|

]
. (3.22)

From this final expression one may directly read off: the oscillation fre-
quency g|λ|; the characteristic time for the first collapse 2

√
2/g (by taking

r = 0 and assuming gt/|λ| is small); the delay between successive revivals
4π|λ|/g; and finally one may also see that the revival at gt = 4πr|λ| has
an increased width and decreased height compared to the initial collapse,
given by a factor

√
1 + π2r2 as is visible in figure 3.1.

3.3 Many mode quantum model — irreversible
decay

So far we have discussed a two level system coupled to a single mode, with
light described either classically or quantum mechanically. One important
difference between these situations is that when described classically, there
was stimulated absorption and stimulated emission (hence the periodic os-
cillation), but if the classical field had vanished, then there would have been
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no transition. For the quantum description, spontaneous emission also ex-
isted, in that the state |0, ↑〉 hybridises with the state |1, ↓〉, due to the +1
in the

√
n+ 1 matrix elements. We will now consider the effects of this +1

factor when we couple a single two level system to a continuum of radiation
modes.

Our Hamiltonian will remain in the rotating wave approximation, but
no longer restricted to a single mode of light, and so we have:

H = εSz +
∑
n,k

ωka
†
k,nak,n +

∑
k

gk,n
2

[
a†k,nS− + H.c.

]
(3.23)

where ωk = ck and
gk,n

2
=
εek,n · dba√

2ε0ωkV
. (3.24)

Wigner–Weisskopf approach

To study spontaneous emission, we start from the state |0, ↑〉, in which
there are no photons. The subsequent state can be written as:

|ψ〉 = α(t)|0 ↑〉+
∑
k

βk,n(t)|1k,n ↓〉, (3.25)

where |1k,n〉 contains a single photon in state k, n. Then, writing the
Schrödinger equations as:

i∂tα =
ε

2
α+

∑
k,n

gk,n
2
βk,n, i∂tβk,n =

(
− ε

2
+ ωk

)
βk,n +

gk,n
2
α, (3.26)

one may solve these equations by first writing α = α̃e−iεt/2, βk = β̃ke
i(ε/2−ωk)t,

and then formally solving the equation for β̃k, with the initial condition
βk(0) = 0, to give:

β̃k,n = −i
gk,n

2

∫ t

dt′ei(ωk−ε)t′α̃(t′). (3.27)

Substituting this into the equation for α gives:

∂tα̃ = −
∫ t

dt′
∑
k,n

∣∣∣gk,n
2

∣∣∣2 ei(ωk−ε)(t′−t)α̃(t′)

= −
∫ t

dt′
∫
dω

2π
Γ(ω)ei(ω−ε)(t

′−t)α̃(t′) (3.28)

where we have defined:

Γ(ω) = 2π
∑
k,n

∣∣∣gk,n
2

∣∣∣2 δ(ω − ωk,n) (3.29)

Before evaluating Γ, let us find the resultant behaviour, under the assump-
tion that Γ is a smooth function, meaning that Γ does not significantly vary
over the range ε ± Γ, i.e. dΓ/dω � 1. In this case (which corresponds to
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the Markov approximation, meaning a flat effective density of states) the
integral over ω in Eq. (3.28) becomes a delta function, so that:

∂tα̃ = −
∫ t

dt′Γ(ε)δ(t′ − t)α̃(t′) = −Γ(ε)
2
α̃(t) (3.30)

Thus, the probability of remaining in the excited state decays exponentially
due to spontaneous decay, with a decay rate Γ(ε) for the probability. The
approach used in this section is known as the Wigner–Weisskopf approach.

Effective decay rate

We have not yet calculated the effective decay rate appearing in the previous
expression. Let us now use the form of gk in Eq. (3.24) to evaluate Γ(ε).
Writing the wavevector in polar coordinates, with respect to the dipole
matrix element dab pointing along the z axis (see Fig. 3.2), we then have:

Γ(ε) = 2π
V

(2π)3

∫∫∫
dφdθ sin θk2dkδ(ck − ε) ε

2|dab|2

2ε0ckV

∑
n

(ẑ · êkn)2. (3.31)

θ

φ

θ

k
z

e

e

2

1

Figure 3.2: Directions of polarisation vectors in polar coordinates

From Fig. 3.2 it is clear that ẑ · êk2 = 0 and one may see that ẑ ·
êk1 = sin θ. For concreteness, the k direction and polarisations can be
parametrised by the orthogonal set:

k̂ =

 sin θ cosφ
sin θ sinφ

cos θ

 , êk1 =

 cos θ cosφ
cos θ sinφ
− sin θ

 , êk2 =

 − sinφ
cosφ

0

 .

(3.32)
Putting all the terms together, one finds:

Γ(ε) =
ε2|dab|2

(2π)22ε0

∫
dφ

∫
dθ sin3 θ

∫
ckcdk

c3
δ(ck − ε) =

1
4πε0

4|dab|2ε3

3c3
(3.33)
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This formula therefore gives the decay rate of an atom in free space, asso-
ciated with the strength of its dipole moment and its characteristic energy.

Further reading

The contents of most of this chapter is discussed in most quantum optics
books. For example, it is discussed in Scully and Zubairy [10], or Yamamoto
and Imamoğlu [11].

Questions

Question 3.1: Collapse and revival
Consider the “linear” model:

H = ωa†a+ εc†c+ g(a†c+ c†a). (3.34)

What is its spectrum? If one starts from a coherent state of photons,
exp(λa†)|0, 0〉, what is the expectation of occupation of the “atomic” mode
c after time t. Explain why there is no collapse.

Consider now the model [10, Sec. 6.1]:

H =
1
2

(
ε ga

√
a†a

g
√
a†aa† −ε

)
+ ω0a

†a. (3.35)

Once again, find the time evolution of the probability of being in an excited
state, and thus find the timescales for oscillation, collapse and revival in
this case. [Note that this problem is exactly solvable, no approximations
should be required].

Question 3.2: Noisy classical driving
Let us consider the problem in Eq. (3.1) perturbatively; i.e. to leading

order in gλ; for non-degenerate perturbation theory to be valid here, we
must for the moment assume we are away from resonance. Show that in
first order time-dependent perturbation theory, the probability of being in
the excited state initially grows as:

Pex(T ) = T

∫
dτX(t+ τ)X∗(t), X(t) =

gλ

2
ei(ω0−ε)t. (3.36)

[Hint: Find the standard time-dependent perturbation result for the am-
plitude in the excited state, then rewrite the amplitude squared to bring
out a factor of time delay T .]

Now, consider the case where in addition to the desired driving there is
some random field, eiω0t → eiω0t+η(t). If η(t) is a Gaussian random variable
with 〈η(t)〉 = 0, and 〈η(t)η(t′)〉 = Γ2δ(t− t′), show that the transition rate
now becomes

W =
Pex(T )
T

=
Γ2

2
g2|λ|2

(ε− ω0)2 + Γ2
2

(3.37)



3.A. FURTHER PROPERTIES OF COLLAPSE AND REVIVAL 27

3.A Further properties of collapse and revival

When considering collapse and revivals of the Jaynes-Cummings oscilla-
tions, we discussed only the probability of finding the atom in an excited
state. We can however understand more of where this collapse and re-
vival originates from by considering the entanglement between the two-
level system and the photon field. The entanglement is defined in terms of
S = −Tr(ρTLS ln ρTLS), where ρTLS is the reduced density matrix of the
two level system:

ρTLS =
∑
n

〈n|ψ〉〈ψ|n〉, (3.38)

summing over e.g. number states of the photon field. Using our previous
results for Rabi oscillations, the full state of the photon field can be written
as:

|ψ(t)〉 =
∑
n

αn(t)|n− 1, ↑〉+
∑
n

βn(t)|n, ↓〉. (3.39)

with (restricted to the resonant case):(
αn(t)
βn(t)

)
=

λn√
n!
e−|λ|

2/2

(
−i sin (g

√
nt/2)

cos (g
√
nt/2)

)
. (3.40)

In terms of these, the reduced density matrix will have the form:

ρTLS =
∑
n

(
|αn|2 α∗n+1βn
β∗nαn+1 |βn|2

)
=
(

1/2 + Z X + iY
X − iY 1/2− Z

)
. (3.41)

For a two dimensional density matrix, since the trace must be unity, by
normalisation, the eigenvalues (and hence the entanglement entropy) are
entirely determined by the determinant. In terms of the above parametrisa-
tion, the determinant is 1/4−R2 where R2 = X2+Y 2+Z2. If |R| = 1/2, the
determinant is zero, and so the eigenvalues are 1, 0, i.e. this is a pure state,
with no entanglement. If |R| = 0, then the determinant is 1/4, and the
eigenvalues are 1/2, 1/2, with maximum entanglement. Thus, by plotting
1/4− R2 we have a non-linear parametrisation of the entropy. The vector
R is the Bloch vector parametrisation of the density matrix, something we
will make much use of in subsequent lectures.

From the form of the diagonal matrix elements, and the sum in Eq. (3.15)
we have that 1/2 + Z = Pex and so

Z = −1
2

∑
r

<

{
eigt|λ|√

1 + igt/4|λ|
exp

[
−|λ|

2

2
(2πr + gt/2|λ|)2

1 + igt/4|λ|

]}
. (3.42)

This is non-zero only near the revivals, so if we consider what happens away
from the revivals (which is the majority of possible times), then we have
|R|2 = X2 + Y 2, which can be written as:

|R|2 =

∣∣∣∣∣∑
n

|λ|2nn!e−|λ|
2 λ

2
√
n+ 1

×
[
sin
(
gt

2
(
√
n+
√
n+ 1)

)
+ sin

(
gt

2
(
√
n−
√
n+ 1)

)]∣∣∣∣2 (3.43)
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In this expression, the sum and difference sine terms can be treated sepa-
rately. The first term, depending approximately on sin(gt

√
n) will behave

very similarly to the excitation probability, with the only difference being
this is the imaginary part, rather than the real part, of the complex expres-
sion. Thus, once again, away from revivals, this term is small. The last
term is however different. Expanding for large n, one has:

|R| '

∣∣∣∣∣∑
n

|λ|2nn!e−|λ|
2 λ

2
√
n+ 1

sin
(

gt

4
√
n

)
)∣∣∣∣∣

' 1
2

∣∣∣∣={exp
(
i
gt

4|λ|
− g2t2

8|λ|4

)}∣∣∣∣ , (3.44)

where the last line replace the sum by an integral (not worrying about re-
vivals of this discrete sum). This looks superficially similar to the excitation
probability, but the timescales are different — the oscillation timescale here
is t ∼ 4|λ|/g; this is the same timescale as the revivals of the excitation prob-
ability. Such a result makes sense — collapse of the excitation probability
occurred because of dephasing, i.e. decoherence, arising from entanglement
between the two level system and the photon field. The revival timescale
is thus connected to the period of the entanglement oscillations.
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Figure 3.3: Oscillations of the entanglement (top panel) and its
connection to collapse and revivals of the excitation probability
(bottom panel) in the case of λ = 30.



Lecture 4

Two level systems coupled
to many modes: Density
matrix description

The aim of this lecture is to repeat the physics discussed at the end of
the last lecture — i.e. the relaxation of a two-level system coupled to a
continuum of radiation modes — but to present it in the context of the
density matrix of the two-level system. This framework will then allow
us to consider other relaxation and decoherence processes, such as those
arising due to noise sources, or inhomogeneous broadening in an ensemble
of atoms. We will then illustrate the use of this approach by discussing the
behaviour of a two-level system illuminated by a coherent state of light, but
able to radiate into a continuum of modes. In this lecture we will study the
steady state of this system, and in subsequent lectures we will look at the
spectrum of emitted light, which will require knowing more about the full
time-evolution of the system. The formalism we develop here will be useful
also when we later consider the laser, and its more quantum mechanical
variants of single atom lasers and micromasers.

4.1 Density matrix equation for relaxation of
two-level system

We begin by considering again the problem of a two-level system coupled to
a continuum of radiation modes, which in the previous lecture we solved via
the Wigner-Weisskopf approach, of eliminating the Schrödinger equations
for the state of the radiation field. Let us now apply the same idea in a
more formal scheme, by eliminating the the behaviour of the continuum
modes in order to write a closed equation for the density matrix of the
system. If we define the system density matrix as the result of tracing over
all “reservoir” degrees of freedom, we can write an equation of motion for
this quantity as:

d

dt
ρS = −iTrR {[HSR, ρSR]} . (4.1)

29
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in which S means state of the system, R the reservoir (in this case, the
continuum of photon modes), and TrR traces over the state of the reservoir.
After removing the free time evolution of the reservoir and system fields, the
remaining system-reservoir Hamiltonian can be written in the interaction
picture as:

HSR =
∑
k

gk
2

(
σ−a†ke

i(ωk−ε)t + σ+ake
i(ε−ωk)t

)
. (4.2)

In general Eq. (4.1) will be complicated to solve, as interactions between
the system and reservoir lead to entanglement, and so the full density ma-
trix develops correlations. This means that the time evolution of the system
would depend on such correlations, and thus on the history of system reser-
voir interactions. However, the same assumptions as in the previous lecture
will allow us to make a Markov approximation, meaning that the evolution
of the system depends only on its current state — i.e. neglecting memory
effects of the interaction.

For a general interaction, there are a number of approximations which
are required in order to reduce the above equation to a form that is straight-
forwardly soluble.

• We assume the interaction is weak, so ρSR = ρS ⊗ ρR + δρSR, where
δρSR ' O(gk). Since ρS = TrR(ρSR), it is clear that TrR(δρSR) = 0,
however the result of TrR(HSRδρSR) may be non-zero. Such corre-
lations will be assumed to be small, but must be non-zero in order
for there to be any influence of the bath on the system. In order
to take account of these small correlation terms, generated by the
coupling, we use the formal solution of the density matrix equation
ρSR(t) = −i

∫ t
dt′[HSR(t′), ρSR(t′)] to write:

d

dt
ρS(t) = −TrR

{∫ t

0
dt′
[
HSR(t),

[
HSR(t′), ρSR(t′)

]]}
. (4.3)

We may now make the assumption of small correlations by assuming
that ρSR(t′) = ρS(t′)⊗ρR(t′), and that only the correlations generated
at linear order need be considered.

• We further assume the reservoir to be large compared to the system,
and so unaffected by the evolution, thus ρR(t′) = ρR(0). Along with
the previous step, this is the Born approximation.

• Finally, if the spectrum of the bath is dense (i.e. the spacing of energy
levels is small), then the trace over bath modes of the factors eiωkt

will lead to delta functions in times. This in effect means that we
may replace ρS(t′) = ρS(t). This is the Markov approximation.

One thus has the final equation:

d

dt
ρS(t) = −TrR

{∫ t

0
dt′
[
HSR(t),

[
HSR(t′), ρS(t)⊗ ρR(0)

]]}
. (4.4)
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To evaluate the trace over the reservoir states, we need the trace of
the various possible combinations of reservoir operators coming from HSR.
These will involve pairs of operators ak, a

†
k. Using cyclic permutations,

these trace terms can be written as thermal average 〈X〉 = TrR(ρRX). For
bulk photon modes, the relevant expectations are:〈

akak′
〉

=
〈
a†ka
†
k′

〉
= 0,

〈
a†kak′

〉
= δkk′nk,

〈
aka
†
k′

〉
= δkk′(nk + 1).

(4.5)
In these expressions we have assumed nk 6= 0, i.e. we have allowed for
a thermal occupation of the photon modes. The results of the previous
lecture assumed an initial vacuum state, and thus nk = 0.

With these expectations, we can then write the equation of motion for
the density matrix explicitly, writing ξk = exp[i(ωk − ε)(t− t′)], to give:

d

dt
ρS(t) = −

∑
k

∣∣∣gk
2

∣∣∣2 ∫ t

0
dt′
[(
σ−σ+nkξk + σ+σ−(nk + 1)ξ∗k

)
ρs

−
(
σ−ρσ+(nk + 1) + σ+ρσ−nk

)
(ξk + ξ∗k)

+ρs
(
σ−σ+nkξ

∗
k + σ+σ−(nk + 1)ξk

)]
. (4.6)

In this expression, the first term in parentheses comes from the expres-
sion TrR [HSR(t)HSR(t′)ρSR], the second comes from the conjugate pair
TrR [HSR(t)ρSRHSR(t′)] and t ↔ t′ [hence (ξk + ξ∗k)], and the final term
comes from TrR [ρSRHSR(t′)HSR(t)].

At this point, we can now simplify the above expression by using the
assumed flat density of states of the photon modes, so that just as in the
Wigner-Weisskopf approach, we may write:∑

k

∣∣∣gk
2

∣∣∣2 ξk = Γδ(t− t′),
∑
k

∣∣∣gk
2

∣∣∣2 nkξk = Γn̄δ(t− t′). (4.7)

Here we have assumed that not only is the density of states flat, but that
also nk is sufficiently flat, that we might write an averaged occupation n̄.
Such an approximation is only valid at high enough temperatures — we
will discuss this in some detail in a few lectures time.

d

dt
ρS(t) =− Γ

2
n̄
(
σ−σ+ρS − 2σ+ρSσ

− + ρSσ
−σ+

)
− Γ

2
(n̄+ 1)

(
σ+σ−ρS − 2σ−ρSσ+ + ρSσ

+σ−
)

(4.8)

The factor of 1/2 here comes from the regularised half integral of the delta
function. The two lines in this expression correspond to stimulated absorp-
tion (which exists only if n̄ > 0), and leads to excitation of the two-level
system, and to emission (both stimulated and spontaneous). If n̄ = 0, only
emission survives, and the results of the previous lecture are recovered for
the relaxation to equilibrium.

One can see the behaviour from this equation most clearly by writing
the equations for the diagonal components:

∂tρ↑↑ = −Γ
2
n̄ (−2ρ↓↓)−

Γ
2

(n̄+ 1) (2ρ↑↑) = −∂tρ↓↓ (4.9)
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Then, using ρ↓↓ = 1 − ρ↑↑, one may find the steady state probability of
excitation is given by:

0 = Γ [n̄(1− ρ↑↑)− (n̄+ 1)ρ↑↑] → ρ↑↑ =
n̄

2n̄+ 1
. (4.10)

This formula is as expected, such that if one uses the Bose-Einstein occupa-
tion function for the photons, n̄ = [exp(βε)−1]−1, the excitation probability
of the two-level system is the thermal equilibrium expression.

Equations of motion with coherent driving

As a slightly less trivial example of the effect of the bath, let us now turn
to the combination of coherent driving and decay. We will assume from
hereon that the reservoir photon modes are empty 1. The evolution of the
density matrix is then controlled by:

∂tρ = −i [H, ρ]− Γ
2
(
σ−σ+ρS − 2σ+ρSσ

− + ρSσ
−σ+

)
(4.11)

where H describes the coherent, Hamiltonian dynamics, which we will take
to be given by:

H = εσz +
gα

2
e−iωtσ+ + H.c.. (4.12)

One may then write out the equations of motion for each component ex-
plicitly, giving

∂tρ↑↑ = −i
[ ε

2
ρ↑↑ +

gα

2
e−iωtρ↓↑ − ρ↑↓

gα

2
eiωt − ρ↑↑

ε

2

]
− Γρ↑↑, (4.13)

∂tρ↑↓ = −i
[ ε

2
ρ↑↓ +

gα

2
e−iωtρ↓↓ − ρ↑↑

gα

2
e−iωt − ρ↑↓

(
− ε

2

)]
− Γ

2
ρ↑↓.

(4.14)

These two equations are sufficient, since the unit trace property of a density
matrix implies ρ↓↓ = 1 − ρ↑↑, and the off diagonal elements are complex
conjugate of one another by the Hermitian structure of the density matrix.
To solve these equations, it is convenient to first go to a rotating frame,
so that one writes ρ↑↓ = Pe−iωt, and secondly to introduce the inversion,
Z = (ρ↑↑ − ρ↓↓)/2. In terms of these variables, one has:

∂tZ = −igα
2

(P ∗ − P )− Γ
(
Z +

1
2

)
(4.15)

∂tP = i(ω − ε)P + i
gα

2
2Z − Γ

2
P. (4.16)

To further simplify, we may separate the real and imaginary parts of P =
X + iY , and write ∆ = ω− ε for the detuning of the optical pump, so that
one has the three coupled equations:

1This limit is frequently relevant in cavity quantum Electrodynamics experiments,
since the confined photon modes start at energies of the order of 1eV∼ 104K, so the
thermal population of such photon modes is negligible.
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∂tX = −∆Y − Γ
2
X (4.17)

∂tY = +∆X + gαZ − Γ
2
Y (4.18)

∂tZ = −gαY − Γ
(
Z +

1
2

)
. (4.19)

These are Bloch equations for the Bloch vector parametrisation of the den-
sity matrix (in the rotating frame):

ρ =
(

1
2 + Z X − iY
X + iY 1

2 − Z

)
. (4.20)

The three terms, ∆, gα,Γ correspond to: rotation about the Z axis (i.e.
phase evolution); rotation about the X axis (i.e. excitation — nb the ob-
servation that the rotation rate is gα, so a duration gαt = π would lead to
the inverted state); and Γ causes the length of the Bloch vector to shrink.

As noted in the appendix to lecture 3, for a two level system, the eigen-
values are directly given by the determinant of the density matrix. Hence,
the entanglement entropy, describing the decoherence of the system due to
its entanglement with the reservoir, depends monotonically on the length
of the Bloch vector, X2 + Y 2 + Z2.

Before solving Eq. (4.17–4.19), we will first consider other kinds of de-
phasing that may affect the density matrix evolution, leading to a gen-
eralised version of these equations, allowing for both relaxation and pure
dephasing.

4.2 Dephasing in addition to relaxation

In addition to relaxation, where excitations are transfered from the sys-
tem to the modes of the environment, pure dephasing is also possible, in
which the populations are unaffected but their coherence is reduced. In
considering this kind of dephasing, it is useful to also broaden our view
from considering a single two level system, to describing measurements on
an ensemble of many two level systems. For the moment we will assume
that even if there are many two level systems, they all act independently.
As such, the expectation of any measurement performed on this ensemble
can be given by:

〈X〉 =
∑
i

Tr(ρiX) = Tr(ρ̄X), where ρ̄ =
∑
i

ρi. (4.21)

We thus have two types of decoherence one may consider:

• Broadening within a two-level system, coming from time dependent
shifts of energies (and possibly also coupling strengths). A variety of
sources of such terms exist; examples include collisional broadening
of gaseous atoms, where the rare events in which atoms approach
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each other lead to shifts of atomic energies. In solid state contexts,
motions of charges nearby the artificial atom can also lead to time
dependent noise.

• Inhomogeneous broadening, where the parameters of each two-level
system vary, and so off-diagonal matrix elements, involving time de-
pendent coherences, are washed out in ρ̄. This is particularly an issue
in solid state experiments, where the two-level systems may involves
the dimensions of a fabricated or self-assembled artificial atom, and
these dimensions may vary between different systems.

To describe both such effects together, we consider adding noise,

ε→ ε+ η(t). (4.22)

This noise will then lead to a decay of the off diagonal correlations, via:

P (t)→ P (t)
〈

exp
(
i

∫ t

0
η(t′)dt′

)〉
(4.23)

We will take 〈η(t)〉 = 0, and two distinct limits for the correlations of η.

