For these questions, use the simulation "Density matrices for a two-level spin system" and work through the simulation, including the step-by-step exploration (click on the "Step-by-step Exploration" tab).

- 1) Calculate the density matrix ρ and its square ρ^2 explicitly for the following situations shown in the simulation:
- a) an equal mixture of particles in eigenstates $|z_+>$ and $|z_->$
- b) particles in the eigenstate $|x_+>$
- c) particles in the eigenstate $|x_->$
- d) an equal mixture of particles in eigenstates $|x_+\rangle$ and $|x_-\rangle$.

Which of the states described in a) to d) are pure states, which are mixed states, which are superposition states with respect to the basis $|z_+\rangle$ and $|z_-\rangle$? Verify your answers by determining the traces $Tr(\rho)$ and $Tr(\rho^2)$.

- 2) Imagine the Stern-Gerlach Apparatus shown in the simulation were oriented at an angle θ to the z-axis, in the xz plane. After passing through the SGA, the beam deflected in the positive θ direction consists of particles in the eigenstate
- $|\theta_{+}\rangle = \cos(\theta/2) |z_{+}\rangle + \sin(\theta/2) |z_{-}\rangle.$
- a) Interpret this formula for $|\theta_+\rangle$ for the special cases $\theta=0^\circ$ and $\theta=90^\circ$ shown in the simulation.
- b) Determine the density matrix for the state $|\theta_{+}\rangle$.