School of Biology

Masters in Marine Mammal Science
Also
Postgraduate Certificate
Postgraduate Diploma

Programme Requirements

Taught Element:
75 credits from compulsory modules: BL5104, BL5111, BL5113, BL5201, BL5202
and
45 credits from optional modules: BL5103, BL5121, BL5122, BL5124, BL5125, MT5751

MSc:
120 credits from the Taught Element, plus BL5199 (60-credit Research Project module)

For all Masters degrees there are exit awards available that allow suitably-qualified candidates to receive a Postgraduate Certificate or Postgraduate Diploma.

Compulsory modules - Semester 1:

<table>
<thead>
<tr>
<th>BL5111 Quantitative Methods for Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCOTCAT Credits: 10</td>
</tr>
<tr>
<td>Planned timetable: To be arranged. (Weeks 1 - 7)</td>
</tr>
</tbody>
</table>

This module provides the basic numerical and computational skills necessary for visualising and summarising data sets. It is designed as a primer for more advanced courses in statistical modeling and also as an introduction to the computer language R. The examples and computer practicals are motivated from the ecological literature.

Programme module type: Compulsory for MSc in Marine Mammal Science and MSc in Ecosystem-based Management of Marine System Postgraduate Programmes

Learning and teaching methods and delivery: Weekly contact: To be arranged, 6 weeks long.

Assessment pattern: 1.5-hour Written Examination = 50%, Coursework = 50%

Module Co-ordinator: Dr S Smout
BL5113 Statistical Modelling of Biological Data

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>20</th>
<th>SCQF Level:</th>
<th>11</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged. (Weeks 8 - 11)

Statistical modelling is an indispensable tool for the analysis of scientific data. This advanced level module will introduce methods for fitting models to biological data, mainly using R software. Approaches will include multiple regression, GLMs, and GAMs. We will consider some of the difficulties that can occur in modelling biological data sets e.g. temporal autocorrelation, and will look at ways to check and test models. We will consider approaches to model selection. The course will also cover multivariate techniques such as cluster analysis.

Programme module type: Compulsory for MSc in Marine Mammal Science and MSc in Ecosystem-based Management of Marine Systems Postgraduate Programmes.

Co-requisite(s): BL5111

Anti-requisite(s): MT5753

Learning and teaching methods and delivery:

- **Weekly contact:** 4 x 1-hour lectures and 4 x 3-hour labs and 1 x 2-hour seminar. Four weeks in total.

Assessment pattern: Coursework = 100%

Module Co-ordinator: Dr S Smout

BL5201 Biology of Marine Mammals

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>10</th>
<th>SCQF Level:</th>
<th>11</th>
<th>Semester:</th>
<th>1</th>
</tr>
</thead>
</table>

Planned timetable: To be arranged. Weeks 1-7

This module introduces the zoogeography of marine mammals and the morphological, physiological and behavioural adaptations which have enabled this diverse group to successfully colonise all of the world's oceans and some freshwater systems. Students will gain an understanding of the physiological and behavioural complexity underlying movement patterns, diving, foraging, reproduction, and social dynamics of marine mammals across different temporal and spatial scales. Lectures will focus on topical issues and selected examples illustrating and contrasting some of the strategies employed by different marine mammal groups.

Programme module type: Compulsory for MSc in Marine Mammal Science Postgraduate Programme.

Pre-requisite(s): Undergraduate courses in behaviour, ecology, physiology, zoology or marine science

Required for: BL5121, BL5122

Learning and teaching methods and delivery:

- **Weekly contact:** 24 x 1.5-hour lectures over 7 weeks and 2 tutorials.

Assessment pattern: 3-hour Examination = 100%

Module Co-ordinator: Dr S Heinrich
Many of the most topical issues in marine mammal science revolve around ecology and behaviour. In this module, students will explore aspects of diving, foraging, reproduction and social behaviour of marine mammals in greater detail through a series of student-lead seminars, lab practicals and field excursions. Computer practicals will provide training in basic principles of GIS application and, passive acoustic techniques. Emphasis will be placed on current advances in understanding and research methods. The issues discussed here are often at the base of human-marine mammal conflicts, thus understanding the underlying ecological principles not only provides interesting insights into marine mammal biology but also yields consequences for marine mammal conservation and management.

Programme module type: Compulsory for MSc in Marine Mammal Science Postgraduate Programme.

Learning and teaching methods and delivery:
Weekly contact: 2 lectures, 4 seminars, 1 workshop, 7x 3-hour practicals and 1 day-long field trip in total over 7 weeks.