Fast noise limit

In order to extract a tractable model of time-dependent noise, the simplest
limit to consider is that η(t) has a white noise spectrum, i.e. it is Gaussian
correlated with:

〈η(t)η(t′)〉 = 2γ0δ(t− t′). (4.24)

This assumption is equivalent to assuming that the noise is “fast”, i.e. that
any correlation timescale it does possess is sufficiently short compared to
the dynamics of the system that it may be neglected.

With this assumption of instantaneous Gaussian correlations, one may
then expand the exponential in Eq. (4.23) and write:

P (t)→P (t)
〈

1 + i

∫ t

0
dt′η(t′)− 1

2!

∫∫ t

0
dt′dt′′η(t′)η(t′) + . . .

〉
=P (t)

[
1− 2γ0

2!

∫ t

0
dt′ +

(2γ0)2

4!
3
(∫ t

0
dt′
)2

+ . . .

]
= P (t)e−γ0t

(4.25)

with the combinatoric factors coming from the number of possible pairings
in the Wick decomposition of 〈ηn〉.

This noise thus leads to an enhanced decoherence rate for the off di-
agonal terms, so that Γ/2 should be replaced by 1/T2 = (Γ/2) + γ0 in
the density matrix equations. One may equivalently define the relaxation
time 1/T1 = Γ. In general T2 < T1, as dephasing is faster than relaxation,
however the factors of two in the above mean that the strict inequality is
T2 < 2T1, with equality holding when there is only relaxation.
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The Bloch equations are thus given by:

∂tX = −∆Y − 1
T2
X (4.26)

∂tY = +∆X + gαZ − 1
T2
Y (4.27)

∂tZ = −gαY − 1
T1

(
Z +

1
2

)
. (4.28)

Static limit (inhomogeneous broadening)

To describe inhomogeneous broadening, η should represent the system-
dependent variation of energies, and should have no time dependence. The
same behaviour is also relevant if time-dependent noise terms vary slowly
on the timescale of an experiment. (For example, slow noise may arise
from a nearby impurity have multiple stable charging states, so that the
charge environment can take multiple different values; if the charging and
discharging of this impurity is slow compared to the experiment, this energy
shift will effectively give inhomogeneous broadening when averaged over
multiple experimental shots.)

For this case η is static, but randomly distributed, and Eq. (4.23) be-
comes:

P (t)→ P (t)
∫
dηp(η)eiηt. (4.29)

If we consider a Lorentzian probability distribution for η with width γ1, i.e.
p(η) = 2γ1/(γ2

1 + η2), then one finds P (t)→ P (t) exp(−γ1|t|).
If one has both noise terms as in the previous section, and inhomoge-

neous broadening, one may then distinguish T2 as defined above, and T ∗2 ,
where 1/T2 = (Γ/2) + γ0 + γ1.

Distinguishing T2 and T ∗2

Since both γ0 and γ1 lead to decay of the coherence functions, a simple
experiment measuring coherence will see the lifetime T ∗2 . However, the
dynamics of each individual two level system remains coherent for the longer
timescale T2. Such extra coherence can easily be seen in any sufficiently
non-linear measurement. An example of how the difference of T2 and T ∗2
can be measured is given by photon echo, illustrated in Fig. 4.1.
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Figure 4.1: Cartoon of photon-echo experiment, which removes
dephasing due to inhomogeneous broadening, leaving only true
dephasing rate to reduce intensity of revival.
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From the Bloch equations, Eq. (4.26–4.28), it is clear that a resonant
pulse with duration gαt = π/2 brings the Bloch vector to the equator.
From there, inhomogeneous broadening means that (in a rotating frame at
the mean frequency) the Bloch vectors for each individual two-level system
start to spread out. However, by applying a second pulse with gαt = π,
a π rotation about the X axis means that whichever Bloch vector spread
at the fastest rate is now furthest from the Y axis, and the subsequent
evolution sees the vectors re-converge. At the final time, the coherence of
the resulting pulse will have been reduced by γ0 and Γ, but γ1 will have
had no effect.

4.3 Power broadening of absorption

Having developed this formalism, we may now use this to re-examine the
question we started the previous lecture with — what is the effect of shining
classical light on a two-level atom, but now accounting for decay. Whereas
in the previous lecture, the absence of decay meant that the result was
Rabi oscillations, with decay a steady state is eventually found. Looking
for steady state solutions of Eq. (4.26–4.28) one finds from the equations
for X and Z that:

Y =
−1
gαT1

(
Z +

1
2

)
, X = −∆T2Y =

∆T2

gαT1

(
Z +

1
2

)
. (4.30)

Substituting these into the equation for Y , and recalling Pex = Z + 1/2,
gives:

0 = Pex

[
∆

∆T2

gαT1
+

1
T2

1
gαT1

+ gα

]
− gα

2
(4.31)

After re-arranging, one then finds:

Pex =
1
2

T1T2(gα)2

(T2∆)2 + 1 + T1T2(gα)2
=

1
2

(T1/T2)(gα)2

∆2 + [1 + T1T2(gα)2] /T 2
2

(4.32)

The addition of damping to the equations of motion has thus had a
number of important consequences:

• It is responsible for a steady state existing at all (but note that this
steady state is in a frame rotating at the pump frequency ω, so the
physical coherence is time dependent.)

• It gives a finite width to the resonance, even at weak pump powers
— in the Hamiltonian case, as gα → 0, the width of the resonance
peak vanished.

• It modifies the overall amplitude at resonance, by a factor depending
on the power, such that at gα→ 0, there is no response.

One feature of this absorption probability formula that can be remarked
on is that the linewidth depends on the intensity of radiation. This is
a consequence of the nonlinearity implicit in a two-level system. Such
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dependence is not so surprising given that in the Hamiltonian dynamics,
the resonance width already depended on the field strength. One may note
that if one considered an harmonic atomic spectrum, rather than a two-level
atom, no such broadening would be seen (see question 4.2).
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Figure 4.2: Power broadening of absorption — probability of
excitation vs atom-photon detuning for increasing field strength.

4.4 Further reading

Once again, the contents of this chapter can be found in most standard
quantum optics books, e.g.[10, 12]. The discussion of the resonance fluo-
rescence problem in particular can be found in chapter 4 of Meystre and
Sargent III [12].

Questions

Question 4.1: Fast noise via density matrix equations
As another way to consider fast noise terms, consider interaction be-

tween the two-level system and a bath of radiation modes given by the
interaction picture coupling:

HSR =
∑
n

σzζn

(
Bne

−iωnt +B†ne
iωnt
)

(4.33)

where Bn are the quantised modes of a field whose field strength shifts the
energies of the two-level system.

4.1.(a) By making the Born-Markov approximation, show that this leads
to a density matrix equation of the form:

∂tρ|noise = −γ0

(ρ
2
− 2σzρσz

)
, (4.34)

and determine how γ0 depends on the temperature of the reservoir if the
reservoir follows a thermal Bose-Einstein distribution.
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4.1.(b) Show that this describes pure dephasing, i.e. it has no effect on
the diagonal elements of the density matrix, and leads to a decay of the
off-diagonal terms ∂tρ↑↓ = −γ0ρ↑↓.

Question 4.2: Absence of power broadening for an harmonic os-
cillator

Consider an harmonic oscillator mode Hsys = εb†b, coupled to a contin-
uum of radiation modes via the interaction picture Hamiltonian:

HSR =
∑
k

gk
2

(
ba†ke

i(ωk−ε)t + b†ake
i(ε−ωk)t

)
. (4.35)

4.2.(a) Show that (for an empty bath) this leads to the density matrix
equation of motion:

∂tρ = −Γ
2

(
b†bρ− 2bρb† + ρb†b

)
(4.36)

4.2.(b) Now consider adding the Hamiltonian dynamics describing pump-
ing by a coherent field, with H = (gα/2)(b†e−iωt + H.c.) + εb†b. Determine
the density matrix equation equation of motion in the Fock basis (i.e. num-
ber state basis).

4.2.(c) Show that the ansatz:

ρnm ∝
1√
n!m!

(
−igα/2
−i∆ + Γ/2

)n( igα/2
i∆ + Γ/2

)m
(4.37)

satisfies this equation of motion.

4.2.(d) From the normalised density matrix, find the average excitation
probability, and show that there is no power broadening.



Lecture 5

Resonance Fluorescence

At the end of the last lecture, we found the steady state excitation proba-
bility for a two-level system pumped by a coherent light field. This steady
state emerged due to the competition between coherent pumping, and in-
coherent decay into the continuum of radiation modes. The aim of this
lecture is to discuss the spectrum of this fluorescence, when the atom is
driven near resonance. This is intended both as an illustration of applying
the density matrix equation of motion approach to more complex problems,
and also to reveal further aspects of the behaviour of a two-level system.

5.1 Spectrum of emission into a reservoir

Our aim is to calculate the spectrum of the emission into the continuum
of photon modes. Formally, the spectrum of radiation is given (via the
Wiener-Khintchine theorem, applicable to a stationary process, which ours
is) by:

I(ν) =
∫ ∞
−∞

eiνt〈E+(t)E−(0)〉 = 2<
[∫ ∞

0
eiνt〈E+(t)E−(0)〉

]
(5.1)

where we have divided:

E(t) = E+(t) + E−(t), E−(t) =
∑
k

Ekak,n(t)en,k, (5.2)

with Ek =
√
ωk/2ε0V . The first challenge is to write the time dependent

reservoir operators in terms of system operators. If we work in the Heisen-
berg picture, then this is straightforward, the interaction Hamiltonian was:

HSR =
∑
k

gk
2

(
σ−a†ke

i(ωk−ε)t + σ+ake
i(ε−ωk)t

)
. (5.3)

and so the solution to the Heisenberg equation for ak(t) can be written as:

ak(t) =
gk
2

∫ t

dt′ei(ωk−ε)(t′−t)σ−(t′) + ak(−∞). (5.4)

39
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We will neglect second term ak(−∞), since we assume the state at t = −∞
to be a vacuum, i.e. the only photons are those coming from the atom. In
this case we may write:

E−(t) =
∫ t

dt′
∑
k

Ekgk
2

ei(ωk−ε)(t′−t)σ−(t′)en,k, (5.5)

Because (at least near resonance) Ek ∝ gk the sum in the above expression
is Markovian as in the previous lecture, and so we may write E−(t) ∝ σ−(t),
hence up to an overall constant, we have:

I(ν) ∝ 2<
[∫ ∞

0
eiνt〈σ+(t)σ−(0)〉

]
. (5.6)

This reduces the problem to that of finding a two-time correlation func-
tion of the open quantum system. This is however something we have not
yet calculated — the density matrix completely describes single time cor-
relation functions, but in general more knowledge is required to find the
correlation of operators at two different times. However, for Markovian
baths it turns out that it is possible to relate this two-time correlation to
the density matrix evolution via the quantum regression theorem.

5.2 Quantum regression “theorem”

The quantum regression theorem can be stated in terms of the time evolu-
tion of single-time correlation functions, governed by:

〈B(t+ τ)〉 =
∑
i

αi(τ)〈Bi(t)〉, (5.7)

where Bi(t) is some complete set of operators, and the functions αi(τ) solve
the averaged equations of motion for 〈Bi(t)〉. Then, the theorem states that
one can write:

〈A(t)B(t+ τ)C(t)〉 =
∑
i

αi(τ)〈A(t)Bi(t)C(t)〉, (5.8)

Note that ordering is important, as A,Bi, C are non-commuting operators.
In order to prove the theorem, it is first necessary to state more explore

further what is implied by the Markovian approximation.

Significance of the Markovian approximation

Formally stated, a Markovian system is one where the future evolution is
governed by the current state, and not by any history of the system. In the
current context, current state means the state of the system, not including
the baths. Thus, the assumption is that one can write an equation of
motion for the system density matrix that depends only on the current
value of the system density matrix. Therefore, the baths must have no
memory of previous states of the system.
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Generically, without the Markovian approximation, the equation of mo-
tion of the system density matrix could be written as

dρS(t)
dt

= −i[HS , ρS(t)] +
∫ t

−∞
dt′Γ(t− t′)ρS(t′). (5.9)

The term Γ(t− t′) describes how the state of the bath influences the system
at time t, and depends on the state of the system at the earlier time t′. The
Markovian approximation is that Γ(t − t′) = Γδ(t − t′). If one describes
the bath by a sum over many independent modes, these delta correlated
response functions imply a dense spectrum of bath modes; this is what was
used in Eq. (4.7).

There is another consequence of the Markovian limit, which was also
used earlier in Eq. (4.4). The full evolution really depends on ρSR; validity
of the Markovian approximation then requires that the state of the system
is sufficiently described by ρS = TrRρSR. This means that correlations
between the system and the reservoir must be unimportant, and so it is
sufficient to write ρSR(t) = ρS(t) ⊗ ρR(t). It is this statement, as we see
next, that implies the quantum regression theorem.

Under what physical conditions is the Markovian approximation a good
description of a real system? Firstly, to have truly delta correlated noise
requires a flat spectrum of the baths, as we have already assumed. However,
a flat spectrum is only required for the bath modes that couple almost
resonantly to the system (i.e. |ωj − ω| ≤ Γ). If one considers a reservoir
which is not in its vacuum state — i.e. with some thermal occupation —
then a Markovian description of the system requires that not only is the
density of states flat, but that we may also approximate:∑

k

nk

∣∣∣gk
2

∣∣∣2 ei(ωk−ω)t = n̄Γδ(t).

i.e. we require that nk varies slowly for over the range of k for which |ωj −
ω| ≤ Γ; e.g. for a thermal distribution, we require T � Γ. This is clearly
always an approximation; the consequences of this approximation will be
investigated further in the next lecture.

Proof of regression theorem

The Markovian approximation implies that the evolution of single-time
expectations can be written as follows, in terms of the unitary evolution
U(τ) of system and reservoir:

〈B(t+ τ)〉 = TrSTrR
(
U †(τ)B(t)U(τ)ρS(t)⊗ ρR(t)

)
= TrS

[
B(t)TrR

(
U(τ)ρS(t)⊗ ρR(t)U †(τ)

)]
= TrS

[
B(t)TrR

(
ρS(t+ τ)⊗ ρR(t+ τ)

)]
. (5.10)

Here we made use of the cyclic property of the trace, and the relation
between evolution of density matrices and that of Heisenberg operators. In



42 LECTURE 5. RESONANCE FLUORESCENCE

an analogous way, the two-time expectation evolves according to:

〈A(t)B(t+ τ)C(t)〉 = TrSTrR
(
A(t)U †(τ)B(t)U(τ)C(t)ρS(t)⊗ ρR(t)

)
= TrS

[
B(t)TrR

(
U(τ) [C(t)ρS(t)A(t)]⊗ ρR(t)U †(τ)

)]
= TrS

[
B(t)TrR

(
[CρSA] (t+ τ)⊗ ρR(t+ τ)

)]
.

(5.11)

Thus, the only difference between the right hand sides of Eq. (5.10) and
Eq. (5.11) is to replace the initial system density matrix ρS with the product
CρSA. However, in the Markovian approximation, we know that Eq. (5.10)
can be solved using Eq. (5.7), for any initial density matrix. Thus, one can
use this solution to give

〈A(t)B(t+ τ)C(t)〉 =
∑
i

αi(τ)〈Bi(t)〉
∣∣∣
ρs(t)→C(t)ρS(t)A(t)

=
∑
i

αi(τ)TrS
[
Bi(t)C(t)ρS(t)A(t)

]
=
∑
i

αi(τ)TrS
[
A(t)Bi(t)C(t)ρS(t)

]
(5.12)

which is the desired result in Eq. (5.12).
Thus, to find a two-time correlation in practise, the scheme is this: find

the general time-dependent solution of one of the operators, and how it
depends on initial expectation values — find the explicit form of Eq. (5.7),
and then insert the second operator(s) in these initial expectations.

5.3 Resonance fluorescence spectrum

From the quantum regression theory, we now have that:

I(ν) ∝ 2<
[∫ ∞

0
eiνt Tr

[
σ+ρ(t)

]∣∣
ρ(t=0)=σ−ρ0

]
, (5.13)

i.e. we should solve the density matrix equation of motion to find ρ(t) given
the initial condition σ−ρ0, where ρ0 is the equilibrium density matrix.

Since the equation of motion for the density matrix is a first order
differential equation, ∂tρ = M [ρ], where M is a linear super-operator, we
can easily solve by Laplace transforming to give:

M [ρ(s)]− sρ(s) = −σ−ρ0, (5.14)

where the right hand side encodes the initial conditions. From the Laplace
transform ρ(s), the Fourier transform corresponding to the intensity spec-
trum is then given by:

I(ν) ∝ 2<
{

Tr
[
σ+ρ(s = −iν + 0)

]}
. (5.15)
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Let us now specify the various parts of this for the case of resonance
fluorescence, i.e. ∆ = ω − ε = 0. WE will work in the rotating frame as in
the previous lecture. The steady state condition then becomes:

ρ0 =
1

2[1 + T1T2(gα)2]

(
T1T2(gα)2 iT2(gα)
−iT2(gα) 2 + T1T2(gα)2

)
(5.16)

(making use of X = 0 and Y,Z as calculated in the previous lecture.)
The important part of the spectrum however comes from the super-

operator in Eq. (5.14). If we write density matrices as a vector:

ρ =
(
ρ↑↑ ρ↓↑
ρ↑↓ ρ↓↓

)
→ ρ =


ρ↑↑
ρ↓↑
ρ↑↓
ρ↓↓

 , (5.17)

then in this four dimensional space, the super-operator can be written as a
4× 4 matrix, following Eq. (4.15)

M =


−1/T1 −igα/2 igα/2 0
−igα/2 −1/T2 0 igα/2
igα/2 0 −1/T2 −igα/2
1/T1 igα/2 −igα/2 0

 . (5.18)

One can thus find the full density matrix as:

I(ν) ∝ −2<

(0 0 1 0)[M − (−iν + 0+)1]−1


0
0

T1T2(gα)2

+iT2(gα)


 . (5.19)

When inverting the 4× 4 matrix, there will in general be four poles. How-
ever, because the density matrix evolution is trace-preserving, one of these
poles will necessarily be at zero, corresponding to the conserved quantity.
The corresponding eigenvalue will be the steady state (the trace-preserving
property ensures that the steady state is non-trivial). Since we know that
in the steady state there is a non-zero polarisation, the weight of this zero
pole will not in general vanish. This means there is a delta-function peak in
the spectrum. Such a peak describes the elastic scattering of pump photons
into the radiation modes.

The remainder of the poles will describe inelastic scattering. To find
these poles, we should solve:

0 = Det [M + iν] = iν

(
iν − 1

T2

)[(
iν − 1

T2

)(
iν − 1

T1

)
+ (gα)2

]
.

(5.20)
This has the zero mode as discussed above, and three other poles:

ν = − i

T2
, ν = −i

(
1

2T1
+

1
2T2

)
±

√
(gα)2 −

(
1

2T1
− 1

2T2

)2

. (5.21)
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The first of these will describe a broadened resonance near elastic scattering
(remembering that this is in the rotating frame). The second term describes
(at large enough α), a resonance shifted by ±α. When the weights of these
poles are calculated, as shown in Fig. 5.1, the central peak has twice the
weight of the other two peaks. This characteristic shape is known as the
Mollow triplet, and has a simple interpretation.

-15 -10 -5  0  5  10  15
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ν − ω

ω=ε
T1=T2=2
gα=10

Figure 5.1: Spectrum of resonance fluorescence, from Eq. (5.19).

Interpretation: of the Mollow triplet

The origin of the Mollow triplet is the effective energy levels of the two-
level system in the presence of a coherent field. If one considers in general
a two-level system coupled to photons, there are Rabi oscillations. In the
frequency domain, these oscillations correspond to a splitting of the eigen-
states resulting from hybridising the states with n excitations; i.e. the states
|n− 1, ↑〉, |n, ↓〉 mix and lead to eigenstates split by g

√
n (if on resonance).

If the system can now decay, it will emit an excitation into the contin-
uum, and undergo a transition to a state with one fewer excitation in the
system. However, starting from one of the hybridised eigenstates with n
excitations, it is possible to undergo a transition to either of the eigenstates
with n−1 excitations — non-zero matrix elements connect them all. Thus,
in general there are four transition frequencies.

In the limit of a strong classical field, all four of these matrix elements
have the same strength, and moreover, as indicated in Fig. 5.2, the Rabi
splitting becomes almost n independent when n � 1, so two of the fre-
quencies will match. This then leads to the characteristic 1:2:1 ratio seen
in Figure 5.1.

5.4 Further reading

The discussion of the resonance fluorescence problem in particular can be
found in chapter 16 of Meystre and Sargent III [12]. The discussion of the
quantum regression theorem in this lecture is however more closely related
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g  /2α

g  /2α

g  /2α

g  /2α

ω∼ε

Figure 5.2: Characteristic behaviour at high excitation number,
with n ' |α|2, demonstrating a triplet of transition frequencies,
with the intensity ratio 1:2:1.

to the density matrix based approach given in Scully and Zubairy [10]; The
Onsager-Lax (quantum regression) theorem was introduced by Lax [13].





Lecture 6

Quantum stochastic methods
and limitations of the
Markovian approximation.

The previous two lectures, have introduced the density matrix equations of
motion to describe a system coupled to a bath, and have shown how the
Markovian approximation implicit in these equations of motion leads one
to the quantum regression theorem. This lecture reviews the foundations
of these methods for open systems. Two further formalisms are presented,
which can be seen as the stochastic equations of motion for which the prob-
ability evolution is that of the density matrix. In the latter of these — the
Heisenberg-Langevin equations — the consequences of the approximations
required for a Markovian equation of motion are more explicit; these are
discussed in terms of the fluctuation dissipation theorem.

We will consider just the problem of a system coupled to a single decay
bath, which gave us the equation of motion:

d

dt
ρ(t) = −κ

2

[
n̄
(
aa†ρ− 2a†ρa+ ρaa†

)
+ (n̄+ 1)

(
a†aρ− 2aρa† + ρa†a

)]
. (6.1)

6.1 Quantum jump formalism

Consider evolution under Eq. (6.1) when n̄ = 0, i.e. when only decay can
occur. Then, after a short time δt, one has:

ρS(t+ δt) = ρs(t)−
κδt

2

(
a†aρs + ρsa

†a
)

+ κδtaρsa
† +O(δt2)

=
(

1− κδt

2
a†a

)
ρs

(
1− κδt

2
a†a

)
+
√
κδtaρs

√
κδta† +O(δt2).

(6.2)

These two contributions to the density matrix can be interpreted as the
conditional density matrices that arise under “no photon loss” and “one
photon loss”; they are added together because of the trace over states of

47
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the bath. The probability of these two final states can be found from the
trace of the conditional density matrices, hence:

Pone photon loss = Tr
(
κδtaρsa

†
)

= κδt
〈
a†a
〉
. (6.3)

This is as one intuitively expects; the probability of losing a single photon
in [t, t + δt] is given by the rate of loss of each photon multiplied by the
total number of photons. Thus, the evolution can be written in terms of
the probabilities of transition to the (suitable normalised)

|ψ〉 →


a|ψ〉√
〈ψ|a†a|ψ〉

P = κδt〈ψ|a†a|ψ〉(
1− κδta†a/2

)
|ψ〉√

〈ψ|1− κδta†a|ψ〉
P = 1− κδt〈ψ|a†a|ψ〉

(6.4)

This quantum jump formalism can be understood as describing the loss
process in terms of the environment repeatedly measuring the number of
photons in the cavity, and hence decohering the states with different num-
bers of photons.

