For these questions, use the simulation "Comparison of the finite and infinite square wells" in the QuVis HTML5 collection.
https://www.st-andrews.ac.uk/physics/quvis/simulations htm15/sims/finite-infinite-well/finite-infinite-well.html

1) Use the simulation to complete the following table for the first excited state $\boldsymbol{\psi}_{\mathbf{2}}$ for different well depths. Make all your sketches the same scale.

Well depth	Sketch of the $1^{\text {st }}$ excited state probability density $\left\|\psi_{2}\right\|^{2}$	Fraction of $\left\|\psi_{2}\right\|^{2}$ beyond the well edges	Probability of finding the particle inside the well	First excited state energy E_{2}	$\begin{gathered} V-E \text { (well depth } \\ \text { minus energy) } \end{gathered}$	$\sqrt{V-E}$
V_{0}						
$2 V_{0}$						
$3 V_{0}$						
$4 V_{0}$						
infinite						

2) Using your data in the table from question 1 , construct a graph of the fraction of the probability density $\left|\psi_{2}\right|^{2}$ beyond the edges of the well versus $\sqrt{V-E}$. Label your axes.
3) Using ideas of de Broglie wavelength, explain qualitatively how the fraction of $\left|\psi_{2}\right|^{2}$ beyond the edges of the well and the energy E_{2} in the question 1 table are related. No quantitative analysis is needed.
4) For the finite well, the form of the probability density beyond the edges of the well is an exponential decay similar to the function

$$
|\psi(x)|^{2}=N e^{-q x}
$$

assuming positive x, where N is a constant and

$$
q=\sqrt{\frac{8 m}{\hbar^{2}}(V-E)}
$$

with m as particle mass, V as well depth and E as particle energy.
a) For what values of x does the wavefunction decay exponentially for the finite-depth well shown in the simulation?
b) Consider the function $e^{-q x}$ for positive x.

If q is increased, does the function $e^{-q x}$ remain unchanged, become less steep (fall off to zero more slowly) or become steeper (fall off to zero more quickly)?
c) What does an increase of q correspond to in your data from question 1 ?
d) Using these results, explain qualitatively your graph from question 2 of the fraction of the probability density $\left|\psi_{2}\right|^{2}$ beyond the edges of the well versus $\sqrt{V-E}$.
e) Using the above expression for q, explain what happens to the fraction of the probability density beyond the edges of the well in the limit of infinite well depth.

