For these questions, use the simulation "Expansion in eigenstates" and work through the simulation, including the step-by-step exploration (click on the "Step-by-step Exploration" tab).

1) For the symmetric triangular wave function shown in the simulation, determine an analytic expression for the wave function $u(x)$ inside the well, including an explicit expression for the normalization constant in terms of L, the width of the well.
2) This wave function $u(x)$ can be expanded in terms of the infinite square well energy eigenfunctions $u_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)$ with expansion coefficients c_{n} : $u(x)=\sum_{n=1}^{\infty} c_{n} u_{n}(x)$.
a) Write down an integral expression for the expansion coefficient c_{n}.
b) Using symmetry arguments, explain which expansion coefficients will be zero.
c) By integration, derive a general formula for the non-zero coefficients and interpret this formula.
d) Calculate numerical values for the first three non-zero expansion coefficients and compare with the values given in the simulation.
e) Explain the signs of these three coefficients in light of the wave function $u(x)$. What will be the sign of the coefficient c_{7} ?
f) If a measurement of energy were made of the particle described by the the wave function $u(x)$, with what probability would one find the energy of the second excited state?