Example: Photon loss from a single-photon state

The above procedure can be illustrated for a particularly simple case: if the
initial state contains a single photon then from the density matrix equation:

∂t〈n+ k|ρ|n〉 = −κ
2

(2n+ k)〈n+ k|ρ|n〉

+ κ
√

(n+ 1)(n+ k + 1)〈n+ k + 1|ρ|n+ 1〉 (6.5)

it is clear that the initial condition ∀n : 〈n+ k|ρ|n〉 = 0 is preserved except
for k = 0, and so the only equations to solve are

∂t〈1|ρ|1〉 = −∂t〈0|ρ|0〉 = −κ〈1|ρ|1〉. (6.6)

so the full solution is:

ρ = e−κt|1〉〈1|+ (1− e−κt)|0〉〈0|. (6.7)

In the quantum jump formalism it is easy to reproduce this result; at
each time step we have that:

|1〉 →

{
|0〉 P = κδt

|1〉 P = 1− κδt
(6.8)

A more complicated example is given in Question 6.1, for decay of a
coherent state. In that case, since a coherent state is unchanged under
the loss of a photon, one has the counterintuitive result that it is failure
to observe a photon that leads to the density matrix evolving. This is
less surprising if one considers that the state has an uncertain number of
photons to start with, and failure to observe any photons escape indicates
that the wavefunction has been projected by observation onto a state with
fewer photons.
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6.2 Heisenberg-Langevin equations

Just as one can solve a closed quantum-mechanical problem in either the
Schrödinger or Heisenberg pictures, quantum stochastic approaches can be
constructed in either picture. The previous sections generally described
a stochastic evolution of the wavefunction, this section instead describes
stochastic evolution of the system operators. Starting once again from
the same coupled bath and system, and working in the rotating frame as
normal, one has the Hamiltonian of Eq. (4.2),

HSR =
∑
k

ζk

(
ab†ke

i(ω−ωk)t + a†bke
−i(ω−ωk)t

)
. (4.2)

From this Hamiltonian, the Heisenberg operator equations of motion are:

iȧ = [a,HSR] =
∑
k

ζkbke
−i(ω−ωk)t (6.9)

iḃk = [bk, HSR] = ζkae
i(ω−ωk)t. (6.10)

To eliminate the bath degrees of freedom, one can integrate Eq. (6.10), and
substitute it in Eq. (6.9). Thus,

bk(t) = −iζk
∫ t

0
dt′ei(ω−ωk)t′a(t′) + bk(0) (6.11)

which, substituted into Eq. (6.9), gives:

ȧ = −
∫ t

0
dt′

[∑
k

ζ2
ke
i(ω−ωk)(t′−t)

]
a(t′)− i

[∑
k

ζkbk(0)e−i(ω−ωk)t

]
. (6.12)

Then, defining the second term in brackets as Fa(t), and making the same
Markovian approximation:∑

k

ζ2
kF (ωk)→

∫
dν

2π
κF (ν) (6.13)

as in Eq. (4.7), so that the first term in brackets becomes κδ(t − t′), this
equation becomes:

ȧ = −1
2
κa+ Fa(t). (6.14)

Here Fa(t) is a stochastic operator; it has quantum mechanical commu-
tation relations related to its definition in terms of bk; but bk is a bath
operator, and the state of the bath is random — drawn from a thermal
ensemble, so bk has different expectations for each realisation of the bath.

Preservation of commutation relations

The operator nature of Fa(t) is apparent if one considers the commutation
relations:

[Fa(t), F
†
a (t′)] =

∑
k,k′

ζkζk′ [bk, b
†
k′ ]e
−i(ω−ωk)t+i(ω−ωk′ )t

′

=
∑
k

ζ2
ke
−i(ω−ωk)(t−t′) = κδ(t− t′). (6.15)
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This non-commuting nature is essential to ensure the preservation of com-
mutation relations in the time-evolution of the operators a(t). The solution
of Eq. (6.14) can be written

a(t) = a(0)e−κt/2 +
∫ t

0
dt′Fa(t′)e−κ(t−t′)/2. (6.16)

Using this, one can write:[
a(t), a†(t)

]
=
[
a(0), a†(0)

]
e−κt

+
∫ t

0
dt′
∫ t

0
dt′′
[
Fa(t′), F †a (t′′)

]
e−κt+κ(t′+t′′)/2, (6.17)

in which we have assumed no correlation between the initial state of the
system and that of the bath. Then, using [a, a†] = 1 in the initial state,
and the commutator in Eq. (6.15) this becomes:

[
a(t), a†(t)

]
= e−κt +

∫ t

0
dt′κe−κt+κt

′

= e−κt +
[
1− e−κt

]
(6.18)

This shows that the existence of the non-commuting stochastic terms was
essential to preserve the operator commutation relations.

Finite bath occupation; other correlations

To reproduce all the results of the density-matrix formalism, it is necessary
also to have expressions for the correlation functions of the stochastic opera-
tors Fa(t) as well as their commutator. Given the form for the commutator,
all correlation functions can be found from this and the anticommutator,〈{

Fa(t), F
†
a (t′)

}〉
=
∑
k,k′

ζkζk′
〈{
bk, b

†
k′

}〉
e−i(ω−ωk)t+i(ω−ωk′ )t

′

=
∑
k

ζ2
k(2nk + 1)e−i(ω−ωk)(t−t′)

= κ

∫
dν

2π
coth

(
βν

2

)
e−i(ω−ν)(t−t′) (6.19)

≈ κ coth
(
βω

2

)
δ(t− t′). (6.20)

The last line here makes the additional assumption of T � κ, i.e. that the
temperature is large compared to the bandwidth, with the bandwidth taken
approximately equal to the imaginary width. This assumption is clearly
necessary if the entire formalism is to be Markovian (i.e. to depend only on
current state, rather than history), and is identical to the approximation
made in Eq. (4.7). The validity and limitations of this last approximation
are the subject of the next section.
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6.3 Fluctuation dissipation theorem and the
Markovian approximation

The fluctuation-dissipation theorem relates the correlation function of an
operator with its response function. For the photon operators considered
here, the correlation function can be defined by:

C(Ω) =
∫ ∞
−∞

dτC(τ)eiΩτ , C(τ) =
1
2

〈{
a(t), a†(t+ τ)

}〉
. (6.21)

The response function can be found by considering the response to a
perturbation:

δH =
∑

Ω

fΩe
iΩta† + H.c. (6.22)

The response function α(Ω) is given by

〈a(t)〉 =
∑

Ω

α(Ω)fΩe
iΩt. (6.23)

The discussion below uses the Heisenberg-Langevin formalism to eval-
uate the relation between these operators with and without the second
Markovian approximation above.

The response function is the same in either case, since it is averaged
and so does not depend on the stochastic operator Fa(t). In the following
it will be necessary to distinguish between the bare operators a(t) and the
gauge transformed versions ã(t) = a(t)e−iωt. Thus,(

∂t +
κ

2

)
〈ã(t)〉 = i

∑
Ω

fΩe
i(Ω−ω)t (6.24)

where we have used the Heisenberg equation following from the gauge trans-
formed perturbation Hamiltonian. This yields

〈a(t)〉 = eiωt〈ã(t)〉 = eiωt
∑

Ω

ifΩe
i(Ω−ω)t

i(Ω− ω) + κ/2
=
∑

Ω

fΩe
iΩt

(Ω− ω)− iκ/2
(6.25)

hence α(Ω) = 1/[(Ω− ω)− iκ/2].
Next, consider the fluctuation correlation function at long times, so

that the initial conditions are not involved. In this case, Eq. (6.16) should
become:

a(t) = eiωt
∫ t

−∞
dt′Fa(t′)e−κ(t−t′)/2 (6.26)

and so:

C(τ) =
e−iωτ

2

∫ t

−∞
dt′
∫ t+τ

−∞
dt′′
〈{
Fa(t

′), F †a (t′′)
}〉

e−κ(2t+τ−t′−t′′)/2 (6.27)

We now have two choices; we may either use the exact relation in
Eq. (6.19), or the Markov approximation in Eq. (6.20).
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Without second Markovian approximation

Considering first Eq. (6.19), we have:

C(τ) =
e−iωτ

2

∫ t

−∞
dt′
∫ t+τ

−∞
dt′′
∫ ∞
−∞

dν

2π
κ coth

(
βν

2

)
ei(ω−ν)(t′′−t′)−κ(2t+τ−t′−t′′)/2

=
e−iωτ

2

∫ ∞
−∞

dν

2π
κ coth

(
βν

2

)
ei(ω−ν)(t+τ−t)

[i(ω − ν) + κ/2][−i(ω − ν) + κ/2]

=
1
2

∫ ∞
−∞

dν

2π
κ coth

(
βν

2

)
e−iντ

(ω − ν)2 + (κ/2)2
(6.28)

hence it is immediately clear that:

C(Ω) = coth
(
βΩ
2

)
κ/2

(ω − Ω)2 + (κ/2)2
= coth

(
βΩ
2

)
=[α(Ω)] (6.29)

which is the required fluctuation dissipation theorem.

With second Markovian approximation

In contrast, if we use Eq. (6.20) we have that:

C(τ) =
e−iωτ

2

∫ t

−∞
dt′
∫ t+τ

−∞
dt′′κ coth

(
βω

2

)
δ(t′ − t′′)e−κ(2t+τ−t′−t′′)/2

=
e−iωτ

2
κ coth

(
βω

2

)∫ min[t,t+τ ]

−∞
dt′e−κ(2t+τ−2t′)/2

=
e−iωτ

2
coth

(
βω

2

)
e−κ|τ |/2, (6.30)

from which it follows straightforwardly that

C(Ω) = coth
(
βω

2

)
=[α(Ω)]. (6.31)

Thus, use of the Markovian approximation means that the fluctuation
dissipation theory fails, unless T � (Ω− ω) > κ. Such a result can also be
seen to be a limit for the use of the quantum regression theorem. In that
case, the high temperature (classical) answer is known as the Onsager theo-
rem. The quantum extension of the Onsager theorem is an approximation,
that derives from the Markov approximation in the dynamics

6.4 Further reading

The topic of Heisenberg-Langevin equations, and stochastic operator equa-
tions is discussed briefly in Scully and Zubairy [10], and more fully in Gar-
diner and Zoller [14] The implicit dependence of the quantum regression
theorem on the use of the Markovian approximation is highlighted in the
papers of Ford and O’Connel [15, 16], and the response by Lax [17]. This
topic is addressed again in question 6.2.
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Questions

Question 6.1: Comparison of quantum jump and density matrix
equations of motion. Consider an initial coherent state,

ρ = exp(−|α|2)eαa
† |0〉〈0|eα∗a (6.32)

following the equation of motion of the density matrix with n̄ = 0, i.e.

ρ̇ = −κ
2

[
a†aρ+ ρa†a− 2aρa†

]
. (6.33)

6.1.(a) Show that this equation of motion can be satisfied by the ansatz

ρ(t) = exp(−|α(t)|2)eα(t)a† |0〉〈0|eα∗(t)a (6.34)

and find the equation satisfied by α(t).
Now consider this question in the quantum jump formalism. If the

problem can be written as:

ρ(t) =
∑
n

Pn(t)|ψn(t)〉〈ψn(t)| (6.35)

where |ψn〉 corresponds to the state after having lost exactly n photons.

6.1.(b) Show that |ψn(t)〉 = |ψ0(t)〉; (i.e. that losing a photon does not
change the state).

6.1.(c) Find Pn(t), and verify that
∑

n Pn(t) = 1, and hence show that
ρ(t) = |ψ0(t)〉 〈ψ0(t)|.

6.1.(d) Show that at time t, the non-Hermitian evolution leads to

|ψ0(t)〉 =
1
N

exp(−κta†a/2)|ψ0(0)〉 (6.36)

where N is an appropriate normalisation.

6.1.(e) Prove that this result matches that in Eq. (6.34).

Question 6.2: Fluctuation dissipation theorem, and quantum re-
gression

This extended question repeats the analysis in the lecture of the limit
of validity of the Markov approximation, but for a damped quantum har-
monic oscillator. It shows how the above results do not depend on other
approximations that were involved, such as rotating wave approximation.
Starting from the Hamiltonian,

H =
mω2

0

2
x2 +

p2

2m
+
∑
j

[
mjω

2
j

2
(qj − x)2 +

p2
j

2mj

]
(6.37)
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One can easily derive the equations of motion:

ẋ = p/m ṗ = −mω2
0x+

∑
j

mjω
2
j (qj − x)

q̇j = pj/mj ṗj = −mjω
2
j (qj − x)

Eliminating pj and p, one can write:

q̈j = −ω2
j (qj − x); ẍ = −ω2

0x+
∑
j

mj

m
ω2
j (qj − x) (6.38)

6.2.(a) Show that the equation for qj(t) is satisfied by:

qj(t)− x(t) =

[
q0
j cos(ωjt) +

p0
j

mjωj
sin(ωjt)

]
−
∫ t

−∞
dt′ cos[ωj(t− t′)]ẋ(t′)

(6.39)
Substituting this in the equation for x one finds:

ẍ+ ω2
0x = −2

∫ t

−∞
dt′γ(t− t′)ẋ(t′) + F (t) (6.40)

where

2γ(t− t′) =
∑
j

mj

m
ω2
j cos[ωj(t− t′)]

F (t) =
∑
j

mj

m
ω2
j

[
q0
j cos(ωjt) +

p0
j

mjωj
sin(ωjt)

]

Let us assume a flat spectrum, so γ(t− t′) = γδ(t− t′). This implies

∑
j

mjω
2
j

m
→
∫ ∞

0
dω

γ

π
(6.41)

The correlations of F require knowledge of correlations of p0
j and q0

j , the
initial momenta and coordinates. Using the reasonable assumption of un-
correlated, diagonal (thermal) states, one has 〈p0

jq
0
k〉 = 0, and:

2mjωj〈q0
j q

0
k〉 = 2

〈p0
jp

0
k〉

mjωj
= δjk (2n(ωj) + 1) = δjk coth

(
ωj

2kBT

)
. (6.42)

6.2.(b) Using the above correlations and definition of F (t), show that:

1
2
〈
F (t)F (t′) + F (t′)F (t)

〉
=
∑
j

mjω
3
j

m2
cos[ωj(t− t′)] coth

(
ωj

2kBT

)

=
∫ ∞

0
dω

γω

πm
cos[ω(t− t′)] coth

(
ω

2kBT

)
.

(6.43)
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6.2.(c) Show that the general solution to:

ẍ+ γẋ+ ω2
0x = F (t), (6.44)

can be written (using ω1 =
√
ω2

0 − γ2/4) as:

x(t) =
∫ t

−∞
dt′e−γ(t−t′)/2 sin[ω1(t− t′)]

ω1
F (t′). (6.45)

6.2.(d) Thus, show that:

C(τ) =
1
2
〈x(t+ τ)x(t) + x(t)x(t+ τ)〉 , (6.46)

is given by:

C(τ) =
∫ ∞

0
dω

γω

πm
cos(ωτ)

1
(ω2 − ω2

0)2 + γ2ω2
coth

(
ω

2kBT

)
. (6.47)

Fourier transforming, this gives the correlation function

C(ω) =
∫ ∞
−∞

dte−iωtC(t) =
γ

(ω2 − ω2
0)2 + γ2ω2

ω

m
coth

(
ω

2kBT

)
. (6.48)

Let us now relate this fluctuation correlation function to the response
function. To define the response function α(t), consider the averaged equa-
tion motion, responding to a driving force f(t) = eiωtf0:

〈ẍ〉+ γ〈ẋ〉+ ω2
0〈x〉 =

f(t)
m

. (6.49)

6.2.(e) Show that the response function, 〈x〉ω = α(ω)fω is given by:

α(ω) =
1
m

1
ω2

0 − ω2 + iγω
(6.50)

Hence, show one can write the fluctuation-dissipation theorem as:

C(ω) = = [α(ω)] coth
(

ω

2kBT

)
. (6.51)

Now, let us repeat the above calculations with the Markovian approxima-
tion.

6.2.(f) Show that the general time-dependent behaviour of 〈x(t)〉, fol-
lowing Eq. (6.49) is given by:

〈x(t)〉 = e−γt/2
[
〈x0〉

(
cos(ω1t)−

γ

2ω1
sin(ω1t)

)
+
〈p0〉
mω1

sin(ω1t)
]

(6.52)

Then, using the Markovian approximation for quantum regression, one can
find C(τ) as defined in Eq. (6.47), by replacing the initial density matrix
with ρ(t) → x(t)ρ(t). Assuming equilibrium single-time correlations, one
has 〈x(t)p(t) + p(t)x(t)〉 = 0, and 〈x(t)2〉 = (2n̄+ 1)/2mω0). Thus,

C(τ) =
2n̄+ 1
2mω0

e−γτ/2
(

cos(ωτ)− γ

2ω1
sin(ω1τ)

)
(6.53)
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6.2.(g) Taking the equilibrium population 2n̄ + 1 = coth(ω0/2kBT ),
show that this yields

C(ω) =
γ

(ω2 − ω2
0) + γ2ω2

ω2

mω0
coth

(
ω0

2kBT

)
(6.54)

6.2.(h) By considering the fluctuation-dissipation theorem, explain why
in the classical limit ω0 � kBT , an exact regression theorem holds. i.e.
in this limit, the equations governing two-time and single-time correlation
functions are exactly related by the quantum regression theorem, even with-
out Markovian or weak coupling approximations.



Lecture 7

Two-level atom in a cavity:
Cavity QED

In the previous few lectures we have discussed a single two-level atom cou-
pled either to a continuum of radiation modes, or considering a cavity,
which picks out a particular mode. In this lecture we will consider more
carefully the situations in which a cavity will pick out a single mode, by
describing how the system changes as one goes from no cavity, via a bad
cavity (which modifies the field strength but does not pick out a single
mode) to a good cavity, which can pick out a single mode.

To study this problem throughout this crossover, we will consider a two
level system coupled both to a cavity pseudo-mode (which itself decays),
and also coupled to non-cavity modes, providing incoherent decay. We will
show how in this model, a bad cavity can lead to either enhanced decay,
and a good cavity can lead to periodic exchange of energy between the
cavity and the two-level system, i.e. the Rabi oscillations we previously
discussed for a perfect cavity. We will then consider some examples of
currently studied experimental cavity QED systems, discussing the values
of the relevant parameters describing coupling and decay.

Before discussing the crossover between bad and good cavities, we first
investigate a toy model of a 1D cavity, to put into context the meaning of
the pseudo-mode description of the cavity mode.

7.1 The Purcell effect in a 1D model cavity

The aim of this section is to describe how a cavity modifies the rate of
decay of a two-level system, coupled to one-dimensional radiation modes.
Following the previous discussion of system-reservoir coupling, the decay
is characterised by the combination of reservoirs density of states and its
coupling to the atom, given by:

Γ(ω) = 2π
∑
k

δ(ω − ck)
∣∣∣gk

2

∣∣∣2 . (7.1)

Recalling that gk ∝ Ek, the field strength associated with a single photon,
we can find the effect of the cavity on Γ(ω) by determining the spatial

57
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profiles of the modes of the full system, and inserting these into the above
sum.

a/2
L/2

Figure 7.1: Toy model of cavity, length a, in quantisation volume
of length L.

We will consider a cavity of size a, embedded in a quantisation volume
of length L, where we will take L→∞ later on. (See figure 7.1). Our aim
is to find the spatial profile of the electric field modes, and thus to calculate

Γ(ω) ∝
∑
k

δ(ω − ck)|Ek(x = 0)|2. (7.2)

Both in the cavity, and outside, the modes will be appropriate combina-
tions of plane waves. Restricting to symmetric solutions (as antisymmetric
solutions will vanish at x = 0), and matching the boundary at x = ±L/2,
we may write:

Ek(x) =

{
f(x) ≡ Ak cos(kx) |x| < a

2

g(x) ≡ Bk sin
[
k
(
|x| − L

2

)]
|x| > a

2

. (7.3)

As L → ∞, the normalisation condition will approach the simple result
Bk =

√
2/L, since the normalisation integral will be dominated by the parts

outside the cavity. We now need to find the effect of the imperfect barriers
on this mode in order to relate Ak, Bk, and thus find the quantisation
condition specifying k, and the mode amplitude, Ek(x = 0) = Ak.

As a simple model, let us consider a varying dielectric index, ε = ε0[1 +
ηδ(|x| − a/2)], giving the equation:

d2

dx2
Ek(x) = −k2

[
1 + ηδ

(
|x| − a

2

)]
Ek. (7.4)

Let us focus on x > 0; then, given the form of Ek(x) = Θ(a/2 − x)f(x) +
Θ(x− a/2)g(x) with f ′′ = −k2f and g′′ = −k2g, we may write:

d2

dx2
Ek = −k2Ek + 2δ

(
x− a

2

) [
g′(x)− f ′(x)

]
+ δ′

(
x− a

2

)
[g(x)− f(x)]

(7.5)
Thus, to solve Eq. (7.4) we require that:

f
(a

2

)
= g

(a
2

)
, g′

(a
2

)
− f ′

(a
2

)
= −ηk

2

4

[
f
(a

2

)
+ g

(a
2

)]
(7.6)

Substituting the forms of f(x), g(x) into this equation, one may eliminate
Ak, Bk to give the eigenvalue condition:

cos
(
kL

2

)
+
kη

2
cos
(
ka

2

)
sin
(
ka

2
− kL

2

)
= 0. (7.7)
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For finite L, this provides a restriction on the permissible values of k. As
L→∞, the permissible values of k become more dense, such that, in this
limit, one may instead consider this equation as depending on two separate
values kL and ka; if L� a, it is possible to significantly change kL without
modifying ka. Thus, we will instead rewrite this equation as a condition
that specifies the value of kL given a fixed ka:

cos
(
kL

2

)[
1 +

kη

2
sin
(
ka

2

)
cos
(
ka

2

)]
= sin

(
kL

2

)
kη

2
cos2

(
ka

2

)
.

(7.8)
Using this condition, one may then eliminate kL, and write Ak in terms of
Bk =

√
2/L and functions of ka, i.e.:

Ak = −
√

2
L

1√
1 + kη sin(ka/2) cos(ka/2) + (kη/2)2 cos2(ka/2)

(7.9)

If we define Λ = kη/2, then we may use this formula to give the effective
decay rate:

Γ
(
k =

ω

c

)
=

Γ0

1 + Λ sin(ka) + 1
2Λ2(1 + cos(ka))

=
Γ0(

1 + Λ2

2

)
+ Λ

√
1 + Λ2

4 cos(ka− θ0)
, tan θ0 =

4
Λ
.

