
EPR Correlations/Entanglement

- A source produces atom pairs in an entangled state (e.g. state of zero total angular momentum).
- Each analyzer can be set to one of three settings, and lights either green or red with each measurement.
- Suppose each atom pair has some **predetermined** quality (an instruction set) that causes the devices to light either green or red (a realist perspective).
- There are then eight different types of atom pairs, and nine combinations of device settings.

	RESULT FOR EACH RUN, IF SWITCH IS SET TO:			ANALYZER SETTING		TYPE OF ATOM-PAIR			
TYPE OF	Α.	В	С	LEFT	RIGHT	I	II	III	IV
ATOM	A	Б	C	A	A	R/R	R/R	R/R	R/R
I	RED	RED	RED	A	В	R/R	R/R	R/G	R/G
II	RED	RED	GREEN	A	С	R/R	R/G	R/R	R/G
III	RED	GREEN	RED	В	A	R/R	R/R	G/R	G/R
IV	RED	GREEN	GREEN	В	В	R/R	R/R	G/G	G/G
V	GREEN	RED	RED	В	C	R/R	R/G	G/R	G/G
VI	GREEN	RED	GREEN	C	A	R/R	G/R	R/R	G/R
VII	GREEN	GREEN	RED	C	В	R/R	G/R	R/G	G/G
VIII	GREEN	GREEN	GREEN	С	C	R/R	G/G	R/R	G/G
REALIST EXPECTATION: Devices should flash the same color at least 5/9 of the time.				# OF SETTINGS FLASHING SAME COLOR		9	5	5	5

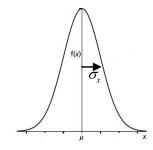
OBSERVATION:

When the settings on both devices are the same (A, B or C) they always flash the same color. If the (random) settings are ignored, the devices flash the same color 1/2 of the time.

CONCLUSION:

NO (LOCAL) DERMINISTIC SCHEME CAN REPRODUCE ALL THE PREDICTIONS OF QUANTUM MECHANICS!

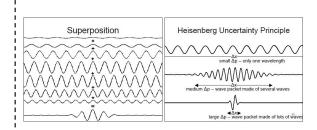
The Uncertainty Principle


Realist Interpretation

Particle Potons Particle Photons Lens

$$\Delta x = \frac{\lambda}{\theta}$$
 $\Delta p_x = \left(\frac{h}{\lambda}\right)\left(\frac{\theta}{2}\right)$ $\Delta x \Delta p_x = \frac{h}{2}$

- Photons are scattered by localized particles.
- The lens' resolving power introduces an uncertainty in the position.
- The size of the lens introduces an uncertainty in the momentum transferred .


Statistical Interpretation

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (\mu - x_i)^2 \qquad \sigma_x \sigma_p \ge \frac{\hbar}{2}$$

- Measurements are performed on an ensemble of similarly prepared systems.
- Distributions of position and momentum values are obtained.
- Uncertainties in position and momentum are defined in terms of the variance.

Wave Interpretation

$$f(x) = \int_{-\infty}^{+\infty} p(k)e^{2\pi ikx}dk \qquad p(k) = \int_{-\infty}^{+\infty} f(x)e^{-2\pi ikx}dx$$

- Wave packets are constructed from a series of plane waves.
- The more spatially localized the wave packet, the less uncertainty in position.
- With less uncertainty in position comes a greater uncertainty in momentum.