Assessment pattern:
Coursework = 100%

Module Co-ordinator: Dr S Heinrich

From the heated debates surrounding whaling to calls for seal culls to protect commercial fish stocks, issues pertaining to marine mammals feature regularly in the public domain and often polarise public opinion. Finding ways to address human-marine mammal conflicts and advise on mitigation have become important tasks for many marine mammal scientists. Through a series of lectures, seminars, debates and workshops, students will explore human-marine mammal interactions to better understand the underlying factors. They will learn to critically evaluate current conservation and management issues and will explore ways in which sound science can contribute to alleviate existing and future conflicts.

Programme module type: Compulsory for MSc in Marine Mammal Science Postgraduate Programme.

Learning and teaching methods and delivery:
Weekly contact: 3 lectures and 1 seminar each week for 4 weeks plus 1 workshop in total.

Assessment pattern:
1.5-hour Written Examination = 50%, Coursework = 50%

Module Co-ordinator: Dr S Heinrich
Compulsory module MSc - Whole Year:

BL5199 Marine Mammal Science Research Project

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>60</th>
<th>SCQF Level 11</th>
<th>Semester:</th>
<th>Whole Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned timetable:</td>
<td>To be arranged.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The research project or dissertation will involve the study of a defined problem within the field of marine mammal science. Students will be required to collate and analyse data and discuss their results in the light of existing literature. In some cases, projects might also involve the design of experiments or the gathering of data. Students are tasked with developing a research proposal on their project topic during semester 2. Each project will then be written up in the form of a thesis and presented as a poster during the end of year MSc student conference.

Programme module type: Compulsory for MSc in Marine Mammal Science Postgraduate Programme.

Learning and teaching methods and delivery:

Weekly contact: To be arranged.

Assessment pattern:

Research report or Thesis of up to 15,000 words (excluding bibliography) = 70%, Research proposal = 20%, Poster presentation = 10%

Module Co-ordinator: Dr S Heinrich

Optional modules:

BL5103 Population Biology of Marine Mammals

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 11</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned timetable:</td>
<td>Weeks 5 - 7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The module reviews the fundamental concepts of population dynamics (growth, density dependence, stability, population structure) and how these are interpreted in the light of the various life-history strategies adapted by different species of marine mammals. It then examines topics in population genetics, trophic interactions and spatial dynamics. The module also covers practical issues involved in population viability analysis and anticipated future developments in integrative modelling approaches.

Programme module type: Optional for MRes in Marine Mammal Science Postgraduate Programme.

Learning and teaching methods and delivery:

Weekly contact: 4 lectures and 1 practical class each week for 3 weeks and 2 seminars in total.

Assessment pattern:

1.5-hour Written Examination = 50%, Coursework = 50%

Module Co-ordinator: Dr S Smout
BL5121 Current Issues in Marine Mammal Behaviour

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 11</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned timetable:</td>
<td>Weeks 5 - 7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marine mammals are often seen as highly intelligent and complex in their behaviour. This module will investigate such claims by discussing current views and recent advances in the study of marine mammal social behaviour. Each student will present one topic to the class and lead the discussion on it. Topics covered will include brain evolution, dolphin signature whistles, referential communication, cetacean culture, equivalence classes, cooperation and concept formation.

Programme module type: Optional for MSc in Marine Mammal Science Postgraduate Programme.

Pre-requisite(s): BL5201

Learning and teaching methods and delivery:
- **Weekly contact:** 1 lecture and 9 seminars spread over 3 weeks.

Assessment pattern: 1.5-hour Written Examination = 50%, Coursework = 50%

Module Co-ordinator: Dr V Janik

BL5122 Current Issues in Biologging

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 11</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned timetable:</td>
<td>Weeks 1 - 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This module will present an introduction to marine mammal biologging science: the theory and practice of logging and relaying physical and biological data using animal-attached tags. Lectures will cover the technology currently available for measuring animal movements, investigating behaviour, ecology and physiology, some of the problems associated with tag design in terms of how data is stored and transmitted, and problems associated with data analysis and data display.

Programme module type: Optional for MSc in Marine Mammal Science Postgraduate Programme.

Pre-requisite(s): BL5201

Learning and teaching methods and delivery:
- **Weekly contact:** 1 - 2 lectures, 1 seminar and 1 practical class each week for 4 weeks.