(7.10)

 0

 5

 10

 15

 20

 25

 0  1  2  3  4  5  6  7  8

Γ(
ω

)/Γ
0

ω/ω0

 0.01

 0.1

 1

 10

 100

 7.2  7.6  8

Figure 7.2: Effective decay rate vs frequency for the toy model of
a 1D imperfect cavity. Inset compares the exact result, Eq. (7.10)
to the Lorentzian approximation of Eq. (7.13)

The form of this function in general is shown in Fig. 7.2. For small k, the
effect of the cavity is weak (i.e. kη � 1), and so there is little modification
compared to the result without the cavity. For larger k, there are sharp
peaks, which can be described by an approximately Lorentzian form (see
the inset of Fig. 7.2). This Lorentzian form can be found by expanding
Eq. (7.10) near its peaks, which are at:

k0a = θ0 + (2n+ 1)π. (7.11)
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We can then expand Γ(ω) near ω0 = ck0. If Λ� 1, and if we may neglect
its k dependence, then we find:

Γ
Γ0
' 1(

1 + Λ2

2

)
− Λ2

2

(
1 + 2

Λ2− 2
Λ4

) [
1− 1

2

(
a(ω−ω0)

c

)2
]

' 1
1

Λ2 + Λ2a2

4c2
(ω − ω0)2

. (7.12)

Let us introduce the full width half maximum, κ, such that this expression
becomes:

Γ
Γ0

=
P (κ/2)2

(ω − ω0)2 + (κ/2)2
(7.13)

which leads to the definitions:

κ

2
=

2c
Λ2a

, P = Λ2 =
4c
κa
. (7.14)

Here Γ0 is the result for a 1D system in the absence of a cavity. The
factor P describes the maximum value of Γ/Γ0 at resonance. At resonance,
the presence of the cavity enhances the decay rate, and P is the Purcell
enhancement factor. It is helpful for comparison to later results to rewrite
this as:

P = 4
ω0

κ

c

ω0a
=

2
π
Q

(
λ

a

)
, Q ≡ ω0

κ
(7.15)

where Q is the quality factor of the cavity mode. The enhancement on
resonance therefore depends both on the quality factor, and on the mode
volume.

Away from resonance, the decay rate decreases instead of increasing,
since there are no modes with significant weight inside the cavity; the
minimum value of Γ/Γ0 occurs when k0a = θ0 + 2nπ, and is given by
Γ/Γ0 = 1/Λ2 = 1/P , hence for this 1D case, P describes both the enhance-
ment on resonance, and the reduction off resonance.

As η increases further, the Lorentzian density of states becomes sharply
peaked, and so the Markovian approximation for decay of the atom no
longer holds, instead one can use:

d

dt
σ− = −

∫ t

dt′σ−(t′)
∫
dω

2π
Γ0P (κ/2)2ei(ε−ω)(t′−t)

(ω − ω0)2 + (κ/2)2

= −Γ0Pκ

4

∫ t

dt′σ−(t′)ei(ε−ω)(t′−t)−κ(t−t′)/2. (7.16)

This form describes the behaviour one would see if the two-level system
were coupled to another degree of freedom, with frequency ω and decay
rate κ/2. Hence, we are led in this limit to introduce the cavity pseudo-
mode as an extra dynamical degree of freedom. The density of states implies
that the cavity mode cannot be treated as a Markovian system, it has a
non-negligible memory time 1/κ, and so we must consider its dynamics.
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7.2 Weak to strong coupling via density matrices

This section considers the case in which a single cavity mode must be
treated beyond a Markovian approximation, by considering the Jaynes-
Cummings model, along with relaxation of both the two-level system and
the cavity mode. The model is thus given by:

d

dt
ρ = −i [H, ρ]− κ

2

(
a†aρ− 2aρa† + ρa†a

)
− Γ′

2
(
σ+σ−ρ− 2σ−ρσ+ + ρσ+σ−

)
(7.17)

H =
g

2

(
σ+a+ σ−a†

)
+ εσz + ω0a

†a. (7.18)

One should note that in this equation, a† is the creation operator for a
pseudo-mode of the system, i.e. it does not describe a true eigenmode; the
true eigenmodes are instead superpositions of modes inside and outside the
cavity, just as in the previous section. Because the pseudo-mode overlaps
with a range of true eigenmodes, the probability of remaining in the pseudo-
mode will decay (see question 7.1 for the 1D case). This coupling between
cavity modes and modes outside the cavity can be described in a Markovian
approximation, leading to the decay rate κ in the above density matrix
equation.

In addition to the decay of the pseudo-mode, we also include a rate Γ′

describing decay of the two level system into modes other than the cavity
mode. While in the one dimensional description considered previously, no
such other channel exists, in three dimensions, if the cavity is not spherical,
then decay into non-cavity directions is possible. In this case, one may
consider Γ′ = ΓΩ/4π, depending on solid angle. For the experimental
systems discussed below, this is generally the case, due to the need to
have access to insert atoms into the cavity. More generally Γ′ describes
the possibility of relaxation into any mode other than the cavity mode; in
solid state contexts, other possible reservoirs often exist (e.g phonons, other
quasiparticle excitations etc).

Let us solve the equation of motion, Eq. (7.17), starting in an initially
excited state | ↑, 0〉. From this initial state, the only possible other sub-
sequent states are | ↓, 1〉 and | ↓, 0〉. As the last of these states cannot
evolve into anything else it may be ignored, and we can write a closed set
of equations for three elements of the density matrix:

PA = ρ↑0,↑0, PB = ρ↓1,↓1, CAB = ρ↑0,↓1 (7.19)

By taking appropriate matrix elements, one finds:

d

dt
PA = −ig

2
(C∗AB − CAB)− Γ′PA (7.20)

d

dt
PB = −ig

2
(CAB − C∗AB)− κPB (7.21)

d

dt
CAB = −i(ε− ω0)CAB + i

g

2
(PA − PB)− κ+ Γ′

2
CAB (7.22)
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One may further simplify these equations by noting that PAPB−|CAB|2 = 0
is conserved, and thus writing PA = |α|2, PB = |β|2, CAB = αβ∗. Substi-
tuting this leads to the simpler equations:

d

dt

(
α
β

)
=
(
−Γ′/2 −ig/2
−ig/2 i∆− κ/2

)(
α
β

)
(7.23)

where we have written ∆ = ω0− ε. In general this leads to two frequencies
for decaying oscillations of the excitation probability:(

iν − Γ′

2

)(
iν + i∆− κ

2

)
+
g2

4
= 0. (7.24)

Bad cavity limit — Purcell effect in 3D

In the limit of a bad cavity, i.e. κ� g,Γ, the two frequencies corresponding
to the above equation correspond separately to decay of the excited two-
level system and decay of photons. Because these are on very different
timescales, one may treat the coupling perturbatively writing ν = −iΓ′/2+
δ, where at O(δ) the determinant equation becomes:

iδ

(
i∆− κ

2
+

Γ
2

)
+
g2

4
= 0, (7.25)

and since κ� Γ this bad cavity limit gives:

ν = − i
2

(
Γ′ +

κg2

κ2 + 4∆2

)
+

∆g2

κ2 + 4∆2
. (7.26)

This describes a cavity-enhanced decay rate, Γeff = Γ′+Γcav, where the cav-
ity decay rate describes the Purcell effect, as discussed above. On resonance
we have:

Γcav = 4
∣∣∣g
2

∣∣∣2 1
κ

(7.27)

and recalling the earlier 3D results:

Γ =
ω3

0|dab|2

3πε0c3
,

∣∣∣g
2

∣∣∣2 =
ω0|dab|2

2ε0V
(7.28)

(where we have assumed resonance, so ω0 = ε), one may write:

Γcav

Γ
= P = 4

3πc3

2V ω2
0

1
κ

=
3

4π2
Q

(
λ3

V

)
. (7.29)

This closely resembles the one dimensional result before; the Purcell en-
hancement depends both on the quality factor, and also on the mode vol-
ume. An estimate of the minimum decay rate off resonance in this case

yields Γcav,min = Γcav,max

(
κ

2ω0

)2
= 3

16π2
1
Q

(
λ3

V

)
. However, if the back-

ground decay rate Γ′ also exists, this off-resonant reduction is not as rele-
vant as the on-resonant enhancement.
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Strong coupling — Rabi oscillations

If the cavity is sufficiently good, then rather than decay, the excitation
probability oscillates. In the resonant case of ∆ = 0, one can write the
general solution for the oscillation frequency as:

ν = −i(Γ + κ)
4

±

√
g2

4
−
(

Γ− κ
4

)2

. (7.30)

In order that Rabi oscillations exist, it is thus necessary that g > (Γ−κ)/2.
In order that they should be visible before decay has significantly reduced
the amplitude, it is necessary that one has g > κ,Γ. In this limit, one has
strong coupling, and decay is indeed very strongly modified.

7.3 Examples of Cavity QED systems

Having discussed the role of the parameters g, κ,Γ, and their relation to
whether a system is weak or strong coupling, we now consider a variety of
experimentally studied cavity QED systems, discussing the values of these
parameters, and the advantages/disadvantages of the different systems. A
summary of the characteristic values is given in table 7.1; the discussion
below highlights the origins of some of these parameters.

System Atom[1, 18] Atom[4] SC qubit[3] Exciton[5]
Optical Microwave Microwave Optical

κ/2π 1 MHz 1 kHz a 30 MHz 30 GHz
Γ/2π 3 MHz 30 Hz 3 MHz b 0.1 GHz
g/2π 10 MHz 50 kHz 100 MHz 100 GHz
ω/2π 350 THz 50 GHz 10 GHz 400 THz
λ3/V 10−5 10−1 λ/a = 1 10−1

Q 108 108 104 104

Other tmax tflight ∼ 100µs 1/T2 ∼ 3MHz 1/T2 ∼ 3GHz

aRecent work reaches 10Hz[19]
bNot well known, dominated by cavity induced decay

Table 7.1: Characteristic energy scales for different cavity QED
realisations, as discussed in the text.

Optical transitions of atoms

We first consider real atoms, and cavities designed to be resonant for optical
transitions of these atoms. In this case, the background atomic decay rate Γ′

is determined by the intrinsic properties of the atomic transition, reduced
by the geometry of the cavity, and so this sets the scale that must be
overcome for strong coupling. High quality mirrors at optical wavelengths
can be made using dielectric Bragg mirrors. These consist of alternating
layers of materials with different dielectric constant, with spatial period
λ/4, so that even if the dielectric contrast between adjacent layers is not
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sufficient to cause strong reflection, the interference of multiple reflections
will lead to strong overall reflection.

To allow access for atoms to enter the cavity, the cavity length must
be much larger than λ ' 0.8µm, and a typical size[1, 18] is a cavity length
L ∼ 200µm, and beam waist w ∼ 20µm, which gives a ratio λ3/V ∼
10−5. This small ratio means that a very high Q factor is needed to reach
strong coupling, and Q ∼ 108 is possible in current experiments. Typical
values of the corresponding g,Γ, κ are given in Table 7.1. In addition to
the timescales included within Eq. (7.17), in some experimental systems,
there is another timescale, that of the time for an atom to leave the cavity,
however this is typically larger than all other timescales.

Microwave transitions of atoms

Remaining with atoms as the “matter” part of the Jaynes-Cummings Hamil-
tonian, some of the problematic features above can be removed if one con-
sidered instead microwave frequency transitions of the atoms. This in-
creases the wavelength, allowing cavities comparable to the wavelength,
and can also significantly improve the cavity quality. For microwave fre-
quencies, superconducting cavities can be used (since the frequency is less
than the BCS gap, ∆BCS ∼THz, so the superconducting mirrors are dia-
magnetic at these frequencies. The remaining limitation on cavity quality
instead comes from scattering off the mirror surface, and any gaps required
in the cavity for atom injection. For niobium cavities operating at 50GHz
(λ ' 6mm), values of λ3/V ' 0.1 and Q ∼ 1010 are possible[19].

The relevant atomic transitions at these frequencies are transitions be-
tween highly excited atomic states (Rydberg states). For states with n, l�
1, the outermost electron remains far from the nucleus and so sees only the
screened charge of +1, so the energy levels of such orbits are almost Hy-
drogenic. For large n but l ' 0, the orbit is perturbed by the enhanced
potential near the nucleus, which can be incorporated by a quantum defect,
δl to write:

En,l ' −
Ry

(n− δl)2
, (7.31)

with δl → 0 for large l. It is thus clear that transitions between n, n − 1
will have small energies, ∆En ∝ 1/n3, and so for n ' 50 one can have
microwave frequency transitions. Atoms can be prepared in such states by
using tuned laser pulses.

As well as allowing better cavities at these frequencies, Rydberg atoms
also have significantly reduced spontaneous decay rates without sacrificing
coupling to the cavity mode. The total decay rate from atomic state nl is
given by:

Γtot ∝
∑
n′l′

ω3
nl,n′l′ |dnl,n′l′ |2. (7.32)

Selection rules imply that l′ = l ± 1, which means that two different limits
of decay rates exist, depending on whether l = n−1 or l� n, as illustrated
in Fig. 7.3.
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(a)

(b)
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Figure 7.3: Cartoon of atomic level scheme, and transitions from
a highly excited state with (a) l� n, or (b) l = n− 1. Note that
the actual values used are of the order n, l ∼ 50, much larger than
shown here.

l� n In this case, decay to almost all other values n′ < n is possible (see
arrows (a) in Fig. 7.3). We may consider the characteristic decay rate
to nearby levels n′ ' n, or to the ground state n′ = 1.

• Decay to n′ ' n has ω ∝ 1/n3, and the dipole matrix element
depends on the characteristic size of the orbit for large n, i.e.
d ∝ n2 (this holds because both initial and final states have
similar extensions). These combine to give Γn′'n ∝ n−5.

• Alternatively, for transitions to the ground state, ω is n inde-
pendent, being more or less fixed at the the Rydberg energy. In
this case the dipole matrix element is however much smaller, as
it now involves the overlap between a large Rydberg state and
a much smaller ground state orbital. Thus, the dipole matrix
element depends on the overlap d ∝ 1/

√
n3, giving Γn′'1 ∝ n−3.

As such, the latter process dominates for large n, and so the overall
decay rate is a factor n−3 slower than for low excitation states.

l ' n− 1 In this case, the only transition allowed by selection rules is to
n′ = n − 1. Thus, this has the decay rate in the first part of the
above case, Γ ∝ n−5 and is yet even slower than for l � n. These
states with l = n − 1 are known as circular Rydberg states, as they
correspond closely to classical circular atomic orbits, as expected from
the correspondence principle.

While the decay rates are significantly reduced by the reduced energy of
nearby transitions, and reduced overlap of remote transitions, the coupling
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to confined radiation for nearby transitions is not reduced in the same
way. This is because the continuum density of states does not enter the
calculation of g. Instead, one has g ∝

√
ωd for resonant transitions, giving

g ∝
√
n, which increases with n. However, compared to optical transitions,

the value of g is significantly reduced because g ∝ 1/
√
V , and the cavity

has V ' λ3. Thus, the value of g in table 7.1 is reduced compared to
optical transitions, but is reduced by a smaller factor than the reduction of
the atomic decay rate.

Superconducting qubits in microwave resonators

Continuing with microwave frequencies, one can also consider “artificial
atoms” coupled to microwave cavities; these have the advantage of con-
siderably increasing the coupling strength, by (in this case) increasing the
number of electrons involved in the artificial atom.

Superconductor

Waveguide
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Figure 7.4: Schematic diagram of superconducting qubit capac-
itively coupled to a stripline microwave resonator (left), and the
equivalent circuit (right), coloured for comparison of diagrams —
after Koch et al. [20].

Figure 7.4 illustrates one schematic design of a superconducting island
capacitively coupled to a stripline resonator. This particular design is
known as the “transmon” qubit[20], as the atomic states corresponds to
quantised modes plasmon oscillations, modified by the transmission line.
The equivalent circuit shows that the artificial atom consists of a pair of
Josephson junctions, shunted by a large capacitance. The pair of junctions
exists so that one may tune the effective Josephson coupling via a magnetic
flux, giving EJ,eff = EJ cos(ΦB/Φ0), giving:

Hatom =
e2(nQ − nbias)2

2CQ,eff
− EJ,eff cos(φQ), (7.33)

where the number and phase operators obey canonical commutation re-
lations. This qubit is capacitively coupled to the resonator mode, i.e.
the charge difference across the resonator conductors voltage biases the
qubit. This coupling can be engineered to be relatively large, of the order
of 100MHz. In other designs of qubit, the coupling is reported to be able to
be made yet larger, such that g ≥ ω. This limit is referred to as ultra-strong
coupling, in which the rotating wave approximation is invalid.

Unlike the microwave system with Rydberg atoms, where atoms even-
tually leave the cavity and can be measured, the observation of these super-
conducting systems is typically via the emitted radiation. For this reason
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κ is chosen to be larger than physical constraints would require, so that
sufficient photons escape to allow measurement. The origin of the artifi-
cial atom decay rate in these experiments is not particularly clear, since
coupling to bulk radiation modes should be negligible. However, since the
system is in a solid state environment, other degrees of freedom exist that
can lead to relaxation. These other degrees of freedom certainly lead to
dephasing, so that in these systems, 1/T2 is a significant rate, arising from
charge and flux noise on the superconducting circuit.

Quantum-dot excitons in semiconductor microstructures

Finally, we consider artificial atoms at optical frequencies. One example
of this concerns excitons in quantum dots, coupled to semiconductor mi-
crostructures. The exciton states can be regarded as Hydrogen-like wave-
functions of electrons and holes, with a reduced binding energy, and in-
creased Bohr radius due to the dielectric screening εrel ' 10 and reduced
electronic mass. Although the excitonic binding energy is much less than
optical frequency, the relevant transition is the creation of a bound exciton,
which corresponds to the band gap less the binding energy. Typical semi-
conductor band gaps are of the order of 1eV , leading to optical frequencies.

Compared to real atoms, the notable improvement in table 7.1 is the sig-
nificantly enhanced g; this arises from the increased Bohr radius, and hence
larger dipole matrix element, as well as the much reduced mode volume.
As the quantum dots are fixed inside the semiconductor, microstructures
can be grown with characteristic sizes comparable to the wavelength of
light. The mechanism of light confinement used for such cavities varies,
combining one or more of dielectric contrast, Bragg mirrors, or photonic
band gap materials. Dielectric contrast can produce reasonable confine-
ment for whispering gallery modes (WGM) in circular resonators; in this
case the WGM makes a shallow angle of incidence with the edge of the
cavity, and so is confined by total internal reflection. Cavity decay rates
are however typically much larger than cavities used for atoms, due to the
lower quality of mirrors in integrated semiconductor heterostructures. The
exciton decay rate is much larger than for real atoms due to the solid state
environment. Just as for superconducting artificial atoms, this again leads
both to reduced T1 and also T2 dephasing.

7.4 Further reading

For a discussion of the Purcell effect, and the crossover between weak and
strong coupling, see e.g. Meystre and Sargent III [12]. The discussion
of particular cavity QED systems in this chapter is based on various re-
views: for Rydberg atoms, see Raimond et al. [4] or Gallagher [21]; for
superconducting qubits, see Blais et al. [3]; for excitons in semiconductor
microcavities, see Khitrova et al. [5].
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Questions

Question 7.1: Pseudo-mode decay rate.
Consider a standing wave confined within the cavity, i.e. ψ0(x) =√

2/a cos[(2n + 1)πx/a]. By considering the decomposition of this wave
onto the true eigenmodes of the extended system (as calculated in Sec. 7.1),
show that the time evolution of the overlap |〈ψ0|ψ0(t)〉| decays at rate κ/2,
as defined in Eq. (7.14).



Lecture 8

Collective effects of two-level
atoms: open systems,
superradiance

So far in these lectures we have either considered behaviour of a single
two-level atom, or if we have considered ensembles then we have assumed
the atoms act independently. However, as first pointed out by Dicke[22],
this approach cannot be correct if the atoms are close together, as they
see the same electromagnetic modes with sufficiently similar phases, and so
emission is a collective process. This collective behaviour can significantly
change how decay occurs, even when the electromagnetic modes are treated
as a Markovian bath, with short memory times.

In this lecture we will consider the case of many atoms coupled to a
continuum of radiation modes (i.e. without a cavity); the next lecture will
consider collective effects of many atoms with a cavity.

8.1 Simple density matrix equation for collective
emission

We may begin by considering coupling between a collection of atoms and
radiation modes:

HSR =
∑
k

∑
i

gk
2

(
σ−i a

†
ke
i(ωk−ε)t−ik·ri + σ+

i ake
i(ε−ωk)t+ik·ri

)
. (8.1)

Repeating the derivation of the system density matrix equation, we recover:

d

dt
ρ(t) = −

∑
ij

∫ t

dt′
∑
k

∣∣∣gk
2

∣∣∣2 eik·(ri−rj)

×
[
σ+
i σ
−
j ξ
∗
kρ− σ−j ρσ

+
i (ξk + ξ∗k) + ρσ+

i σ
−
j ξk

]
. (8.2)

Two extremes of this equation exist; if |ri − rj | � λ0, then the atoms will
act independently. In the other extreme, we may neglect all phase factors,
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in which case we can introduce:

J =
∑
i

σi (8.3)

and write:
d

dt
ρ(t) = −Γ

2
[
J+J−ρ− J−ρJ+ + ρJ+J−

]
. (8.4)

This second limit is what we will consider in this section. We must however
note that when separations are small, one must also consider the effects
of Coulomb interactions between the two-level systems. In the Coulomb
gauge, this means the explicit Coulomb term will have an effect; in the
dipole gauge, the problem is instead that long-wavelength modes (for which
phase factors can not be neglected) describe the effects of Coulomb inter-
action, leading to important energy shifts. We will discuss this effect in
section 8.2. Putting aside these issues for the moment, let us study the
consequences of Eq. (8.4)

Dicke Enhancement of emission rate

A simple understanding of how collective emission differs from independent
emission can be found by considering eigenstates of |J |, Jz. These are spin
states and so obey:

J2|J,M〉 = J(J + 1)|J,M〉 (8.5)
Jz|J,M〉 = M |J,M〉 (8.6)

J−|J,M〉 =
√
J(J + 1)−M(M − 1)|J,M − 1〉 (8.7)

We may then use these states as a basis for the density matrix equation,
and writing equations for the diagonal elements PMJ = ρMJ,MJ we find:

d

dt
PM,J =− Γ[J(J + 1)−M(M − 1)]PM,J

+ Γ[J(J + 1)−M(M + 1)]PM+1,J (8.8)

The rate of emission is thus I = Γ[J(J + 1)−M(M − 1)] = Γ(J +M)(J −
M + 1), whereas if incoherent, the total emission rate would be ΓN .

If we consider cases where J = N/2, if J takes the maximum value
possible consistent with the number of two-level systems, then the radiation
rates at characteristic values of M are:

M = N
2 I = ΓN

M = 0 I = ΓN2

4

M = −N
2 + 1 I = ΓN

(8.9)

Thus, near M = 0, there is macroscopic enhancement of the emission rate
compared to the incoherent case. Even when M = 1 − N/2, the emis-
sion is much greater than it would be for a single excitation if considering
independent atoms.
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Solving the simple model

The above estimates indicate the general idea of superradiance; as M de-
creases, the collective effects increase in importance, leading to an increas-
ing rate of transitions through the super-radiant cascade. Our aim in the
following will be to describe this cascade. Before discussing a tractable ap-
proximation scheme, we may note that the Laplace transformed equations
can be straightforwardly solved to give:

[s+ Γ2J ]PJ,J(s) = 1
[s+ Γ(J +M)(J −M + 1)]PM,J(s) = Γ(J +M + 1)(J −M)PM+1,J(s)

The general result will thus be a sum of exponential decays with different
time constants, and prefactors linear in t (degenerate decay rates exist, with
M ↔ 1−M having the same rate, hence the matrix problem for eigenvalues
is defective). While this approach may be appropriate numerically, it does
not help to produce a qualitative understanding of the decay, so we will
instead concentrate on approximately solving the density matrix equations.

