For these problems, use the simulation "The expectation value" in the QuVis HTML5 collection.

1) Have a play with the simulation for a few minutes, getting to understand the controls and displays. Note down three things about the controls and displayed quantities that you have found out.

2 a) Consider the input state $\sqrt{\frac{3}{10}}\left|\uparrow>+\sqrt{\frac{7}{10}}\right| \downarrow>$ shown in the simulation. Experimentally find the detection probabilities for particles to be detected in the upper path and in the lower path after passing through the Stern-Gerlach apparatus. Explain how these detection probabilities can be theoretically calculated from the input state.
b) Do the same for the input state $\frac{1}{\sqrt{5}}(-2|\uparrow\rangle+|\downarrow\rangle)$.
c) Find the absolute value of the coefficients $|a|$ and $|b|$ for the third input state. Explain your reasoning. Why can you only find $|a|$ and $|b|$ and not a and b ?
3) a) Explain the two procedures shown in the Expectation value (I) and Expectation value (II) panels to experimentally determine the expectation value $<\hat{S}_{z}>$ of the z-component of spin for a fixed input state. Show that the two procedures must give the identical result and are thus equivalent.
b) Will your value for $<\hat{S}_{z}>$ obtained experimentally exactly agree with the theoretical value? Explain using the simulation.
4) Consider the input state $\sqrt{\frac{3}{10}}\left|\uparrow>+\sqrt{\frac{7}{10}}\right| \downarrow>$.
a) What are the possible outcomes for a single measurement of S_{z} ?
b) What is the most likely outcome of S_{z} for a single measurement? Explain how you can determine this most likely outcome for a single measurement from the theoretical probability Prob ${ }_{+}$.
c) Explain how you can determine the most likely outcome of S_{z} for a single measurement from the theoretical expectation value $<\widehat{\mathrm{S}}_{\mathrm{z}}>$.
5) Come up with an input state different to those shown in the simulation for which
a) the theoretical expectation value $<\hat{S}_{z}><0$.
b) the most likely outcome of S_{z} for a single measurement is $+\hbar / 2$.
c) $+\hbar / 2$ and $-\hbar / 2$ are equally likely outcomes of S_{z} for a single measurement.