Assessment pattern: 1.5-hour Written Examination = 50%, Coursework = 50%

Module Co-ordinator: Dr S Hooker
BL5124 Predator Ecology in Polar Ecosystems - a Field Course in Antarctica

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 11</th>
<th>Semester:</th>
<th>Whole Year</th>
</tr>
</thead>
</table>

Planned timetable:
lectures in S1, field course in S2 including 3 weeks in southern Argentina and Antarctica

This module offers students the unique opportunity to gain theoretical and practical experience in polar ecology with special emphasis on top predators (cetaceans, pinnipeds, sea birds), ecosystem functionality and management of Antarctic marine living resources. Students will participate in a vessel-based expedition to Antarctica during the austral summer and will also explore southern Argentina. This field trip involves travelling to southern Argentina, conducting at-sea surveys during transit to/ from the Antarctic Peninsula, participating in shore-based activities, and exploring Antarctic coastal waters from small boats. Through a series of specialist lectures, workshops, on-board practicals, field excursions and dedicated observational studies students will gain in-depth understanding and critical awareness of the current scientific, conservation and management challenges of the Antarctic ecoregion. Upon return to St Andrews students will complete a specialist case study on a selected topic which will culminate in the presentation of a manuscript for submission to a journal. Participating students will need to cover all logistic expenses via payment of a substantial expedition fee.

Programme module type: Optional for MSc in Ecosystem-Based Management of Marine Systems and in Marine Mammal Science Postgraduate Programmes.

Pre-requisite(s):
Undergraduate degree in relevant Biological disciplines and/or admittance to St Andrews MSc Programmes, Medical certificate documenting fit for travel to remote Antarctica

Anti-requisite(s):
BL4301

Learning and teaching methods and delivery:
Weekly contact: 8 x 1.5-hour lectures in S1 and several tutorials plus full day field practicals during the expedition.

Assessment pattern:
Coursework = 100 %

Module Co-ordinator:
Dr S Heinrich

BL5125 Advanced Bioacoustics for Marine Mammal Science

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level 11</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
</table>

Planned timetable:
Weeks 1 - 4

Bioacoustics is an important topic in marine mammal science, because of the use the animals themselves make of sound, because it is often the most practical way to detect their presence, and because of the impacts anthropogenic sounds can have on acoustically sensitive species. This course provides an advanced survey of current topics, from understanding the physics of sound and how it is measured and analysed, through using sound to detect and monitor marine mammal presence, to the assessment and mitigation of anthropogenic noise impacts. There will be a strong emphasis on digital analysis and practical exercises designed to introduce students to the range of techniques and tools currently used in the field.

Programme module type:
Optional for MSc in Marine Mammal Science Postgraduate Programme.

Pre-requisite(s):
Students should have had some background in either marine mammal biology or physics, and should have studied some kind of mathematics to SCQF Level 7 or equivalent.

Learning and teaching methods and delivery:
Weekly contact: 8 lectures and 8 practical classes, 3 tutorials and 4 hours of fieldwork over a 4 week period.

Assessment pattern:
Coursework = 100 %

Module Co-ordinator:
Dr L Rendell
MT5751 Estimating Animal Abundance

<table>
<thead>
<tr>
<th>SCOTCAT Credits:</th>
<th>15</th>
<th>SCQF Level</th>
<th>11</th>
<th>Semester:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned timetable:</td>
<td>12.00 noon Mon (odd), Wed and Fri</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The module will introduce students to the main types of survey method for wildlife populations. It will cover simple methods in some detail and provide students with a conceptual framework for building understanding of more advanced methods. By the end of the course, students will be able to identify an appropriate assessment method for a given population, be able to design a simple survey to assess the population, and perform simple analyses of survey data. Students will get experience in using the methods via computer practical sessions involving design and analyses of surveys conducted by computer simulation.

<table>
<thead>
<tr>
<th>Programme module type:</th>
<th>Optional for all Postgraduate Programmes within the School of Mathematics & Statistics, also for some Postgraduate programmes outwith the School.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning and teaching methods and delivery:</td>
<td>Weekly contact: 1.5 hrs lecture, 1 hr practical, 0.5 hr tutorial (weeks 1 - 10)</td>
</tr>
<tr>
<td>Assessment pattern:</td>
<td>2-hour Written Examination = 50%, Coursework = 50%</td>
</tr>
<tr>
<td>Module Co-ordinator:</td>
<td>Prof D L Borchers</td>
</tr>
<tr>
<td>Lecturer(s)/Tutor(s):</td>
<td>Prof D L Borchers</td>
</tr>
</tbody>
</table>