Semiclassical evolution after initial times

As a first approach, we may write a semiclassical approximation for how M
evolves. Since J does not change during the time evolution, we will drop
the label J , and assume J = N/2 throughout.

d

dt
〈M〉 =

∑
M

M
d

dt
PM = −Γ

∑
M

[M − (M − 1)](J +M)(J −M + 1)PM

= −Γ〈(J +M)(J −M − 1)〉 (8.10)

The semiclassical approximation is to assume that 〈(M−〈M〉)2〉 � 〈M〉2 so
that expectations of products of operators can be represented as products
of expectations, and one has:

d

dt
〈M〉 ' −Γ(J2 − 〈M〉2) (8.11)

We have also assumed here that J, 〈M〉 � 1, such an approximation will
be seen later to arise naturally whenever the semiclassical approximation
is valid.

These equations can be solved by substituting 〈M〉 = J tanh(χ), which
lead to dχ/dt = −ΓJ , hence the general solution is:

〈M〉 = −J tanh[ΓJ(t− tD)], I = −Γ
d〈M〉
dt

= ΓJ2sech2[ΓJ(t− tD)]

(8.12)

Semiclassical results in Heisenberg picture The same results can
be recovered in the Heisenberg picture by considering equations of motion
for the operators Jz, J±. This approach will be useful later on, when con-
sidering an extended system. Using the commutation relations [J+, J−] =
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-J
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Figure 8.1: Time evolution of 〈M〉 and the associated rate of
radiation calculated semiclassically

2Jz, [Jz, J±] = ±J±, we may write:

d

dt
〈J−〉 = Tr

(
J−

dρ

dt

)
= −Γ

2
Tr
(
[J−J+ − J+J−]J−ρ

)
= Γ〈JzJ+〉.

(8.13)
Similarly, one finds (d/dt)〈Jz〉 = −Γ〈J+J−〉. The semiclassical approxima-
tion corresponds again to factorising products of operators, thus yielding:

d

dt
〈Jz〉 = −Γ|〈J−〉|2, d

dt
〈J−〉 = Γ〈Jz〉〈J−〉 (8.14)

Clearly 〈Jz〉 = 〈M〉, and so the previous equations can be recovered by
writing 〈Jz〉 = J tanh(χ) along with 〈J−〉 = Jsech(χ)eiφ. The phase φ is
constant, and is not determined by the equations of motion. While this
substitution is most suitable to solve the equations, it is also worth noting
(for future reference) that another substitution is more natural in order to
understand the behaviour. By noting that the components J−, Jz represent
parts of a collective spin, one is led to write:

〈Jz〉 = J cos(θ), 〈J−〉 = J sin(θ)eiφ, → θ̇ = ΓJ sin(θ). (8.15)

Hence, superradiance corresponds to the collective spin behaving as a damped
pendulum, initially in its inverted state.

Early time evolution

In the above description, it is clear that at early times, when fully inverted,
the classical equations will not start. However, at early times the semiclas-
sical approximation fails. In order that semiclassics is valid, the distribution
of M should not spread too much, and so the M dependence of the time
evolution rate should be small compared to the mean evolution, i.e.∣∣∣∣ ddM (J +M)(J −M + 1)

∣∣∣∣ = |2M − 1| � J2 −M2. (8.16)

It is clear that this is true as long as |M | � J , thus semiclassical evolution
describes the late time evolution, but not the early time. At early times,
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M spreads, but at later times no significant spread occurs. This allows us
to write:

PM (t) =
∫
dsPJ−s(t0)δ

(
M − 〈M(t)〉|〈M(t0)〉=J−s

)
. (8.17)

i.e., if we find the density matrix at early times, then for each possible
value of M arising from it, we may evolve forward semiclassically. The
initial state, can be matched to the solution in Eq. (8.12), expanded for
small s to give:

〈M(t0)〉 = J − s ' J
[
1− 2e2ΓJ(t0−tD)

]
(8.18)

thus the “delay time” appearing in the semiclassical equation is given by:

tD(s) = t0 +
1

2ΓJ
ln
(

2J
s

)
. (8.19)

This formula allows one to translate the result of the early time evolution
at t0 into the subsequent evolution of M . Small values of s, describing
small deviations from an initially inverted state, correspond to longer delay
times; because the inverted state is unstable the initial motion away from
this point is exponential growth, hence the logarithmic dependence of delay
time on the value of s. To complete the problem, we must find how the
distribution of M spreads for early times.

At early times, excitation numbers remain of order M ' J , i.e. we may
write PJ=M−s and expand Eq. (8.8) for small s to give:

d

dt
Ps = −Γ(2J − s)(s+ 1)Ps + Γ(2J − s+ 1)sPs−1

' −Γ2J [(s+ 1)Ps − sPs−1]. (8.20)

Solving the first two cases, with the initial condition P0 = 1, Ps>0 = 0, one
finds:

P0 = e−Γ2Jt, P1 = e−Γ2Jt(1− e−Γ2Jt), . . . (8.21)

from which one may guess the general solution:

Ps = e−Γ2Jt(1− e−Γ2Jt)s (8.22)

This can be shown to satisfy the equation of motion, i.e.:

d

dt
Ps = −Γ2J

[
Ps + s(e−Γ2Jt − 1 + 1)Ps−1)

]
= −Γ2J [(1 + s)Ps − sPs−1] . (8.23)

This is a Bose-Einstein distribution, Ps ∝ zs with z = 1−exp(−Γ2Jt) which
has mean excitation 〈s〉 = z/(1− z) = eΓ2Jt−1, which grows exponentially
at early times.

If we choose t0 such that 2ΓJt0 � 1, then (for large enough J) it is
possible simultaneously to fulfil the condition for semiclassical evolution,
and also to expand the above distribution for large t as giving:

Ps(t0) = exp
(
−Γ2Jt0 − se−Γ2Jt0

)
(8.24)



74 LECTURE 8. SUPERRADIANCE

Putting together all of the above ingredients, one has the result:

PM (t) =
∫
ds exp

(
−Γ2Jt0 − se−Γ2Jt0

)
× δ

(
M + J tanh

[
ΓJ
(
t− t0 −

1
2ΓJ

ln
(

2J
s

))])
(8.25)

Since t0 was somewhat arbitrary, this result should not depend on t0, and
indeed (see question 8.2) it does not. Thus, one can set t0 = 0 and find a
full semiclassical approximation of the time evolution of PM .

Early time evolution for Heisenberg picture The above analysis of
PM for short times has an equivalent manifestation in the Heisenberg pic-
ture. For early times, one cannot factorise 〈J+J−〉 as |〈J−〉|2, but instead,
one needs to worry about correlations of the operators. This can be treated
approximately by assuming that the initial value of 〈J−〉 should be drawn
from a Gaussian distribution of mean 0, and variance 〈JJ |J+J−|JJ〉 = 2J .
These quantum fluctuations are then amplified by the semiclassical be-
haviour, just as the semiclassical evolution of PJ amplifies small initial
differences in M via the different classical trajectories they lead to.

8.2 Beyond the simple model

The above discussion assumed a contradictory set of conditions; it assumed
that the atoms are close enough that phase differences between their cou-
pling to light could be neglected, and that also assumed that the Coulomb
interactions between the atoms could be neglected. As the following will
show, one or other of these conditions can hold, but not both, and their
violation will modify the superradiant behaviour.

Coulomb interactions and dephasing

If the atoms remain close together, the above treatment of coupling to
propagating radiation modes is correct, but Coulomb interactions between
atoms will break the indistinguishability that led to the collective enhance-
ments. Indistinguishability is broken as each atom sees a different environ-
ment of Coulomb interactions from its neighbours. The Coulomb interac-
tion can be written as:

Hcoulomb =
∑
i>j

Ωij

(
σ+
i σ
−
j + σ+

j σ
−
i

)
. (8.26)

Treating atoms in the dipole approximation, the dipole-dipole coupling is
given by:

Ωij =
|dab|2

4πε0r3
ij

(
1− 3

(d̂ · rij)
r2
ij

)
. (8.27)

Before discussing the effect of this term, we may first notice that it de-
pends on rather similar parameters to Γ, and in terms of the characteristic
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strength, one may write:

Ωij

Γ
' |dab|2

4πε0r3
ij

3πε0c
3

|dab|2ω3
0

=
3

32π3

(
λ

rij

)3

(8.28)

Thus, the same condition required in order to neglect phase differences also
implies that Ωij & Γ.

Superradiance occurred because of constructive interference between
the indistinguishable pathways of atomic de-excitation. The Coulomb term
makes atoms distinguishable. Physically this means that while the coupling
to light in Eq. (8.4) causes transitions between symmetric atomic states,
Coulomb interaction make symmetric superpositions evolve into less sym-
metric superpositions, thus reducing J .

Coulomb interactions do not however change the excitation level M ,
it merely transfers excitation between atoms. As such, one may estimate
the relative size of effect of the Coulomb term vs M by considering the
number of possible states with a given M . When M = N/2, only one
state is possible, the symmetric state with J = M = N/2, thus Coulomb
interactions may shift the total energy, but not modify the state. For
smaller values of M , one may use the number of representations of N spins
with modulus J , given by:

νN (J) =
(2J + 1)N !

(N/2 + J + 1)!(N/2− J)!
. (8.29)

The number of possible states of given M is the number of representations
having J > M , i.e.

∑N/2
J=M νN (J). This behaviour leads to the following

scenario. For M ' J , Coulomb terms do not significantly effect the decay,
but as M approaches J (in fact, when M '

√
J), Coulomb terms rapidly

dephase the atoms, transferring the system to states with J ≤
√
N , and

thus suppressing superradiance.
If one were to work in the electric Dipole gauge, the equations may

appear different, as no static Coulomb term exists in the Hamiltonian.
However, in this case, the low k part of the photon mediated interaction
describes the same physics. This means that even though a Markovian
approximation can be made for the sum in Eq. (8.2) for nearly resonant
modes, the low k modes must be treated carefully, and contribute an im-
portant imaginary part (energy shift). In contrast, the different form of
gk in the Coulomb gauge means that the low k parts of this sum cause no
particular problem, as the Coulomb term is already explicitly included.

Extended systems

To avoid the effects of Coulomb interactions, one may instead consider
extended systems, where rij > λ, and so Coulomb effects become weaker.
However, in this case, we can no longer neglect the phase differences seen
by different atoms, and so the evolution will be more complicated that
Eq. (8.4).
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The simplest possible extended system is a one dimensional system1. In
this case, we may replace the phase factors by exp[ik(zi − zj)], and forget
about summation over directions of k. Note that in this replacement, we
have chosen to specifically consider forward propagating waves in the z
direction. An equivalent description of backward propagating waves will
exist, however for simplicity we neglect this complication.

In this approximation, our equation of motion becomes:

d

dt
ρ(t) = −

∑
ij

∫ t

dt′
∑
k

∣∣∣gk
2

∣∣∣2 eik(zi−zj)

×
[
σ+
i σ
−
j ξ
∗
kρ− σ−j ρσ

+
i (ξk + ξ∗k) + ρσ+

i σ
−
j ξk

]
. (8.30)

and we may note that:∫ t

dt′ξ∗k =
1

i(ωk − ε) + 0+
= −iP

(
1

ωk − ε

)
+ πδ(ωk − ε) (8.31)

In the previous discussion of decay, we have only considered the delta func-
tion, and have neglected the principal value part. This can sometimes be
valid, as the imaginary part gives an energy shift — i.e. it contributes
a term that looks like [Heff, ρ], describing Hamiltonian dynamics. If this
Lamb shift is site independent (or if we only have a single atom) then such
a shift can be absorbed into renormalisation of the bare Hamiltonian. How-
ever, it can also lead to effective interactions between the atoms. We have
already mentioned one example of this; Coulomb interactions in the Dipole
gauge originate from the low k contribution of these imaginary parts. In
the current case, we work in the Coulomb gauge, so these low k terms are
not important, however the imaginary parts of the resonant terms (i.e. for
ωk ' ε) will play an important role in the extended system. These terms
lead to phase shifts that are responsible for causality emerging in the final
result.

To see this causality, we consider:

Λij =
∑
k

∣∣∣gk
2

∣∣∣2 eik(zi−zj)

i(ωk − ε) + 0+
. (8.32)

Concentrating on nearly resonant terms, we may approximate the density
of states by Γ/2π, and extend the sum over k to ±∞, yielding:

Λij '
Γ
2π

∫ ∞
−∞

cdk
eik(zi−zj)

i(ck − ε) + 0+
= ΓΘ(zi − zj)eik0(zi−zj) (8.33)

where k0 = ε/c. In the case that we may neglect phases, this becomes
Γ/2, due to the step function. If we phase shift the system operators

1To be able to truly treat a 1D system, one has two opposing constraints; the system
must be narrow enough that there are not significant numbers of transverse modes. At
the same time, diffraction must be small enough that propagation remains axial. These
constraints are best satisfied by a tube of waist w '

√
Lλ.
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σ−i → σ−i e
−ik0zi then we find:

dρ

dt
= −Γ

∑
zi>zj

(
σ+
i σ
−
j ρ− σ

−
j ρσ

+
i − σ

−
i ρσ

+
j + ρσ+

j σ
−
i

)
(8.34)

This describes causality, in that operators must always proceed from small
z to larger z. Note that the previous factor of 1/2 is replaced by the
restricted range of the sum. Because we have written a Markovian density
matrix equation, we have neglected propagation time of electric fields, and
so the above equation only applies for intermediate sized systems. For
larger systems Heisenberg equations can be used to extend the range of
validity.

To describe the behaviour more concretely, let us consider the Heisen-
berg equations within this Markovian approximation. Following the proce-
dure of Sec. 8.1 we may write:

d

dt
〈σzk〉 = −Γ

∑
zi>zj

Tr
{(

[σzk, σ
+
i ]σ−j − σ

+
j [σzk, σ

−
i ]
)
ρ
}

= −Γ
∑
zj<zk

〈σ+
k σ
−
j + σ+

j σ
−
k 〉 (8.35)

d

dt
〈σ−k 〉 = 2Γ

∑
zj<zk

〈σzkσ−j 〉. (8.36)

These equations cannot directly be factorised if they apply to single
two-level systems, but a coarse grained version, in terms of:

N (z) =
∑
i

δ(z − zi)〈σzi 〉, P(z) =
∑
i

δ(z − zi)〈σ−i 〉, (8.37)

can be considered instead. These give the semiclassical approximation

dN
dt

= −Γ
∫ z

dz′
[
P(z)P∗(z′) + P(z′)P∗(z)

]
(8.38)

dP
dt

= 2Γ
∫ z

dz′N (z)P(z′) (8.39)

If we define E =
∫ z
dz′P(z′) then this reduces to the simpler set of equa-

tions:

dN
dt

= −Γ [PE∗ + EP∗] , dP
dt

= 2ΓNE , dE
dz

= P. (8.40)

Here, E can be interpreted as proportional to the electric field strength,
resulting from the integrated polarisation of the medium to the left of the
current position. (Were we to have instead written Heisenberg equations
from the begining, and were we to have avoided making the Markovian
approximation, then a similar set of equations would have been found, but
with the retarded time τ = t− z/c appearing in place of the t.)
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Equations (8.40) can then be understood by the same substitution as
in Sec. 8.1, mapping them to a generaised damped pendulum problem.
Writing N = N0 cos(θ),P = N0 sin(θ)eiφ one has the equations:

dθ

dt
eiφ = 2ΓE , dE

dz
= N0 sin(θ)eiφ (8.41)

giving the result:

d2θ

dzdt
= 2ΓN0 sin(θ), I ∝ |E|2 ∝

∣∣∣∣dθdt
∣∣∣∣2 . (8.42)

Compared to the small system equation, the principal difference here is
that this equation is now second order, i.e. it contains both damping and
inertia. For sufficiently long samples, one thus has ringing oscillations, as
each atom accumulates a different phase depending on where it is. This
causes overshoot, and hence oscillations.

8.3 Further reading

A comprehensive review of superradiance may be found in Gross and Haroche
[23].

Questions

Question 8.1: Coherent states of spin
Consider an alternative choice of coherent atomic states, known as co-

herent states of spin:

|ψ(α)〉 = N eαJ+ |−J, J〉 . (8.43)

8.1.(a) Show that normalisation of |ψ(α)〉 implies N (1 + |α|2)J = 1.

8.1.(b) Evaluate 〈ψ(α)| Jz |ψ(α)〉 and 〈ψ(α)| J+J− |ψ(α)〉.

8.1.(c) Thus, compare the rate of photon emission from a coherent state
of spin and the Dicke states discussed earlier in this section.

Question 8.2: t0 independence of superradiance Ps(t) Show that
equation (8.25) is independent of t0, by evaluating the partial derivative
with respect to t0 and showing it vanishes.



Lecture 9

More collective effects:
Cavity system and the Dicke
model

In lecture 8, collective atomic decay was discussed for coupling to a con-
tinuum of modes. This lecture considers the case of collective atomic be-
haviour in a cavity. Two particular cases are considered: the first section is
on the possibility of spontaneous coherence in thermal equilibrium, and the
second section discusses the general time evolution starting from a fully ex-
cited atomic state. In the first section we ask whether the model in thermal
equilibrium can undergo a phase transition in which the two-level systems
polarise, and generate an expectation of the photon field.

9.1 Phase transitions, spontaneous
superradiance

In this first section, we will consider the Dicke model without the rotating
wave approximation. Written in terms of spin operators σi for the two-level
systems, this is:

H =
∑
i

εσzi + ωa†a+
∑
i

g

2

(
a† + a

) (
σ+
i + σ−i

)
. (9.1)

We wish to consider the thermodynamics of this model, by considering a
mean-field theory, in which we assume a coherent mean-field for the photon
state, and find the associated free energy. If the free energy is minimised
by a non-zero photon field, (i.e. if such a state has a lower free energy
than the vacuum state), then there is a phase transition to a spontaneous
superradiant phase. For a coherent photon state exp(−|α|2/2+αa†)|0〉, the
associated partition function can be written as:

Z[α] = e−βω|α|
2
∏
i

∑
σi

exp
(
−β
[
2gα′σxi + εσzi

])
. (9.2)

Here, we have written real and imaginary parts of α as α = α′ + iα′′, and
have used σ+

i + σ−i = 2σxi . One may then evaluate the sum over states of
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the two-level system by transforming to the diagonal basis in the presence
of field α′. The eigenvalues of the 2 × 2 matrices are then ±E/2, with
E =

√
ε2 + 4g2α′2, and so the free energy is given by:

F (α) = ω|α|2 − N

β
ln
[
cosh

(
β

2

√
ε2 + 4g2α′2

)]
. (9.3)

To determine where a non-zero value of α can minimise F , we should find
the derivative of F with respect to α, to locate possible stationary points.
Clearly, dF/dα′′ = 2ωα′′, and so for any stationary point we must have
α′′ = 0. For the real part of α we have instead

dF

dα′
= 2ωα′ − N

β

β

2
4g2α′√

ε2 + 4g2α′2
tanh

(
β

2

√
ε2 + 4g2α′2

)
. (9.4)

Using the eigenvalue energies E defined above, this may be rewritten in the
simpler form:

dF

dα′
= 2α′

[
ω − Ng2

E
tanh

(
βE

2

)]
. (9.5)

A non-zero α′ solution exists if the term in brackets can be made to vanish.
In order that this vanishes at some temperature T > 0, we require that the
function tanh(βE/2)/E crosses the value ω/Ng2. As illustrated in Fig. 9.1,
at small temperatures, tanh(βE/2)/E ' 1/E, while at large temperatures
it becomes 1/2T . Thus, for a crossing to occur, one requires 1/E > ω/Ng2,
and since E > |ε|, a transition may exist if ε < Ng2/ω.
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Figure 9.1: Graphical representation of Eq. (9.5). It is clear that
for a solution to exist, it is necessary for 1/|ε| > 1/E > ω/Ng2.

Now, recalling the definition of g in terms of microscopic parameters
and matrix elements in Eq. (1.39), we have the condition:

εω <
N

V

(
2|dab|2ε2

ε0ω

)
. (9.6)
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Thus, apparently a transition can occur if the density of two-level systems
is large enough. This phase transition was originally discussed by Hepp
and Lieb [24, 25], and in the form presented here by Wang and Hioe [26].

9.2 No-go theorem: no vacuum instability

If the density of two-level systems is large enough, the Dicke model is in-
valid, as we have neglected the matter-radiation coupling originating from
the A2 terms. Let us restore these terms, and see at what density of two-
level systems they become important. In the same single-mode approxima-
tion in which we are treating the quantised radiation, the correction due
these terms can be written following Eq. (1.35) as:

δHA2 = Nζ(a + a†)2; ζ =
q2

4mε0ωV
. (9.7)

(NB, the mass m appearing here for the contribution from a single atom is
1/m = 1/me + 1/mi, i.e. is the reduce electron-ion mass.) Including this
term in the Hamiltonian, the function F (α) acquires an extra dependence
on α′, giving

F (α) = ω|α|2 + ζN4α′2 − N

β
ln
[
cosh

(
β

2

√
ε2 + 4g2α′2

)]
. (9.8)

In terms of the condition for a phase transition to occur, this means one
should replace ω → ω + 4ζN ; i.e. the condition is now ε(ω + 4ζN) < Ng2

Physically, this means that the A2 terms in the Hamiltonian describe a
dielectric response of the atoms, opposing large transverse fields; as a result,
the energy cost of spontaneous polarisation has increased, and sponatneous
effects can arise only if the two-level system susceptibility is larger than it
was above. Combining the defintions of ζ and g, we may write the new
condition as:

εω + ε
N

V

(
q2

mε0ω

)
<
N

V

(
2|dab|2ε2

ε0ω

)
. (9.9)

As a function of density of two-level systems, this condition is clearly not
satisfied at N/V = 0, but will be satisfied for some finite density of two-level
systems if and only if:

ε
q2

mε0ω
<

2|dab|2ε2

ε0ω
. (9.10)

Thus, spontaneous polarisation requires that the energy and dipole matrix
elements of an atom can satisfy 2|dab|2ε > q2/m.

Thomas-Reiche-Kuhn sum rule

The energy and dipole matrix elements obey a sum rule, restricting the
relative values they may take. This sum rule can be derived from assuming
that the internal atomic Hamiltonian depends on internal momentum like
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H0 ' p2/2m + V (r). (Such an assumption was already implicit in our
derivation of g.) Then, as before, p/m = i[H0, r], and so

[
r, [H0, r]

]
= −i 1

m
[r, p] =

1
m
. (9.11)

Since this identity gives a c-number, the expectation of this identity for any
state will match, thus:

q2

m
= 〈ψ|

[
qr, [H0, qr]

]
|ψ〉 . (9.12)

Then, inserting a complete set of states |φ〉, we have:

q2

m
=
∑
φ

{
〈ψ| qr |φ〉 〈φ| [H0, qr] |ψ〉 − 〈ψ| [H0, qr] |φ〉 〈φ| qr |ψ〉

}
=
∑
φ

{dψφ(Eφ − Eψ)dφψ − dφψ(Eψ − Eφ)dψφ}

= 2
∑
φ

|dψφ|2(Eφ − Eψ). (9.13)

This is the Thomas-Reiche-Kuhn sum rule, relating the total oscillator
strength, weighted by energy, to the charge and mass of particles involved.
There is an immediate corollary of this rule; suppose that ψ is chosen to be
the ground state. In this case, the right hand side of Eq. (9.13) is a sum of
positive terms, and so is greater than any one of its terms. Taking the two
lowest levels, one may then write:

q2

m
> 2|dab|2ε. (9.14)

The sum rule has therefore proved the opposite inequality to the one we
require for a phase transition; the sum rule prevents such a phase transi-
tion from occurring. This observation was first pointed out by Rza̧żewski,
Wódkiewicz, and Żakowicz [27].

9.3 Radiation in a box; restoring the phase
transition

The above result shows that the phase transition by which the vacuum
state becomes unstable, and spontaneously polarises is an artefact of that
model, and not physical. This however is not the end of the story. There
is a simple extension to the Dicke model, which is appropriate in a variety
of recent works on confined quantum optical systems, which can restore
the phase transition. That extension is to consider a closed system with a
density of excitations. This means considering the at-first counterintuitive
idea of a chemical potential for photons.

The idea of a chemical potential for photons is not generally considered
because photons cannot easily be confined, and so a fixed density of photons



9.4. DYNAMIC SUPERRADIANCE 83

is hard to achieve. Without confinement, photons can be exchanged with
the bulk, which acts as a reservoir at zero chemical potential. However, in
engineered cavity quantum electrodynamics systems, photon confinement is
exactly what is being created, and so for such systems, including polaritons
in semiconductor microcavities, Josephson junctions in microwave waveg-
uides, and atoms in superconducting mirror cavities, a chemical potential
for photons is a useful concept.

Adding a chemical potential, we have

H → H̃ = H − µM, M =
∑
i

(
σzi +

1
2

)
+ a†a. (9.15)

The net result is to replace ε→ ε̃ = ε− µ and ω → ω̃ = ω− µ in the previ-
ous Hamiltonian (although the factors of ε and ω in the coupling strengths
remain unmodified). In this case, it is clear that one can satisfy the condi-
tion ε̃ (ω̃ + 4ζN) < Ng2 by ensuring the chemical potential is close enough
to the two-level system energy. Since this may be done at any density of
two-level systems, we may assume a low density, and so neglect ζ — i.e.
neglect the A2 terms in the Hamiltonian.

Since a transition may occur, it is interesting to find the critical temper-
ature of this transition. From the adapted form of Eq. (9.5), this condition
is:

(ε− µ) (ω − µ) = Ng2 tanh
(
ε− µ
2T

)
. (9.16)

This can be combined with the equilibrium expectation of the number of
excitations 〈M〉 in the absence of an expectation of α, which gives.

〈M〉
N

=
1
2

[
1− tanh

(
ε− µ
2T

)]
. (9.17)

Combining these allows one to plot the phase boundary, as shown in
Fig. 9.2. See question 9.1 for further discussion.

9.4 Dynamic superradiance

In this section, we consider the general time evolution of the Dicke model,
starting from a fully inverted atomic state. This describes the analog of the
superradiance discussed in Sec. 8 in the case where there is a good cavity.

For illustration, we discuss here the simplest case of ε = ω, and so our
model is:

H = ωJz +
g

2

(
a†J− + aJ+

)
+ ωa†a. (9.18)

To study the semiclassical dynamics, we first write the Heisenberg equa-
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Figure 9.2: Critical temperature vs excitation density, plotted for
three different values of ω (measured with respect to ε), including
the case of ω = ε discussed in Q. 9.1. The inset shows 1/T vs
density on a logarithmic scale, illustrating the asymptotic form at
low densities.

tions of motion:

J̇x = i[H,Jx] = −ωJy +
g

2
i
(
a− a†

)
Jz, (9.19)

J̇y = i[H,Jy] = +ωJx − g

2

(
a+ a†

)
Jz, (9.20)

J̇z = i[H,Jz] = −g
2
i
(
a− a†

)
Jx +

g

2

(
a+ a†

)
Jy, (9.21)

iȧ = −[H, a] =
g

2
(Jx − iJy) + ωa. (9.22)

The semiclassical approximation is then to replace these equations for non-
commuting operators for equations for their commuting expectations, and
to factorise the expectations, so 〈(a + a†)Jz〉 → 〈a + a†〉〈Jz〉. Doing this,
and writing 〈a〉 = α = α′ + iα′′ the above equations can be written as:

J̇ = h× J, h =

 gα′

−gα′′
ω

 , iα̇ =
g

2
(Jx − iJy) + ωα. (9.23)

In order to solve these equations, it is first convenient to transform to a
rotating frame. This means substituting α → αe−iωt, and J− → J−e−iωt,
i.e.

J→

 cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

J. (9.24)

This then gives

J̇ = h× J, h =

 gα′

−gα′′
0

 , iα̇ =
g

2
(Jx − iJy) . (9.25)
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At this point, starting in the excited state J = J0ẑ, we can make the ansatz:

J = J0

 0
sin(θ)
cos(θ)

 , J̇ = J0θ̇

 0
cos(θ)
− sin(θ)

 . (9.26)

Then, substituting this into the equations of motion, we have:

J0θ̇

 0
cos(θ)
− sin(θ)

 = gJ0

 −α′′ cos(θ)
−α′ cos(θ)
α′ sin(θ)

 , (9.27)

which implies α′′ = 0 and θ̇ = −gα′. Then, the equation for α = α′ gives:

α̇′ = −gJ0

2
sin(θ). (9.28)

Thus, the angle defining the Bloch vector obeys the equation of motion:

θ̈ = −gα̇′ = g2J0

2
sin(θ). (9.29)

This is the equation of motion for an (initially) inverted pendulum, and so
the Bloch vector makes traces out great circles passing through the entirely
inverted, and entirely empty states. One should compare this second order
equation for dynamical superradiance in a cavity to the first order equation
in the decaying case discussed in Sec. 8.1 of the previous lecture.

When non-resonant, i.e. ε 6= ω, the comparable equations are more
complicated (see question 9.2), however the general result is similar: af-
ter transformation to a rotating frame, the Bloch vector traces out circles
(see Fig. 9.3), and can always be mapped to the problem of an inverted
pendulum.

J

J

J

z

y

x

Figure 9.3: Bloch sphere, and paths that Bloch vector takes in
the rotating frame, in the general (non-resonant) case.
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9.5 Further Reading

The original phase transition of the Dicke model is discussed in Refs.[24–
26]. The “no-go” theorem is introduced in Ref.[27] and elaborated further
by, e.g. Ref.[28]. The phase transition of a model with a chemical potential
is discussed by Eastham and Littlewood [29, 30].

As hinted to in the discussion on dynamic superradiance, the Dicke
model is integrable, and this integrability extends even to the case of a
distribution of two-level system energies:

H =
∑
i

εiσ
z
i + ωa†a+

∑
i

g

2

(
a†σ−i + aσ+

i

)
. (9.30)

The integrability of this model can be proven by defining a vector function
L(z), having the following properties:

• The modulus of the vector L(z) is conserved.

• The Taylor expansion in z contains as many powers of z as there are
two-level systems.

Together, these mean that L(z) contains sufficient conserved quantities that
the system is integrable. This method is discussed in specific case of the
Dicke model by Yuzbashyan, Kuznetsov, and Altshuler [31]. The history of
this integrability, and its relation to a wider class of models is discussed in
the review article by Dukelsky, Pittel, and Sierra [32]. The time-dependent
solution, starting from the excited state is given by the same method used
in question 9.2 by Barankov and Levitov [33].

Questions

Question 9.1: Asymptotic form of phase boundary

9.1.(a) By combining Eq. (9.16) with Eq. (9.17), show that at low den-
sities, in the resonant case (ε = ω), one may write:

Tc '
−g

ln (〈M〉/N)
. (9.31)

9.1.(b) Find the low density asymptote in the more general case ε 6= ω.

Question 9.2: Non resonant Bloch vector precession
Consider the non-resonant case of the Dicke model:

H = εJz +
g

2

(
a†J− + aJ+

)
+ ωa†a. (9.32)
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9.2.(a) Show that the semiclassical equations of motion may be written
as:

iJ̇− = εJ− − 2gαJz, (9.33)

iJ̇z = g
(
J+α− J−α∗

)
, (9.34)

iα̇ = gJ− + ωα. (9.35)

9.2.(b) By making a change to a rotating basis, but using α → αe−iηt,
J− → J−e−iηt, show that this changes the above equations by replacing
ω → ω̃ = ω − η and ε→ ε̃ = ε− η.

The solution to these equations, analogous to the one discussed in
Sec. 9.4 has the special property that α is real. Making the ansatz J− =
Aα+ iBα̇, Jz = J0 − Cα2, and using =(α) = 0, show the following:

9.2.(c) The imaginary part of the equation for J− implies A = ε̃B;

9.2.(d) The equation for Jz implies C = gB/2;

9.2.(e) The equation for α implies gB/2 = 1, and ω̃ + ε̃ = 0
The last of these conditions fixes η, i.e. η = (ω+ ε)/2. This leaves only

the real part of the equation of motion for J−.

9.2.(f) Show that this equation has a first integral, and that this first
integral is equivalent to the condition that |J |2 = J+J−+(Jz)2 is a constant
of the motion.

9.2.(g) Using the initial condition |J |2 = J2
0 , show that this final equa-

tion may be written as:

α̇ =
g

2
α
√
α2

0 − α2, α2
0 = 2J0 − 4

(
ε̃

g

)2

(9.36)

9.2.(h) Thus, writing α = α0 sin(θ/2), show that the equation of motion
has the form::

θ̈ =
g2

2

[
J0 − 2

(
ε̃

g

)2
]

sin(θ) (9.37)

9.2.(i) Find the form of Jz in terms of θ, and compare to the solution
in the resonant case.





Lecture 10

Lasers and micromasers

In this lecture, we move to discuss a somewhat more classical system, the
laser. The laser is classical in the sense that far above the lasing thresh-
old, it produces large coherent states with classical correlations, and it is
based on stimulated emission of radiation, which can be described classi-
cally. However, we will discuss not only simple lasers, for which reasonable
classical descriptions may exist, but also more quantum mechanical sys-
tems, such as the micromaser, in which two-level atoms fall, one at a time,
through a cavity, and in which the quantum mechanical evolution of each
atom matters.

10.1 Density matrix equations for a micromaser
and a laser

The aim of this section will be to write down a density matrix equation
describing a laser, and to find the steady state of this equation. The laser
will consist of a cavity mode, coupled both to the continuum of modes
outside the cavity, and to a gain medium that provides photons to the
cavity mode. The modes outside the cavity lead to the standard decay
term:

d

dt
ρ

∣∣∣∣
decay

= −κ
2

(
a†aρ− 2aρa† + ρa†a

)
, (10.1)

which can be written in the Fock basis as:

d

dt
ρnn′

∣∣∣∣
decay

= −κ
2

[
(n+ n′)ρnn′ − 2

√
(n+ 1)(n′ + 1)ρn+1,n′+1

]
. (10.2)

For the gain medium, we will begin our discussion by discussing a formalism
that can apply both to few atom lasing systems, and also to the typical
incoherent gain medium, which will be introduced in the next section.

Gain from two-level atoms

To give a model of gain that encompasses both coherent dynamics of a
single injected atom (for a micromaser), as well as describing incoherent
evolution of an externally pumped atom (for a laser), we will describe the

89
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Figure 10.1: Left: Micromaser scheme, atoms in their excited
state are injected at a rate r, and fall through the cavity in time τ .
Right: Relation between a many-level lasing scheme, with decay
via intermediate states to the ground state, and pumping to the
excited state, and the quasi two-level description, with injection
rate r, and two-level system lifetimes distributed according to the
decoherence rate γ.

dynamics of the gain medium, allowing for arbitrary rates of decoherence
and pumping. We therefore consider a two-level system, which starts in
the excited state, and interacts with the cavity for time τ ; new two-level
systems are injected at a rate r. If we take τ to be the same for all atoms,
we expect to see periodic dependence on τ , as one allows a given number
of Rabi oscillations, transferring energy between the two-level system and
the cavity. This model is appropriate for atoms falling through a cavity at
a fixed speed. If instead τ is drawn from a Poisson distribution, average
rate γ, then one recovers the standard laser result; at a rate γ the two-level
system decays to some other states, and then rapidly decays to the ground
state, and is then re-excited to the excited state of the two-level manifold
at a rate r: the net result is loss of coherence at a rate γ, and injection of
energy at a rate r. This relation is illustrated in Fig. 10.1.

To find the gain supplied by the two-level systems, we want to find
the evolution of the field density matrix. If interaction between the two-
level system and the cavity for time τ causes the change ∆ρfield(τ), and
new excited two-level systems are created at rate r, then one can write the
evolution of the field for either a fixed τ , or a Poissonian distribution as

d

dt
ρfield

∣∣∣∣
τ

= r∆ρfield(τ),
d

dt
ρfield

∣∣∣∣
γ

= r

∫ ∞
0

γdτ∆ρfield(τ)e−γτ . (10.3)

Thus, we require the change of the field state due to evolution for time τ :

∆ρfield(τ) = Tratom [ρ(t0 + τ)]− ρfield(t0)
= ρfield,↓↓(t0 + τ) + ρfield,↑↑(t0 + τ)− ρfield,↑↑(t0). (10.4)

In the second line we have used the fact that the two-level system is by
definition excited at t = t0. Now, using results of Sec. 3.2, we can follow
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the evolution of a state |↑, n〉 with n photons to time τ :

|↑, n〉 →
[
cos
(

Ωn+1

2
τ

)
+ i cos(2θ) sin

(
Ωn+1

2
τ

)]
|↑, n〉

+ i sin(2θ) sin
(

Ωn+1

2
τ

)
|↓, n− 1〉 , (10.5)

with Ωn =
√

(ε− ω)2 + g2n, tan(2θn) = g
√
n/(ε− ω) as in chapter 3. For

simplicity, let us assume resonance, ε = ω, so θ = π/4. Then, using this
wavefunction evolution, one finds:

∆ρnn′(τ) = ρnn′
[
cos
(g

2
τ
√
n+ 1

)
cos
(g

2
τ
√
n′ + 1

)
− 1
]

+ ρn−1,n′−1 sin
(g

2
τ
√
n
)

sin
(g

2
τ
√
n′
)
. (10.6)

It is apparent this equation describes gain, since it describes transfer of
probability from the state with n− 1 photons to the state with n photons.
In distinction Eq. (10.2) describes evolution from n+ 1 photons to n pho-
tons. Note also that as anticipated, the fixed time τ would lead to possible
cancellation if integer numbers of Rabi oscillations occur. However, since
the oscillation period is different for each number of photons, the general
result is very complicated, and can lead to a very non-smooth probability
distribution.

Gain medium with decoherence — laser limit

Now let us consider the case where τ is a random variable, distributed ac-
cording to exponential decay, rate γ. Thus, we should average Eq. (10.6)
over such a distribution. For simplicity, we will present here only the cal-
culations for the diagonal elements, pn = ρnn; for the general case, see
Q. 10.1.

dpn
dt

∣∣∣∣
gain

= r
[
−
〈

sin2
(g

2
τ
√
n+ 1

)〉
pn +

〈
sin2

(g
2
τ
√
n
)〉

pn−1

]
, (10.7)

where:〈
sin2

(α
2
τ
)〉

=
∫
γdτe−γτ sin2

(α
2
τ
)

= −γ
4

∫
dτe−γτ

(
eiατ + e−iατ − 2

)
= −γ

4

(
1

γ + iα
+

1
γ − iα

− 2
γ

)
=

α2/2γ2

1 + α2/γ2
. (10.8)

Thus, the rate of gain due to a such a distribution of atomic coherence
times is given by:

dpn
dt

∣∣∣∣
gain

=
r

2

[
(g2n/γ2)

1 + (g2n/γ2)
pn−1 −

(g2(n+ 1)/γ2)
1 + (g2(n+ 1)/γ2)

pn

]
. (10.9)
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10.2 Laser rate equations

Combining the gain in Eq. (10.9) with the diagonal part of the decay in
Eq. (10.2), one finds the equation of motion for the probability distribution:

dpn
dt

=
r

2

[
(g2n/γ2)

1 + (g2n/γ2)
pn−1 −

(g2(n+ 1)/γ2)
1 + (g2(n+ 1)/γ2)

pn

]
− κ [npn − (n+ 1)pn+1] . (10.10)

From this equation we can now determine when lasing will occur, as well
as the full probability distribution when either well above or well below
threshold.

Laser threshold condition

Lasing occurs when the vacuum state becomes unstable, i.e. when ∂t〈n〉 > 0.
Thus, let us find:

∂t〈n〉 =
∑
n

n∂tpn. (10.11)

Let us however assume that g2n/γ2 is small — i.e. that the average pop-
ulation is small compared to (γ/g)2, so that the denominators in the gain
can be expanded. Then,

∂t〈n〉 =
∑
n

n

{
r

2

[
g2n

γ2

(
1− g2n

γ2

)
pn−1 −

g2(n+ 1)
γ2

(
1− g2(n+ 1)

γ2

)
pn

]
− κ [npn − (n+ 1)pn+1]

}
. (10.12)

Now, shifting the various sums, one can rewrite this as

∂t〈n〉 =
∑
n

pn

{
r

2

[
g2

γ2

[
(n+ 1)2 − n(n+ 1)

]
−
(
g2

γ2

)2 [
(n+ 1)3 − n(n+ 1)2

]]
− κ

[
n2 − n(n− 1)

]}
, (10.13)

which can be written as:

∂t〈n〉 =
[
r

2
g2

γ2
− κ
]
〈n〉+

r

2
g2

γ2
− r

2

(
g2

γ2

)2

〈(n+ 1)2〉. (10.14)

This can be understood as three terms; the first describes competition
between loss and stimulated emission; the second describes spontaneous
emission; the third describes the nonlinear susceptibility of the two-level
systems, reducing the gain they provide when 〈n〉 is large. The first and
third of these could be recovered from a semiclassical theory of lasing,
however the existence of spontaneous emission requires a fully quantum
theory. However, if our aim is the lasing condition, this can easily be
identified from the first term: stimulated emission outstrips decay if g2 >
2κ(γ2/r), and lasing then occurs.



10.3. LASER LINEWIDTH 93

Steady state probabilities

The coefficients in Eq. (10.10) depend on n in such a way that one may
write:

dpn
dt

= −Bnpn +Bn−1pn−1 − Cnpn + Cn+1pn+1, (10.15)

with excitation rateBn = rg2(n+1)/[γ2+g2(n+1)] and decay rate Cn = κn.
To find a steady state that is valid for all n, we need to find a relation
between terms on the right hand side such that this will always vanish.
The only consistent equality is to choose:

Bnpn = Cn+1pn+1 ⇐⇒ Bn−1pn−1 = Cnpn. (10.16)

The steady state distribution is then given by:

pn =
n∏

m=1

Bm−1

Cm
p0 =

n∏
m=1

r(g2/γ2)
2κ [1 + (g2m/γ2)]

p0, (10.17)

with p0 set by normalisation. This product can in general be expressed
in terms of a hypergeometric function. Let us consider two limits where a
simpler expressions result.

Below threshold If we are at small powers, then small values of n will
be most probable. In this case, one may neglect the term involving g2m/γ2

in the denominator. Thus, at low pumping rates, below threshold, one has
pn ∝ (rg2/2γ2κ)n, which is a thermal distribution, with exp(−βEeff) =
(rg2/2γ2κ), from which one recovers

〈n〉 =
1

eβEeff − 1
=

r(g2/γ2)
2κ− r(g2/γ2)

, (10.18)

in agreement with the small pumping rate limit of Eq. (10.14). Clearly,
such an approximation is only valid below threshold, otherwise pn cannot
be normalised. In this low pump limit, there is an “effective pump rate”,
limited by the ratio of g/γ, indicating that emission competes with relax-
ation.

Far above threshold The opposite limit occurs when 〈n〉 is large enough
that the term 1 in the denominator can be neglected. In this case one has
pn ∝ (r/2κ)n/n!. This is a Poissonian distribution, as one would expect for
a coherent state, with average population r/2κ, set only by the balance of
pump rate and decay rate, since strong fields mean that stimulated emission
beats any other relaxation process, thus for every excited atom created, half
a photon is emitted.

10.3 Laser Linewidth

Our analysis of the laser so far was based on the density matrix equation and
its steady states. Just as in lecture 5, we can also calculate the spectrum, by
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using two-time correlation functions via the quantum regression theorem.
In the current context, we have a density matrix equation for the cavity
field, and so we can proceed directly to evaluate:

I(ν) ∝ 2<
{∫ ∞

0
dteiνt〈a†(t)a(0)〉

}
(10.19)

As in the case of resonance fluorescence, we can thus find this by determin-
ing the expectation of 〈a†(t)〉, when the initial state at t = 0 is taken to
result from acting with a on the equilibrium density matrix.

If we have the time-dependent solution of the equation of motion for
the density matrix, then we can write

〈a†(t)〉 = Tr
[
a†ρ(t)

]
=
∑
n

√
n+ 1ρn,n+1(t). (10.20)

We will define the shorthand ρn,n+k(t) = ρkn(t), and so our task is to find
ρ1
n(t). Before writing its equation of motion, let us anticipate how it should

behave. Regardless of the initial conditions, at long times this expectation
should decay to zero, as it does not conserve the number of photons. How-
ever, since the initial conditions are those set by aρeqbm, the expectation
of 〈a†(t)〉 will be non-zero; we are interested in how this function decays in
time.

Equation of motion

Combining the off-diagonal gain found in Eq. (10.31) with the decay term
from Eq. (10.2) gives an equation of motion for the off-diagonal density
matrix that can be written in the form:

dρkn
dt

= −Aknρkn +Bk
n−1ρ

k
n−1 + Ckn+1ρ

k
n+1. (10.21)

Writing η = g2/γ2 for brevity, the coefficients are given by:

Bk
n =

r

2

[
η
√

(n+ 1)(n+ 1 + k)
1 + η(n+ 1 + k/2) + η2k2/16

]
,

Ckn = κ
√
n(n+ k),

Akn =
r

2

[
η(n+ 1 + k/2) + η2k2/8

1 + η(n+ 1 + k/2) + η2k2/16

]
+ κ

(
n+

k

2

)
.

(see question 10.1 for derivation of the off-diagonal gain terms). Note that
the terms Bk

n, C
k
n have been written in such a way that for k = 0 they

reduce to the previous Bn, Cn discussed above. Whereas for k = 0, the
term Akn is simply related to the Bk

n, C
k
n by A0

n = B0
n + C0

n, no such simple
relation exists in general. Since it was this simple relation that lead to the
detailed balance condition for the probability distribution, no equivalent
condition exists with k 6= 0.
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Approximate solution

Although the previous detailed balance solution does not apply to k 6= 0,
it motivates a possible extension, which gives a solution decaying in time:

ρkn(t) = e−D
k
nt

n∏
m=1

Bk
m−1

Ckm
ρk0, (10.22)

where Dk
n is a parameter to be determined self consistently. Substituting

this ansatz for ρkn into Eq. (10.21) gives:

−Dk
nρ

k
n = −Aknρkn +Bk

n−1

[
e−(Dk

n−1−Dk
n)t Ckn
Bk
n−1

ρkn

]

+ Ckn+1

[
e−(Dk

n+1−Dk
n)t B

k
n

Ckn+1

ρkn

]
(10.23)

The terms in brackets are the expressions for ρkn±1 in terms of ρkn from
Eq. (10.22). If Dk

n ' Dk
n±1, then the exponential terms may be dropped,

giving:
Dk
n = Akn − Ckn −Bk

n. (10.24)

Thus, if we solve Eq. (10.24), and find it varies slowly with n, then Dk ' Dk
n

defines the decay rate of the off-diagonal density matrix. We therefore
want to find D1 to solve for the linewidth. If we assume we are far above
threshold, so 〈n〉 � 1, then we can expand the square roots in C1

n and B1
n,

to give:

D 'r
2

[
η(〈n〉+ 1 + 1/2) + η2/8− η(〈n〉+ 1 + 1/2)

η〈n〉+ 1 + η(1 + 1/2) + η2/16

]
+ κ

(
〈n〉+

1
2
− 〈n〉

[
1 +

1
2〈n〉

− 1
8〈n〉2

])
+O

(
1
〈n〉2

)
' 1

8〈n〉

(
r

2
g2

γ2
+ κ

)
(10.25)

Thus, using this time-dependence in the two-time correlation, we have:

g1(τ) ' e−Dτ ; (10.26)

We have been working in an interaction picture, neglecting free evolution of
the photon fields at frequency ω. Restoring this, the frequency dependence
of the intensity is then given by:

I(ν) =
D

(ν − ω)2 +D2
(10.27)

Hence the FWHM of this Lorentzian lineshape is given by:

2D =
1

4〈n〉

(
r

2
g2

γ2
+ κ

)
(10.28)
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Interpretation of linewidth

This result for the lineshape has a simple interpretation in terms of phase
diffusion. If we consider the radiation field of a laser to be described by an
ensemble of coherent states, with effectively fixed magnitude |α| =

√
〈n〉,

but different phases, then decay of correlations occurs because of growth of
phase differences. Each time a photon is incoherently emitted emitted into,
or lost from the cavity the phase changes. This is illustrated in Fig. 10.2.

θ

αR(  )

I(  )α

Figure 10.2: Cartoon of coherent state undergoing a random walk
due to spontaneous emission events, leading to phase diffusion for
the coherent state.

To turn this cartoon into a physical estimate, we start from the rate
of such changes per unit time, which is d = κ + rg2/2γ2, by adding rates
of photon decay and spontaneous emission (hence the appearance of the
effective pumping rate, as appearing in the threshold condition, rather than
the total pump rate, as in the probability distribution far above threshold).
If we assume a random walk, with d events per unit time, the change to the
coherent state is governed by the random walk probability distribution:

P (∆α) =

√
td

π
exp

(
−(∆α)2

td

)
(10.29)

However, the variation is entirely phase, so ∆α =
√
〈n〉∆θ. Using this, the

decay of correlations after time τ can be found by averaging the state:

g1(t) =
〈a†(t)a(0)〉
|〈a〉|2

=
〈
e−i[θ+∆θ(t)]eiθ

〉
=
∫
dθ

√
td

π
exp

(
−i(∆θ)− 〈n〉(∆θ)

2

td

)
= exp

(
− td

4〈n〉

)
, (10.30)

which reproduces the previous result, D = d/4〈n〉.

10.4 Further reading

The laser rate equations presented here follow closely the presentation in
Scully and Zubairy [10]. For a different presentation of laser theory, the
review article by Haken [34]. The discussion of laser linewidth in this
Chapter is based on Scully and Zubairy [10].
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Questions

∗ Question 10.1: Off-diagonal matrix elements
Evaluate the general off-diagonal matrix elements describing gain, de-

scribed in Eq. (10.6), and thus show that, writing ρn,n+k = ρkn, one has:

dρkn
dt

∣∣∣∣
gain

= −r
2

[
(n+ 1 + k/2)(g2γ2) + k2g4/8

γ4 + (n+ 1 + k/2)g2γ2 + k2g4/16

]
ρkn

+
r

2

[ √
n(n+ k)(g2γ2)

γ4 + (n+ k/2)g2γ2 + k2g4/16

]
ρkn−1 (10.31)

Question 10.2: Second-order correlation functions
Using the quantum regression theorem, find an expression for the second

order correlation function:

g2(τ) =
1
N

〈
a†(t)a†(t+ τ)a(t+ τ)a(t)

〉
(10.32)

in terms of the equations of motion and initial conditions for the variables
pn =

〈
n|aρa†|n

〉
.

Solve these equations and initial conditions explicitly in the two limits
g � γ and g � γ (i.e. far above, and far below threshold), and comment
on the form of g2(τ) in the two cases.

[For values near the threshold, one can solve these equations numerically
to find the full evolution of the second order coherence function.]





Lecture 11

More on lasers

In the previous lecture, we developed a quantum theory of the laser and
micromaser, in terms of the density matrix of the photon field. The aim
of this lectures is firstly to repeat that derivation, this time starting from
a more familiar density matrix equation for the coupled system. This will
then make clear the approximations required in the results discussed last
time. It will also allow one to see the relation between the previous results,
and the semiclassical (Maxwell-Bloch) equations.

In discussing the relation of the semiclassical theory, and the results
of the full quantum theory, we will see that there is a parameter, β, that
controls the ratio of emission into the cavity mode vs all other decay chan-
nels of the excited gain medium. When β is small, there is a well defined
threshold, and the semiclassical theory can describe this adequately. When
β is large (which will occur for strong coupling) the threshold becomes less
well defined. To further study the sharpness of threshold, we also consider
the uncertainty in photon number, which peaks at threshold. In terms of
this quantity, we can also re-analyse the micromaser, looking at its steady
states and noise levels, seeing that there are peaks of noise near transi-
tions, but sub-Poissonian noise between them. Armed with these concepts,
we will then briefly discuss recent cavity QED realisations of single atom
lasers and micromasers, noting the novel features these experiments show.

11.1 Density matrix equation

As in the previous lecture, we will consider an effectively three-level de-
scription of the laser gain medium. The description effectively involves
only three levels, as we assume recycling to the ground state is fast fol-
lowing any transitions out of the lasing levels, thus only the ground and
excited states of the lasing transition, g, e and the true ground state 0 are
important. (See Fig. 11.1).

The coherent dynamics in this system is therefore controlled by the
simple Hamiltonian:

H =
g

2

∑
i

(
aσegi + a†σgei

)
. (11.1)
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γ
γ

}transition
lasing

Γ

e

g

0

Figure 11.1: Labelling of three level scheme

The notation σegi is the operator that takes atom i from state g to state e.
Since we have three active levels, we need this extended notation, rather
than the two-level system definitions of σ±, σz. In addition to the Hamilto-
nian, there are incoherent processes describing pumping, decay and dephas-
ing. The description of pumping as purely incoherent would correspond to
coupling the 0→ e transition to an inverted reservoir. Alternatively, it may
be seen as an approximation description of coherent pumping to a fourth
level — this is discussed further below.

In describing pumping and decay, we assume these processes act on
each atom in the gain medium separately. As such, we separate the rate
of pumping of an individual atom Γ from the total pumping rate r that
appeared in the previous lecture — we will see later what quantity we
should identify with r. Also, in distinction to the last lecture, we include
both decay of the two lasing levels, and in addition pure dephasing, with a
rate γ‖. Putting these ingredients together we have:

∂tρ =− i[H, ρ]− κ

2

(
a†aρ− 2aρa† + ρa†a

)
−
∑
i

{
Γ
2
(
σ00
i ρ− 2σe0i ρσ

0e
i + ρσ00

i

)
+
γ

2

(
σeei ρ− 2σ0e

i ρσ
e0
i + ρσeei + σggi ρ− 2σ0g

i ρσ
g0
i + ρσggi

)
−
γ‖

4

[
(σeei − σ

gg
i )2

ρ− 2 (σeei − σ
gg
i ) ρ (σeei − σ

gg
i ) + ρ (σeei − σ

gg
i )2

]}
.

(11.2)

In writing this, we has used the fact that each term acts on a single atom
to collapse adjacent atomic operators, e.g. σ0eσe0 = σ00, hence the sim-
pler form of the pumping and decay terms. In the following, we will drop
the subscript i on the atomic degrees of freedom, assuming all atoms are
equivalent, and so the sum can be replaced by the number of atoms NA.

Reduction to photon density matrix

We will now reduce Eq. (8.4), which contains both field and atomic degrees
of freedom, to an equation for just the field degrees of freedom. This means
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we want to introduce:

ρψ = Tratoms(ρ) = ρee + ρgg + ρoo (11.3)

The extra notation ρij indicates an operator in the photon space, but a
c-number in the atomic degrees of freedom; i.e. we define:

ρij = Tratoms(σjiρ) (11.4)

where n,m are photon number states. With this notation, taking a trace
of Eq. (11.2) over atom states gives:

∂tρψ = −igNA

2

(
aρge + a†ρeg − ρgea− ρega†

)
− κ

2

(
a†aρψ − 2aρψa† + ρψa

†a
)
. (11.5)

Thus, to proceed, we must also find equations for ρeg etc. Taking a trace
over atoms with a factor of σge then gives:

∂tρeg = − ig
2

(aρgg − ρeea)− κ

2

(
a†aρeg − 2aρega† + ρega

†a
)

− γ

2
(1 + 1)ρeg −

γ‖

4
(1 + 2 + 1)ρeg. (11.6)

At this point, we start to make use of the same approximations as made
in the previous lecture; i.e. κ � γ. This firstly means we can drop the
κ term in the above equation. It secondly means that, for the purpose of
substituting into Eq. (11.5), we may find the steady state of the atomic
degrees of freedom. Defining γt = γ + γ‖, this gives the condition:

0 = ∂tρeg = − ig
2

(aρgg − ρeea)− γtρeg, (11.7)

giving the result:

ρeg = − ig

2γt
(aρgg − ρeea) . (11.8)

We can now repeat the above logic to find find the relation of the di-
agonal elements ρee, ρgg, ρ00. Dropping the κ terms, and looking for steady
states, one find:

0 = − ig
2

(
a†ρeg − ρgea

)
− γρgg

= − g2

4γt

(
a†aρgg + ρgga

†a− 2a†ρeea
)
− γρgg (11.9)

0 = − ig
2

(
aρge − ρega†

)
− γρee + Γρ00

= − g2

4γt

(
aa†ρee + ρeeaa

† − 2aρgga†
)
− γρee + Γρ00 (11.10)

0 = −Γρ00 + γ (ρee + ρgg) . (11.11)
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Equations (11.9) and (11.10) have made use of the result in Eq. (11.8).
Furthermore, Eq. (11.11), along with the definition in Eq. (11.3) implies
that:

ρ00 =
γ

Γ + γ
ρψ, ρee + ρgg =

Γ
Γ + γ

ρψ. (11.12)

We then have a closed set of three equations for ρψ, ρee, ρgg. However,
because these equations involve photon operators, it is rather involved to
invert them to get a single equation for ρψ. To do this inversion, it is easiest
to work in the photon number basis. Restricting to the diagonal elements,
we have equations for pn, pe,n and pg,n, which become:

0 = − g2

4γt
(2npg,n − 2npe,n−1)− γpg,n (11.13)

0 = − g2

4γt
(2(n+ 1)pe,n − 2(n+ 1)pg,n+1)− γpe,n +

Γγ
Γ + γ

pn. (11.14)

Shifting n → n − 1 in Eq. (11.14), it is clear one can combine the two
equations, by taking their difference to give:

0 = −g
2

γt
n (pg,n − pe,n−1)− γ (pg,n − γpe,n−1)− Γγ

Γ + γ
pn−1. (11.15)

This equation can be solved for pg,n − pe,n−1 to give:

pg,n − pe,n−1 = − 1
γ + g2n/γt

Γγ
Γ + γ

pn−1. (11.16)

Then, noticing that the atom-photon coupling terms in Eq. (11.9) and
Eq. (11.10) add up to give the required term in Eq. (11.5), one has the field
equation in the form:

∂tpn = −g
2NA

4γt
[2n(pg,n − pe,n−1)− 2(n+ 1)(pg,n+1 − pe,n)]

− κnpn + κ(n+ 1)pn+1 (11.17)

and substituting Eq. (11.16) recovers the previous field equation:

∂tpn =
r

2
g2n/γt

γ + g2n/γt
pn−1 −

r

2
g2(n+ 1)/γt

γ + g2(n+ 1)/γt
pn

− κnpn + κ(n+ 1)pn+1 (11.18)

where r = NAγΓ/(γ + Γ). Clearly, if γ � Γ, then r ' ΓNA, so Γ is the
pumping strength, but if Γ becomes too large, then the pumping rate is
limited by the recycling rate γ, as the true ground state becomes depleted.
If γt = γ, (i.e. if γ‖ vanishes), the above reduces exactly to the results of
the previous lecture.
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Figure 11.2: Labelling of four level scheme

Four-level scheme

As a brief digression, let us note how a four level scheme, as illustrated in
Fig. 11.2 reduces to the above problem in a limit of fast relaxation. In this
system, there is also a level 1, with a coherent coupling H = (Ω/2)(σ01 +
σ10), and the density matrix equation has an additional term:

∂tρ→ ∂tρ−
γp
2
(
σ11ρ− 2σe1ρσ1e + ρσ11

)
. (11.19)

The pumping term for ρee, which previously was Γρ00 now becomes:

∂tρee|pump = γpρ11 (11.20)

If we assume γp is very rapid, then in the same spirit as the above derivation
we have:

∂tρ11 = − iΩ
2

(ρ01 − ρ10)− γpρ11, (11.21)

∂tρ10 = − iΩ
2

(ρ00 − ρ11)− γp
2
ρ10, (11.22)

and then setting these time derivatives to zero one has:

ρ10 =
iΩ
γp

(ρ11 − ρ00) , 0 = −Ω2

γp
(ρ11 − ρ00)− γpρ11 (11.23)

we can then find ρ11, ρ10 in terms of ρ00, which allows us to derive an
effective incoherent pump rate of: Γeff = γpΩ2/(Ω2 +γ2

p). If Ω is small, then
Γeff ∝ Ω2/γp, but if pumping is too large, there is an additional constraint
on the pump rate, set by the relaxation to e. If γp is not large compared
to other timescales (i.e. if g were to become very large), then it would no
longer be possible to eliminate the dynamics of this level.

Maxwell Bloch equations

Having shown that Eq. (11.2) corresponds to the same physics as discussed
in the previous lecture, let us now discuss a different approximate descrip-
tion of Eq. (11.2). This is the semiclassical approximation, which should
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be valid when numbers of photons and atoms are large. We will thus use
the density matrix equations to write equations for expectations of three
operators:

α = 〈a〉, P = NA〈σge〉, N = NA〈σee − σgg〉, (11.24)

corresponding to the electric field, polarisation and inversion respectively.
The approximation scheme will be that we replace expectations of prod-
ucts of operators by products of expectations. From the density matrix
equations of motion, one immediately finds:

∂tα = −ig
2
P − κ

2
α, ∂tP = +i

g

2
αN − γtP. (11.25)

For the equation for N we must write:

∂t〈σee〉 = −ig
2

(αP∗ − α∗P) + Γ〈σ00〉 − γ〈σee〉

∂t〈σgg〉 = +i
g

2
(αP∗ − α∗P)− γ〈σgg〉

∂t〈σ00〉 = −Γ〈σ00〉+ γ〈σee〉+ γ〈σgg〉

We will make an additional assumption here, that Γ � γ, in which case
〈σ00〉 ' 1, and we can identity r = ΓNA. Thus, in this case, the difference
of the above equations becomes:

∂tN = −ig (αP∗ − α∗P) + r − γN (11.26)

We may now consider Eq. (11.26) and Eq. (11.24), and look at their
steady states, and normal mode spectrum, to understand their behaviour.

Steady states of Maxwell Bloch equations

For a steady state, Eq. (11.25) immediately implies that:

P = i
κ

g
α =

ig

2γt
Nα. (11.27)

This implies either that α = 0 or that N = 2γtκ/g2. The latter solution
(corresponding to lasing) implies that inversion locks at its threshold value;
this is known as gain clamping. For the last equation, we have either that:

Below threshold, α = 0. In this case, ∂tN = 0 implies N = r/γ (hence
threshold occurs at r = 2κ(γγt/g2), as found previously).

Above threshold, N = Nsat = 2γtκ/g2. In this case, we may use the gain
equation as a condition for α, using Eq. (11.27) to eliminate P, and
then writing:

0 = −2κ|α|2 + r − γNsat ⇒ |α|2 =
γ

2κ

(
r

γ
−Nsat

)
(11.28)

Thus, above threshold |α|2 increases linearly with pump rate in this mean
field theory. This is illustrated in Fig. 11.3.
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Figure 11.3: Left: Field strength, and inversion arising from
mean field theory. Right: Decay rates of fluctuations of Maxwell-
Bloch equations.

Fluctuations of Maxwell-Bloch equations

The instability of the non-lasing state at threshold can be understood
by considering fluctuations, and linearising the Maxwell-Bloch equations
around α = P = 0,N = r/γ. One then finds:

∂t

 δα
δP
δN

 =

 −κ/2 −ig/2 0
igr/2γ −γt 0

0 0 −γ

 δα
δP
δN

 (11.29)

Thus, inversion fluctuations are clearly damped. The photon field and
polarisation have collective oscillations at a frequency ω given by:

ω = −i
(κ

4
+
γt
2

)
± i

√(κ
4
− γt

2

)2
+
g2r

4γ
. (11.30)

This frequency is purely imaginary, so the modes are either growing or
decaying1. If r > rth, one of these roots becomes positive, and such fluctu-
ations will grow. These modes are shown in Fig. 11.3.

If γt � κ, the two modes are always well separated, and the slow dy-
namics can be found by eliminating the matter degrees of freedom, writing:

P =
ig

2γt
N , r =

(
γ +

g2

γt
|α|2

)
N . (11.31)

If we then define n = |α|2, the remaining equation becomes:

∂tn =
r

2
g2n

γγt + g2n
− κn (11.32)

This obviously has the same steady states as found above, the fluctuations
are not identical, but become so asymptotically if γt � κ.

1NB, because of the pumping and decay scheme chosen, inversion is always positive
in this system, N = r/γ — a more realistic model, with thermal transitions between e
and g might allow for negative inversion. If inversion is large enough and negative, then
Rabi oscillations are possible, as in the cavity QED discussion earlier. However, the Rabi
splitting collapses when the system is inverted, so these are not relevant in the current
model of pumping.
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11.2 Spontaneous emission, noise, and β
parameter

In the previous section we found a semiclassical equation for n, the mean-
field photon number. This equation is valid as long as numbers of photons
are large. When numbers of photons are small, spontaneous emission be-
comes important, and effectively n→ n+ 1 in the previous equation. This
equation, with n→ n+ 1 can also be seen as the result of writing:

∂t〈n〉 = 〈Bn − Cn〉 (11.33)

with Bn, Cn as derived in the previous lecture, and re-derived above. If we
make the mean-field assumption 〈Bn〉 ' B〈n〉, and we write n for 〈n〉, then
we have:

∂tn =
r

2
g2(n+ 1)

γγt + g2(n+ 1)
− κn (11.34)

We will investigate here the effects of this +1 — we should be aware however
that whenever the effects of this term become significant, so do fluctuations
(as we will investigate more fully below),in which case no mean-field theory
can be applicable — i.e. it is necessary to study the full probability dis-
tribution, not just 〈n〉. However, if we can understand when the +1 term
will matter, then we can see the conditions under which semiclassics is a
reasonable approximation.

The important question regarding the effects of the +1 is to understand
whether single photons will affect the dynamics. This in turn means the
question of whether one photon has a significant effect on saturating the
transition, i.e. what is the ratio of g2/γγt. It is standard to define the
parameter β slightly differently, as:

β =
g2

γγt + g2
. (11.35)

If g2 � γγt then single photons have a negligible effect, and this correspond
to β � 1. If g2 � γγt, single photons are important, and β → 1. In terms
of β, we may rewrite Eq. (11.34) as:

∂tn =
rβ

2
n+ 1

1 + βn
− κn (11.36)

Based on the semiclassical threshold discussed above (valid if β � 1, and
so β ' g2/γγt) we will define rth = 2κ/β. In terms of this threshold, we
can then solve the steady state number of photons to be given by r(n+1) =
rthn(1 + βn), with the solution:

n =
1

2β

 r

rth
− 1±

√(
r

rth
− 1
)2

+ 4β
r

rth

 (11.37)

This equation (normalised by plotting βn) is shown in Fig. 11.4. For small
β it is clear that one recovers the sharp step like feature at r = rth. However
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as β increases, the step becomes more smeared, and eventually, at β = 1,
one has nβ = r/rth for all r, i.e. no step survives at all. This indicates
that in the limit of strong coupling, there is no clear “laser threshold”, but
rather a thresholdless lasing behaviour.
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Figure 11.4: Numbers of photons vs pump rate (normalised by
rth, and Fano factor, for different values of β

Fano factor

As well as the sharpness of 〈n〉 vs pump power, further insight into the role
of β can be found by considering the full probability distribution, and the
relative size of fluctuations. We choose to measure the Fano factor, defined
by:

F =
〈n2〉 − 〈n〉2

〈n〉
. (11.38)

This parameter measures deviations from Poissonian statistics, as F = 1
for a Poisson distribution. The fluctuations can also equivalently be defined
by g2(0), where:

g2(0) =
〈a†a†aa〉
〈a†a〉2

=
〈n2〉 − 〈n〉
〈n〉2

. (11.39)

Another parameter occasionally quoted is the Mandel Q parameter. The
three parameters are related by Q = F − 1 = 〈n〉(g2(0) − 1). We will
consider only F below.

Let us now determine F from the full probability distribution as derived
in the last lecture, and assuming β is not too large. Far above threshold,
the distribution is Poissonian, and so F → 1. Below the threshold, we may
use the Bose-Einstein distribution pn ∝ (r/rth)n to give:

〈n〉 =
r/rth

1− r/rth
, 〈n2〉 =

r/rth(1 + r/rth)
(1− r/rth)2

(11.40)

and so:
F = 1 +

r/rth

1− r/rth
(11.41)
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which again becomes 1 is far from threshold.
Exactly at threshold, one can make an approximation for small β that:

pn ∝
∏
m

(1 + βm)−1 ' exp

(
−β
∑
m

m

)
' exp

(
−βn2/2

)
. (11.42)

This is valid if β � 1, in which case, pn has decayed to a small value well
before βn ' 1. With this one-sided Gaussian distribution, one then finds:

〈n〉 =
√

2
πβ

, 〈n2〉 =
1
β
, F =

1√
β

(√
π

2
−
√

2
π

)
. (11.43)

Thus, if β � 1, there is a sharp spike of Fano factor at the transition — the
uncertainty in photon number becomes very large here in the semiclassical
limit. On the other hand, everywhere else, the Fano factor is small. The
full behaviour of the Fano factor vs β is shown in Fig. 11.4. It is clear that
for β ' 1, there is no clear spike, and instead one has a broad region near
the ill-defined threshold where fluctuations are large.

Micromaser and noise
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Figure 11.5: Numbers of photons and Fano factor vs coupling gτ
for a micromaser. Blue squares show the most probable number
of photons. (r/κ is fixed at 20)

The above results for the laser have F > 1 in all cases, meaning that the
noise is always at least Poissonian, and is sometimes worse. On the other
hand, the micromaser that we discussed previously can have sub-Poissonian
noise. Recalling that in that case, the probability distribution is given by:

pn ∝
∏
m

( r
κ

)(sin2 gτ
√
m/2

m

)
. (11.44)

There are two important features of this distribution; the first is the irregu-
lar dependence on gτ , which was commented on before. This is illustrated
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in Fig. 11.5. More importantly, there is the dependence on n, which is what
can lead to number squeezing (i.e. sub-Poissonian noise).

The number dependence of the gain means that the distribution is at-
tracted to particular number states. This is illustrated schematically in
Fig. 11.6, which plots r sin2(gτ

√
n+ 1/2)− κn as a function of n. Because

the width of the attraction regions varies in a non-smooth way, the width
of the distribution is not simply connected to the mean number of photons.
Thus, the variance can be far less than it would be for a Poisson distribution
with the same mean number of photons.
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Figure 11.6: Gain vs n for micromaser equation

The number dependence of the gain is also responsible for the discon-
tinuous jumps that can occur on increasing r. As r increases, new at-
tractors appear, i.e. new peaks of sin2 gτ

√
n+ 1/2 fall within the range

n > r/κ. The photon number and Fano factor vs pump rate is shown in
Fig. 11.7. This kind of mean-field-like argument can describe the possible
steady states reasonably well (under the standard n� 1 validity condition
of mean field theory). It cannot however describe the points of transition
between the different possible steady states. This can be clearly seen in
Fig. 11.7.

11.3 Single atom lasers

Armed with the above ideas of the Fano factor, describing noise, and the
validity of semiclassics, and the β factor describing how saturation effects
occur, we can now consider cavity QED lasing systems, where small num-
bers of atoms are involved.

Firstly, we should note that the density matrix equation in Sec. 11.1
could reasonably describe a single atom. However, it does rely on the
separation of timescales, and if very strong coupling is required, then the
approximations used in deriving it will become invalid. To see why this
might occur, let us rewrite the threshold condition as:

r =
NAΓγ
Γ + γ

=
2κ
β

(11.45)

If NA = 1, and γ cannot be significantly tuned (as it describes intrinsic
decay rates of atoms), then to reach threshold with a single atom, it is
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Figure 11.7: Numbers of photons and Fano factor vs coupling gτ
for a micromaser. Blue squares show the most probable number
of photons. Dotted lines correspond to the mean-field results,
r sin2(gτ

√
n+ 1) = κn. (gτ is fixed at 2.5)

generally necessary to increase β, so that one will no longer have β � 1. In
this case, fluctuations will matter more, the behaviour will be thresholdless,
and if g becomes very strong then no separation of timescales is possible.
Thus, while single atom lasing need not automatically imply a breakdown
of the above description, reaching threshold with a small number of atoms
generally requires strong coupling, and this in term means large β, hence
thresholdless lasing.

Optical cavity, real atom

Trap

Trap

Ω Ωγ γ

g

e

Figure 11.8: Schematic of single atom optical lasing scheme, and
level scheme

Lasing from a single atom, using an optical transition and a regu-
lar cavity has been achieved by [35]. The system and level scheme are
shown schematically in Fig. 11.8. The parameters for this experiment were
(g, κ, γ) = 2π × (16, 4.2, 2.6)MHz. This implies β ' 0.97, and so the lasing
will be thresholdless. In addition, because of the strong coupling, the adia-
batic elimination of the non-lasing levels is not a good approximation in this
system. This allows the possibility of sub-Poissonian behaviour, which was
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observed experimentally, and can be described theoretically by modelling
the full four level system illustrated in Fig. 11.8.

Josephson qubit micromaser

The other example we will discuss is a rather different system and rather
different method of lasing. This system is a superconducting qubit as the
artificial atom, coupled to a mechanical resonator, thus this is phonon lasing
rather than photon lasing[36, 37]. The circuit is shown schematically in
Fig. 11.9

Resonator

V + Vg ds Vg
EJ

SC Island

Figure 11.9: Circuit diagram of single artificial atom laser

The two-level “atom” here consists of two charge states of the island,
having either zero or two extra electrons on the island (two electrons be-
cause of Cooper pairing, and the consequent odd/even energy gap). Thus
one has σ+ = σ20 etc. This gives the Hamiltonian:

H = [EC + λ(a+ a†)]σz + EJσ
x + ωa†a (11.46)

where EC depends on the capacitance of the island, and λ describes the
shift due to the location of the mechanical resonator. An equivalent model
would also describe a capacitively coupled stripline resonator. As well as
this Hamiltonian behaviour, the bias Vds leads to a single-electron current
through the island, with individual electrons hopping in a two step pro-
cess. Eliminating the singly charged state (which decays fast), one has the
effective density matrix equation:

∂tρ = −i[H, ρ]− κ

2

(
a†aρ− 2aρa† + ρa†a

)
− Γ

2
(
σ+σ−ρ− 2σ−ρσ+ + ρσ+σ−

)
(11.47)

Lasing can occur if EC + ω ' 0, in which case, there is a cycle of
incoherent transition from 2 → 0, followed by coherent transition from
0→ 2 with emission of a phonon to conserve energy. However, because the
photon number affects the energy of the state EC , this leads to micromaser
like behaviour. In the theoretical work [37, 38], the parameters are however
in a regime where mean field theory can describe some of the features seen
by full density matrix evolution.
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11.4 Further reading

Discussion of density matrix equations and Maxwell-Bloch equations for
our model laser can be found in many textbooks, e.g. Meystre and Sargent
III [12], Yamamoto and Imamoğlu [11]. The effect of the β parameter, and
the nature of the threshold is discussed in Rice and Carmichael [39]. A
review on cavity QED particularly focusing on micromaser behaviour can
be found in Walther et al. [40].



Lecture 12

Three levels,
electromagnetically induced
transparency, and coherent
control

Most of the lectures so far has been restricted to two-level atoms. While
there many are obvious extensions to the case of more than two levels, this
section focuses only on one phenomena which requires three levels: That is
the coherent interference of pathways for atomic transitions, and the possi-
bility of suppressed transitions. By using an applied electric field, one can
suppress transitions between levels, and thus prevent absorption, leading
to Electromagnetically Induced Transparency. This lecture starts by dis-
cussing the phenomena in terms of the density matrix evolution, allowing
incoherent decay of atomic energy levels, and considering radiation semi-
classically. In this way, we will see that conditions under which the group
velocity of light is significantly reduced while absorption of light remains
small is possible in this system — a combination of features that does not
occur for a two level system. Then, by considering the atomic wavefunction
evolution, it is possible to understand the underlying interference phenom-
ena which lead to the cancellation that prevents absorption. Finally, we
return to a quantum optics description of the states that are free from
absorption — dark state polaritons — discussing how the nature of these
coherent quantum states can be controlled.

12.1 Semiclassical introduction

We consider the level scheme shown in Fig. 12.1. Dipole matrix elements
exist between the ground state b and the excited state a, and also between
the metastable state c and excited state a. The transition between b and
c is however dipole forbidden. The states a and c are coupled by a strong
“pumping” radiation field, described only by the effective Rabi splitting it
induces, Ωp. The transition between a and b is then probed by a weaker

113
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field. We allow the possibility of incoherent decay from a to b, and also a
(much weaker) decay from c to b. The coherent part of the evolution can

abE.d

γ

γ
b

a

c

Ω

cb

ab

p

Figure 12.1: Scheme of atomic energy levels and allowed, and
driven, transitions between them.

be described by the Hamiltonian:

H =

 ωa −Edabe−iωt −Ωpe
−iωpt

−Ed∗abeiωt ωb 0
−Ω∗pe

iωpt 0 ωc

 . (12.1)

Susceptibility; slow light.

Let us consider the absorption and emission coefficients, by finding the
susceptibility of the three level system; i.e. finding how the polarisation,
P = (Natoms/V )dabρab, depends on the field E applied resonantly with the
a↔ b transition. We assume the field E is weak, so we consider only linear
response, and can assume the populations of the a and c levels remain small.
We are interested in the evolution of the density matrix, ρ̇ = −i[H, ρ]+ L̂ρ,
where L̂ represented a superoperator, describing the incoherent evolution,
described in lecture 4. Since Trρ = 1, small populations of a, c imply
ρbb ≈ 1 and ρac ≈ 0, and Hermiticity means the only relevant components
are ρab and ρcb. Thus:

ρ̇ab = −i [(Haa · ρab +Hab · 1 +Hac · ρcb)
− (0 ·Hab + ρab ·Hbb − 0 ·Hcb)]− γabρab

= − (iωab + γab) ρab + iΩpe
−iωptρcb + iEdabe

−iωt, (12.2)
ρ̇cb = −i [(Hca · ρab + 0 · 1 +Hcc · ρcb)

− (0 ·Hab + ρcb ·Hbb − 0 ·Hcb)]− γcbρcb
= − (iωcb + γcb) ρcb + iΩ∗pe

iωptρab. (12.3)

Let us now assume that the pump is resonant, so that ωp = ωac = ωa−ωc.
Then, rewriting ρab = ρ̃abe

−iωt, and ρcb = ρ̃cbe
−i(ω−ωp)t, and defining the

probe detuning ∆ = ωab − ω, we have:

∂t

(
ρ̃ab
ρ̃cb

)
=
(
−(i∆ + γab) iΩp

iΩ∗p −(i∆ + γcb)

)(
ρ̃ab
ρ̃cb

)
+
(
iEdab

0

)
.

(12.4)
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This has the form Ẋ = MX+A, and we want the steady state solution (af-
ter decay of any initial transients), which is clearly given by X = −M−1A.
Thus we can extract the polarisation by finding ρab:

P =
Natoms

V
dabρab =

Natoms

V
dab

(i∆ + γcb)iEdab
(i∆ + γab)(i∆ + γcb) + |Ωp|2

e−iωt. (12.5)

Then, noting the time dependence of E(t) = Ee−iωt, one can easily identify
the susceptibility, χ by P = χε0E. i.e.

χ =
Natoms

V

|dab|2

ε0

i(i∆ + γcb)
(i∆ + γab)(i∆ + γcb) + |Ωp|2

. (12.6)

Let us now discuss the properties of this susceptibility. It is clear that
χ(−∆) = −χ(∆)∗, thus if χ = χ′ + iχ′′, it is clear that χ′ is an odd
function of ∆ (and vanishes at ∆ = 0), and χ′′ an even function. However,
χ(∆ = 0) ∝ γcb, which we assumed earlier to be small, as this transition is
dipole forbidden. To be precise, χ′′(∆ = 0) ∝ γcb/(γabγcb + |Ωp|2); thus the
absorption part is small if γcb � Ωp; the coherent driving field has induced
transparency. The full real and imaginary parts of susceptibility are plotted
in Fig. 12.2, both with and without a driving field Ωp.
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Figure 12.2: Real and imaginary parts of susceptibility, plotted
for γ1 = 0.5, γ3 = 0.01, and two values of Ωp as indicated.

Since both real and imaginary parts of χ are zero, or very small at
∆ = 0, let us consider linear expansion; clearly only the real part exists to
linear order. Setting γcb = 0, one trivially finds:

χ = −Natoms

V

|dab|2

ε0

∆
|Ωp|2

+O(∆2). (12.7)

The linear part of susceptibility relates to the dispersion of the probe field;
n(∆) =

√
1 + χ(∆), which can be used with ω = ωab−∆, and n(ω)ω = ck.
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One thus has phase velocity vp = c/n(∆) and group velocity vg = c/[n −
(ωab −∆)dn/d∆]. Assuming ∆ remains small, one can expand:

n ≈ 1− Natoms

V

|dab|2

ε0

∆
2|Ωp|2

,
dn

d∆
≈ −Natoms

V

|dab|2

ε0

1
2|Ωp|2

. (12.8)

Thus, to leading order:

vp ≈ c, vg ≈
c

1 + N
|Ωp|2

ωab|dab|2
2ε0V

, (12.9)

where we have rearranged factors to identify the atom-radiation coupling
strength g2 = ωab|dab|2/2ε0V [cf. the definition in Eq. (1.39), in the case
ωk = ε = ωab]. Thus, if Ng2/|Ωp|2 is large, one can have small absorption,
yet large enough dispersion to significantly reduce the group velocity, and
thus have non-absorbed slow light.

Decay length of slow light

The previous analysis shows that near zero detuning, one can have a small
group velocity, but small absorption. Let us now be more specific about
how small the absorption is. What matters in practice is the attenuation
of the signal as it propagates, following I(l, ω) = I(0)e−klχ

′′(ω). Since the
attenuation is frequency dependent, this may also lead to distortion of the
propagating signal. The frequency dependence of the transmission intensity
is shown in Fig. 12.3.
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Figure 12.3: Transmission after L = (50/π)λ, for the same pa-
rameters as in Fig. 12.2.

Considering the case γcb = 0, for small ∆, the second order expansion
yields:

χ′′ ≈ 2i
Ng2

ck
∆2 γab
|Ωp|4

, (12.10)
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where we have written ωab = ck. One can thus identify a frequency depen-
dent decay length:

L = c
1

2Ng2

1
∆2

|Ωp|4

γab
. (12.11)

12.2 Coherent evolution alone; why does EIT
occur

Let us now ignore the decay rates, γab and γbc, and look at the evolution
of atomic states alone. Thus, since we are not interested in the dielectric
response, we may denote Edab = Ωs as the signal field. Considering the
fully resonant case, ω = ωab and ωp = ωac, one can write:

|ψ〉 = cae
−iωat |a〉+ cbe

−iωbt |b〉+ cce
−iωct |c〉 (12.12)

i∂t

 ca
cb
cc

 =

 0 −Ωs −Ωp

−Ω∗s 0 0
−Ω∗p 0 0

 ca
cb
cc

 . (12.13)

One can easily find the eigenvalues and vectors of this problem; in terms of
Ω0 =

√
|Ωs|2 + |Ωp|2 one has:

λ = 0 :
1

Ω0

 0
Ωp

−Ωs

 ; λ = ±Ω :
1√
2Ω0

 ∓Ω0

Ω∗s
Ω∗p

 . (12.14)

Thus, if one starts in the state (Ωp |b〉 − Ωs |c〉) /Ω0, then the evolution never
reaches the excited state |a〉. Since the only substantial decay constant was
from the state |a〉, this then means one has no absorption: The evolution
is trapped in this dark state, and shows no decay. One may also describe
this process as destructive interference between the transitions |b〉 → |a〉
and |b〉 → |a〉 → |c〉 → |a〉 etc.

Since such a dark state exists, from which no further excitation is pos-
sible, the full evolution (with decay rates) can be understood as follows:
Regardless of the initial state, decay out of states |a〉 allows one to reach
various superpositions B |b〉+ C |c〉. Eventually, one will reach dark state,
after which no further evolution can occur. [See Q. 12.1].

12.3 Coherent control of quantised radiation:
Dark state polaritons

The previous sections show that the existence of the classical driving field,
resonant with the c ↔ a transition modify the response seen by a probe
field at the b ↔ a transition: One can have vanishing absorption, while
still having strong dispersion, allowing propagation of “slow light”. In this
section, we consider the probe field quantum mechanically, and ask how the
classical driving changes the evolution of quantised radiation. As illustrated
in Fig. 12.4, we consider the driving as still classical, but the probe field is
quantum mechanical.
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b

a

c

ClassicalQuantum
Field Driving

Figure 12.4: Illustration of which transitions are classically
driven, and which described quantum mechanically

In order to consider propagation through the EIT medium, we consider
a continuum of radiation modes, as well as explicitly including a sum over
atomic states. Note that in the earlier treatment, the sum over atoms
occurred implicitly via the factor Natoms in Eq. (12.6) Assuming resonance
for the driving field, and writing σxyi for the three by three matrix describing
transitions from level y to level x of atom i, one can write:

H =
∑
k>0

cka†kak +
∑
i

[
−gσbai e−iωabt

(∑
k

a†ke
−ikxi

)
− Ω∗pσ

ca
i +H.c.

]
.

(12.15)
Then, making a gauge transform to a rotating frame one can remove the
explicit e−iωabt time dependence, in favour of replacing ck → ck − ωab.
Then, one may make a Fourier transform of the photon field, defining:

a(x) =
∑
k

ake
i(k−ωab/c)x. (12.16)

By writing k − ωab/c rather than k, one recovers the correct energy from
the derivative w.r.t. x. Thus, one can write

H =
∫
dxa†(x)(−ic∂x)a(x) +

∑
i

[
−gσbai a†(xi)e−iωabxi/c − Ω∗pσ

ca
i +H.c.

]
.

(12.17)
Note the factor of e−iωabxi/c appearing in the photon-atom coupling term.
Let us introduce collective variables:

X(x) =
∑
i

σcai δ(x− xi)

P (x) =
∑
i

σbai δ(x− xi)e−iωabxi/c

S(x) =
∑
i

σbci δ(x− xi)e−iωabxi/c. (12.18)

The definitions here are not the most symmetric, but are physically moti-
vated: P represents a polarisation wave, while S represents a “spin wave”
— this language is appropriate to cases where the low lying levels b, c arise
from opposite spin states. The definitions of P (x) and X(x) are easily
understood, as they allow one to rewrite Eq. (12.17) as:

H =
∫
dxa†(x)(−ic∂x)a(x)−

[
gP (x)a†(x) + Ω∗pX(x) +H.c.

]
. (12.19)
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To understand the definition of S(x), we must consider commutation
relations. Writing commutators using [σij , σkl] = δjkσ

il − δliσkj , the cross
commutators are given by:

[P (x), X†(x′)] = S(x)δ(x− x′),
[S(x), X(x′)] = P (x)δ(x− x′),
[P †(x), S(x′)] = X†(x)δ(x− x′). (12.20)

Other than these, and their conjugate forms, all other cross commutators
vanish. Thus, it is clear that the phase factors in the definition of S(x) in
Eq. (12.18) is required to give these simple forms.

We now have a tractable form of the quantum Hamiltonian, which allows
us to consider how an initial state will evolve. Let us solve the simpler
problem, of finding the quantum states that are trapped in the absorption-
free subspace. It is clear that the atomic ground state, with no photons is
an eigenstate, which we will denote |0〉. Let us consider excited states of
the form:

|Φ〉 = Φ† |0〉 =
∫
dxφ(x)

(
αa†(x) + βS†(x)

)
|0〉 , (12.21)

and ask for the condition under which no excitations to the excited atomic
state, a, occur. Note the distinction to the discussion in Sec. 12.2; in that
case we wanted superpositions of b and c states so that in the presence of
a given probe electric field there were no excitations; in the current case
we want a superposition of radiation and spin-wave excitations. Since the
trial state in Eq. (12.21) contains no excitations, we require only that the
time derivative of number of excitations vanishes. Thus, the condition we
require can clearly be written as: 〈0|P [H,Φ†] |0〉 = 0. Let us consider the
commutator, using the results in Eq. (12.20), along with [a(x), a†(x′)] =
δ(x− x′):[

H,
(
αa†(x) + βS†(x)

)]
=

α
(
ic∂xa

†(x)− gP †(x)
)

+ β
(
ga†(x)X (x)− ΩpP

†(x)
)
. (12.22)

The term proportional to a†(x)X (x) is second order, involving both atomic
and radiation excitations, for low intensities it can be neglected. The num-
ber of excitations then vanishes under the condition: αg + βΩp = 0. If we
wish to find a normalised wavefunction, we require:

δ(x− x′) = [Φ(x),Φ†(x′)] = |α|2δ(x− x′) + |β|2
∑
i

δ(x− x′). (12.23)

Thus, one has 1 = |α|2 + |β|2 in addition to the previous condition, thus:

α =
Ωp√

|Ωp|2 + g2N
, β =

−g√
|Ωp|2 + g2N

. (12.24)
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From Eq. (12.22), we find this state evolves according to the Heisenberg
equation of motion,

− i∂tΦ†(x) = [H,Φ†] =
icΩp√

|Ωp|2 + g2N
∂xa
†(x). (12.25)

To eliminate a†(x), we wish to write this in terms of the field Φ†(x). The
field Φ† is the linear combination of a† and S† which is dark — i.e. never
undergoes a transition to the excited atomic state; another orthogonal lin-
ear combination of a† and S† exists, let us call that Ψ†. Then, one can
write:(

Φ†

Ψ†

)
=

1√
|Ωp|2 + g2N

(
Ωp −g

√
N

g
√
N Ω∗p

)(
a†√
NS†

)
. (12.26)

Here we have included a factor of 1/
√
N required to achieve bosonic com-

mutation relations into the definition of a bosonic spin operator S†/
√
N .

Inverting this to find a† in terms of Φ† and Ψ†, and assuming an initially
dark state so that Ψ† → 0, Eq. (12.25) becomes:

− i∂tΦ†(x) =
icΩp√

|Ωp|2 + g2N
∂x

Ω∗p√
|Ωp|2 + g2N

Φ†(x), (12.27)

i.e. (
∂t +

c

1 + g2N/|Ωp|2
∂z

)
Φ† = 0. (12.28)

Thus, we have found a dark state polariton [41], a state which is never
excited to the radiative atomic state a, and is half light, half spin-wave
excitation. It propagates at a reduced velocity, which is the group velocity
found in Eq. (12.9). Importantly, one can control the nature of the state
by the ratio of Ωp to g

√
N . In a strong driving field Ωp � g

√
N , the

excitation is almost pure photon; for a vanishing field Ωp � g
√
N , the

excitation becomes pure spin wave. Thus, starting with a large Ωp, one can
inject an arbitrary quantum state of photons. By adiabatically reducing Ωp,
the quantum state is exactly transfered to the spin waves. These propagate
slowly, until Ωp is increased again, and the state transfered back to photons.
Hence, coherent control allows the trapping of quantum states of light.

12.4 Further reading

The general topics of EIT, dark states, and coherent control in three level
systems are discussed in a review by Fleischhauer et al. [42]. The question of
coherently transferring the quantum state of light to “dark state polaritons”
is introduced in Ref.[41], and discussed further in Ref.[43]. An interesting
application of this idea is described in Ref. [44], where a quantum state of
light is transported by transferring atoms between two condensates, and
then releasing the state of light from the second condensate.
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Questions

Question 12.1: Evolution to dark state
As mentioned in Sec. 12.2, decay should be responsible for projecting

into the dark state. Considering Eq. (12.4); find the evolution to the dark
state if one starts in the ground state, i.e. find the general time dependent
solution starting from ρab = ρcb = 0. Sketch the time dependence of <[ρcb].
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